单管放大电路实验报告—王剑晓

合集下载

单管放大电路设计实训报告

单管放大电路设计实训报告

一、实训目的1. 理解单管放大电路的基本原理和设计方法。

2. 掌握放大电路静态工作点的调试方法,分析静态工作点对放大器性能的影响。

3. 学会放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

4. 熟悉常用电子仪器及模拟电路实验设备的使用。

二、实训原理单管放大电路是模拟电子技术中最基本的放大电路之一,它主要由晶体管、偏置电路、负载电阻和耦合电容等组成。

放大电路的作用是将输入信号放大到所需的幅度,并保持信号的相位不变。

本实训以共射极单管放大电路为例,介绍其设计方法和实验步骤。

三、实训设备1. 模拟电路实验箱2. 函数信号发生器3. 双踪示波器4. 交流毫伏表5. 万用电表6. 连接线若干四、实训步骤1. 设计电路根据实验要求,设计一个电压放大倍数为40dB,最大不失真输出电压为1V的单管放大电路。

电路如图所示:```+Vcc|R1 ----|---- Q (晶体管)| |R2 ----|---- C2 (耦合电容)| |R3 ----|---- RL (负载电阻)| |GND |```2. 电路仿真使用电路仿真软件对设计好的电路进行仿真,观察电路的静态工作点和动态性能。

3. 电路制作根据仿真结果,制作实际电路板,并检查电路焊接质量。

4. 电路调试将电路接入实验箱,使用万用电表测量电路的静态工作点,包括基极电压、集电极电压和发射极电压。

根据实验要求调整偏置电阻R1和R2,使静态工作点符合设计要求。

5. 性能测试使用函数信号发生器输入一个频率为1kHz,幅度为100mV的正弦波信号,使用交流毫伏表测量输入信号和输出信号的幅度,计算电压放大倍数。

使用示波器观察输入信号和输出信号的波形,分析放大器的失真情况。

五、实验结果与分析1. 静态工作点经过调试,电路的静态工作点为:Vcc=12V,Vb=2.5V,Vc=7.5V,Ic=5mA。

2. 电压放大倍数输入信号幅度为100mV,输出信号幅度为4V,电压放大倍数为40dB。

单管放大电路实验报告

单管放大电路实验报告

单管放大电路实验报告.单管放大电路一、实验目的1.掌握放大电路直流工作点的调整与测量方法;2.掌握放大电路主要性能指标的测量方法;3.了解直流工作点对放大电路动态特性的影响;4.掌握射极负反馈电阻对放大电路特性的影响;5.了解射极跟随器的基本特性。

二、实验电路实验电路如图 2.1 所示。

图中可变电阻R W是为调节晶体管静态工作点而设置的。

三、实验原理1.静态工作点的估算将基极偏置电路V CC,R B1和R B 2用戴维南定理等效成电压源。

RB 2开路电压V BB V CC,内阻RB1RB 2R B R B1 // R B2则I BQV BB V BEQ,(1)( R E1R B R E2)I CQ I BQVCEQ VCC(R C R E1RE2)ICQ可见,静态工作点与电路元件参数及晶体管β均有关。

在实际工作中,一般是通过改变上偏置电阻RB1(调节电位器RW )来调节静态工作点的。

RW 调大,工作点降低(ICQ 减小),RW 调小,工作点升高(ICQ 增加)。

一般为方便起见,通过间接方法测量I CQ,先测V E, I CQ I EQ V E /(R E1 R E2)。

2.放大电路的电压增益与输入、输出电阻(R C // R L )R i R B 1 // R B 2 // r be R O R Curbe式中晶体管的输入电阻r =r+(β+1) V /IEQ ≈r+(β+ 1)× 26/ICQ(室温)。

be bb′T bb′3.放大电路电压增益的幅频特性放大电路一般含有电抗元件,使得电路对不同频率的信号具有不同的放大能力,即电压增益是频率的函数。

电压增益的大小与频率的函数关系即是幅频特性。

一般用逐点法进行测量。

测量时要保持输入信号幅度不变,改变信号的频率,逐点测量不同频率点的电压增益,以各点数据描绘出特性曲线。

由曲线确定出放大电路的上、下限截止频率f H、f L和频带宽度BW= f H- f L。

单管电压放大电路实验报告

单管电压放大电路实验报告

5、实验报告要求
5.1、认真记录和整理测试数据,按要求填入表格并画出波形 图。 5.2、对测试结果进行理论分析,找出产生误差的原因。 5.3、详细记录实验过程中发生的故障,进行分析并排除故障。
2013-9-16 长江大学 龙从玉 7
uo
uoL
ui
③测量电压放大倍数
Au uo ui
④测量输出电阻RO
Ro ( uo 1)RL uoL
2013-9-16
图-1 单管电压放大实验电路 ⑤测量输入电阻Ri
长江大学 龙从玉
Ri
ui Rs us ui
2
3、实验内容与实验步骤
3.1 、单管电压放大器的静态工作点的调整与测试: 按图-1的单管电压放大电路正确接线,接通电源+12V。 调整三极管基极上偏电位器Rw,使Vce=6V,用万用表测 量静态工作点各个电压(Vb、Ve、Vc),根据发射极电压Ue 与电阻Re ,计算IC=Ie。将数据记录在表-1中。 3.2、测量单管电压放大器的放大倍数Au : 从信号源输入f=1khz,uipp=200mv正弦波,(万用表测量 交流电压有效值U=66mv),示波器CH1端测输入ui;CH2端 测输出uo。 计算放大器电压放大倍数Au=uo/ui。 观测输入/输出信号ui /uo波形图。记录在表-1中。 3.3、测量输出电阻Ro: 分别断开与接入RL,测出输出电压uo与uoL。 计算输出电阻Ro=RL*[(uo/uoL)–1] ,记录在表-1中。
2013-9-16 长江大学 龙从玉 4
表-1 单管电压放大器实验参数测量表
静态测量 VCC/V VCE/V VE/V VC/V VB/V IC≈IE/mA
动态测量
测量条件 uo=

单管放大电路实验报告

单管放大电路实验报告

单管放大电路实验报告【摘要】本实验通过搭建单管放大电路,研究了该电路的放大特性。

实验结果表明,当输入信号幅值较小时,输出信号具有一定的放大倍数,且放大倍数随着输入信号的增大而逐渐减小。

【关键词】单管放大电路;放大倍数;输入信号;输出信号一、实验目的1. 了解单管放大电路的工作原理;2. 掌握搭建和调试单管放大电路的方法;3. 研究单管放大电路的放大特性。

二、实验器材和仪器示波器、信号发生器、直流电源、电阻、电容、三极管等。

三、实验原理单管放大电路是由一个三极管、少量无源器件和若干衔接接线构成的。

它可以将小信号放大成为大信号,通过不同组合的电容、电阻和三极管可以实现不同的放大倍数。

四、实验步骤和结果1. 按照电路图搭建单管放大电路;2. 将信号发生器接入输入端,示波器接入输出端;3. 通过调节信号发生器的频率和幅值,观察输出信号的变化;4. 记录输入信号的幅值和输出信号的幅值,计算放大倍数;5. 重复步骤3和步骤4,绘制输入信号幅值和输出信号幅值之间的关系曲线。

五、实验结果与分析实验结果表明,当输入信号幅值较小时,输出信号具有一定的放大倍数,且放大倍数随着输入信号的增大而逐渐减小。

这是由于三极管的非线性特性造成的,当输入信号幅值较小时,三极管工作在其饱和状态,此时输出信号的放大倍数较高;当输入信号幅值较大时,三极管工作在其线性状态,此时输出信号的放大倍数较低。

六、实验总结通过本次实验,我们深入了解了单管放大电路的工作原理,并掌握了搭建和调试该电路的方法。

我们还研究了单管放大电路的放大特性,发现输出信号的放大倍数与输入信号的大小有关,这为我们进一步设计和优化放大电路提供了参考。

单管共射放大电路实验报告

单管共射放大电路实验报告

单管共射放大电路实验报告实验目的,通过实验,了解单管共射放大电路的基本原理和特性,掌握其工作原理和性能参数的测量方法,加深对电子技术的理论知识的理解。

实验仪器和器件,示波器、信号发生器、直流稳压电源、电阻、电容、三极管等。

实验原理,单管共射放大电路是一种常用的放大电路,它由一个三极管和几个外围元件组成。

在这个电路中,三极管的基极接地,发射极接负电源,集电极接负载电阻,形成了一个共射放大电路。

当输入信号加在基极上时,三极管会产生放大效果,输出信号会在集电极上得到放大。

实验步骤:1. 按照电路图连接实验电路,接通直流电源,调节电源电压和电流,使其符合电路要求。

2. 使用信号发生器产生输入信号,接入电路,观察输出信号在示波器上的波形。

3. 调节信号发生器的频率和幅度,观察输出信号的变化。

4. 测量输入信号和输出信号的幅度,计算电压增益。

5. 改变负载电阻的数值,观察输出信号的变化。

实验结果与分析:在实验中,我们观察到输入信号在经过单管共射放大电路后,输出信号得到了明显的放大。

通过调节信号发生器的频率和幅度,我们发现输出信号的波形随着输入信号的变化而变化,但是整体上保持了放大的特性。

通过测量输入信号和输出信号的幅度,我们计算得到了电压增益的数值,验证了单管共射放大电路的放大性能。

在改变负载电阻的数值后,我们也观察到了输出信号的变化,进一步验证了电路的特性。

实验结论:通过本次实验,我们深入了解了单管共射放大电路的工作原理和特性,掌握了测量其性能参数的方法。

实验结果表明,单管共射放大电路具有良好的放大特性,能够将输入信号放大并输出。

同时,我们也发现了一些问题,比如在一定频率下,输出信号会出现失真等。

这些问题需要进一步的分析和解决。

实验的过程中,我们也遇到了一些困难和挑战,但通过认真的实验操作和思考,最终取得了满意的实验结果。

通过本次实验,我们不仅加深了对电子技术的理论知识的理解,还提高了实验操作的能力和实验分析的能力。

单管放大电路实验报告

单管放大电路实验报告

可见,静态工作点与电路元件参数������������������ 、������������ 、������������1 、������������2 、������������1 、������������2 和晶体管的 β均有关。在 实际工作中, 一般是通过改变上偏置电阻������������1 来调节静态工作点的。 ������������ 调大, ������������������ 减小, ������������ 调 小,������������������ 增加(工作点升高) 。 为了方便,通常采用间接测量方法测量������������������ ,即先测出晶体管发射极的对地电压������������ ,再利 用������������������ ≈ ������������������ = ������������ / ������������1 + ������������2 算出������������������ 来。 2.放大电路的电压增益、输入电阻和输出电阻
Av =
式中晶体管的输入电阻������������������ = ������������������ ′ +
β +1 ������������ ������������������
≈ ������������������ ′ + β + 1 × 26/������������������ (室温) 。
计算值 3
仿真值 2.979
������������ 1 ������ ������������ 1 +������������ 2 ������������
������������ = ������������1 //������������2

单管放大电路实验研究报告

单管放大电路实验研究报告

单管放大电路实验报告1.实验目地1)掌握放大电路直流工作点地调整和测量方法2)掌握放大电路主要性能指标地测量方法3)了解直流工作点对放大电路动态特性地影响4)掌握发射极负反馈电阻对放大电路性能地影响5)了解信号源内阻对放大电路频带(上限截止频率)地影响2.实验内容:1)基本要求A.利用学习机上地晶体管输出特性测试电路测量β值;B.工作点地调整调节R w,分别使得I CQ=1.0mA,2.0mA,测量相应地V CEQ地值.C.工作点对放大电路地动态特性地影响分别在I CQ=1.0mA,2.0mA情况下,测量放大电路地动态特性(输入信号v i为正弦电压,幅度为5mV,频率为1kHz),包括电压增益,输入电阻,上、下限截止频率2)提高要求A.测量基本要求中c任务情况下地输出电阻值B.射级负反馈电阻对动态特性地影响将电容C E改为与R E2并联,测量此时放大电路在I CQ=1.0mA下地动态特性(测试内容同基本要求地C项),与上面地测试结果相比较,总结射级负反馈电阻对电路动态特性地影响.3、理论计算举例I CQ=1mA时,利用以下三个公式V BB=R B=∥I BQ=可求得R w=58 kΩ,也即R B=78 kΩ由此可返回去求得R B=12.6 kΩ,V BB=1.9VV CEQ=-(R C+R E1+R E2)*I CQ=7.22vR L’=R C∥R L2Kωr be=6.8 kΩ=-76.5R I==4.4 kΩR O R C=3.6 kΩ4、注意事项1、实验中要将直流电源、信号源、示波器等电子仪器和实验电路共地,以免引起干扰.2、电路性能指标地测试要在输出电压波形不失真和没有明显干扰地情况下进行5、数据整理,对比、以及分析1、测量学习机上地晶体管输出特性测试电路测量β值分析说明:在仿真和理论计算中,我们都是设定β值为260,而在实验中,利用学习机上地β值测量电路和示波器测得β值为183,比理论计算和仿真设定地值都小.2、静态工作点测量误差分析说明:由I BQ=和β值接近200以及各电阻地阻值,可以知道,≫,所以分母是主要决定于.而当R w上升时,则由V BB=可以知道此时V BB随之下降,而实验中地β值要小于仿真和理论设定值,所以分母比仿真和理论值偏小,所以要使得I BQ不变,则V BB 要下降,也即R w要上升,所以实验中R w值较大.当然测量β值地误差和测量电阻误差也会影响最后地结果.3、动态特性测量误差分析说明:1、电压增益偏小,I CQ=1.0mA时,比理论值小了16.,而I CQ=2.0mA时,比理论值小了50,由可知因为晶体管地β值和实际测量中地值与理论计算中都相差较大,所以对于增益产生了较大地影响.2、输入电阻,输入电阻比理论计算值要大,由R I=,可知,因为R w值较大,值较大,所以最终输入电阻显得较大.3、f L,f L比仿真值偏大,因为在实际电路搭接中,电路图中地C1,C2值选择并不是和仿真时地电容值一样.所以根据低频段地f L 决定于这两个电容可知这些值会影响f L.4、f H,f H比仿真值远远偏小,这主要是因为仿真中直接运用multisim地参数扫描函数,而实际测量中我们是利用示波器来测量,示波器探头中地电容很小,因而不可避免地在高频段会对f H 产生很大地影响.6、工作点调节原理和方法以及对动态特性影响总结1、原理:V BB=R B=∥I BQ=2、调节方法调节静态工作点关键就是调节I BQ,这里我们是通过调节R w地值改变地值,从地值和V BB地值,从而达到调节I BQ地目地.R w值变小,静态工作点升高.3、对于动态特性地影响从实验数据和理论分析可以看出,在输出电压不失真地条件下,静态工作点升高会对动态特性有如下影响:1、放大倍数绝对值增大(从60.9上升至101.3)2、输入电阻变小(从4.57kΩ下降至2.77kΩ)3、下限截止频率增大(从393.1Hz上升至547Hz)4、上限截止频率减小(从2.532MHz下降至2.322MHz)也即频带带宽变窄.7、主要性能指标测试方法1、静态工作点I CQ地测量方法:直接用万用表测量两端地电压即可.2、β值地测量方法:利用学生机上地β值测量电路,将两端分成两个通道输入到示波器中,利用示波器输出两通道地x-y关系,呈现如下图,再利用计算即可.3、电压增益地测量方法:利用示波器测量出输入电压和输出电压地峰峰值,用输出电压峰峰值除以输入电压峰峰值即可得到增益地绝对值,再根据波形相位判断正负即可.4、输入电阻地测量方法:在输入端串上一个和输入电阻预测值相近地电阻R,然后测量其左右两端电压U1和U2再用公式可知输入电阻值.5、上下限截止频率地测量方法:调节输入信号地频率,用示波器同时监测输入和输出电压地值,保证输出电压不失真,然后记录使得增益变为最大增益地0.707倍时地频率值(有两个)较小为下限截止频率,较大为上限截止频率.8、思考题1、假设实验所用放大电路地直流工作点已经调至“最佳状态”(即当输入信号幅度增大时,输出波形同时出现饱和失真和截止失真),列表说明此时若、单独变化对输出电压地动态范围有什么影响.若输入信号幅度增大,则首先产生什么性质地失真?答:列表如下2、能否用数字万用表测量实验电路中地电压增益以及幅频特性,为什么?答:不能,因为数字万用表测量交流电路时候有个上限频率,而实验中我们输入信号地频率已经远远超过这个频率,这将导致测量结果很不准确.9、实验收获1、这是第一次连接面包板,通过这次实验也使得我对于连接面包板有了一个大概地了解,认识到了如何将电路转换成面包板上地电路.2、通过实验分析,实验仿真和最终地报告,使得我对于单管放大电路中各个参数地车辆以及其含义有了更加深刻地了解,同时对于共射放大电路地分析也有更加深入地了解.3、通过实验使得我对于Multisim地应用有了更好地掌握.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.y6v3A。

共射单管放大电路实验报告

共射单管放大电路实验报告

共射单管放大电路实验报告共射单管放大电路实验报告一、实验目的本实验旨在通过搭建共射单管放大电路,了解其工作原理及特性,并通过实验数据分析,探讨电路的放大倍数、输入阻抗和输出阻抗等参数对电路性能的影响。

二、实验原理共射单管放大电路是一种常见的放大电路,由晶体管、电容和电阻等元件组成。

其工作原理是通过输入信号的变化,控制晶体管的工作点,使得输出信号得以放大。

具体来说,当输入信号施加在基极上时,晶体管进入放大状态,输出信号通过负载电阻得以放大。

三、实验步骤1. 按照电路图搭建共射单管放大电路,注意连接正确。

2. 调节电源电压,使得晶体管正常工作。

3. 连接信号发生器和示波器,设置合适的频率和振幅。

4. 通过示波器观察输入信号和输出信号的波形,并记录数据。

5. 分别改变输入信号的振幅和频率,记录相应的输出信号数据。

四、实验数据分析通过实验数据的分析,我们可以得出以下结论:1. 放大倍数:通过比较输入信号的振幅和输出信号的振幅,可以得出放大倍数。

在实验中,我们发现放大倍数与输入信号的振幅成正比,但随着输入信号振幅的增大,放大倍数会逐渐饱和,不能无限增大。

2. 输入阻抗:输入阻抗是指电路对外部信号源的阻抗。

在共射单管放大电路中,输入阻抗较低,可以有效地接收外部信号,并将其放大输出。

3. 输出阻抗:输出阻抗是指电路对外部负载的阻抗。

在共射单管放大电路中,输出阻抗较高,可以有效地驱动负载电阻,使得输出信号的失真较小。

五、实验结果分析通过实验数据的分析,我们可以得出以下结论:1. 在合适的工作点下,共射单管放大电路可以实现输入信号的放大,并输出相应的放大信号。

2. 输入信号的振幅和频率对放大倍数有影响,但是其影响是有限的。

3. 输入阻抗和输出阻抗对电路性能有重要影响,合适的阻抗匹配可以提高电路的放大效果。

六、实验总结通过本次实验,我们深入了解了共射单管放大电路的工作原理和特性。

通过实验数据的分析,我们得出了对电路性能的一些结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单管放大电路实验报告电03 王剑晓2010010929单管放大电路报告一、实验目的(1)掌握放大电路直流工作点的调整与测量方法;(2)掌握放大电路主要性能指标的测量方法;(3)了解直流工作点对放大电路动态特性的影响;(4)掌握发射极负反馈电阻对放大电路动态特性的影响;(5)掌握信号源内阻R S对放大电路频带(上下截止频率)的影响;二、实验电路与实验原理实验电路如课本P77所示。

图中可变电阻R W是为调节晶体管静态工作点而设置的。

(1)静态工作点的估算与调整;将图中基极偏置电路V CC、R B1、R B2用戴维南定理等效成电压源,得到直流通路,如下图1.2所示。

其开路电压V BB和内阻R B分别为:V BB= R B2/( R B1+R B2)* V CC;R B= R B1// R B2;所以由输入特性可得:V BB= R B I BQ+U BEQ+(R E1+ R E2)(1+Β) I BQ;即:I BQ=(V BB- U BEQ)/[Β(R E1+ R E2)+ R B];因此,由晶体管特性可知:I CQ=ΒI BQ;由输出回路知:V CC= R C I CQ + U CEQ+(R E1+ R E2) I EQ;整理得:U CEQ= V CC-(R E1+ R E2+ R C) I CQ;分析:当R w变化(以下以增大为例)时,R B1增大,R B增大,I BQ减小;I CQ减小;U CEQ增大,但需要防止出现顶部失真;若R w减小变化相反,需要考虑底部失真(截止失真);(2)放大电路的电压增益、输入电阻和输出电阻做出电路的交流微变等效模型:则:电压增益A i=U O/U i=-ß(R C// R L)/r be;输入电阻R i=R B1//R B2//r be;输出电阻R O= R C;其中r be=r bb’+(1+ß)U T/ I EQ,体现了直流工作点对动态特性的影响;分析:当R C、R L选定后,电压增益主要决定于r be,受到I EQ,即直流工作点的影响。

由上面对直流工作点的分析可知,R w变化(以下以增大为例)时I CQ减小,那么r be增大,电压增益A i减小,输入电阻R i增大,输出电阻R O基本不变,与直流无关;如果将发射极旁路电容C E改为与R E2并联,R E1成为交流负反馈电阻,电路的动态参数分别变为电压增益A i=U O/U i=-ß(R C// R L)/[r be+(1+ß) R E1];输入电阻R i=R B1//R B2/[r be+(1+ß) R E1];输出电阻R O= R C;分析:此时电压增益A i减小(R E1影响了放大倍数),此时如果有r be<<(1+ß) R E1,则A i=(R C//R L)/R E1,实现了稳定;输入电阻R i增大(使得更多的输入信号被放大),输出电阻R O基本不变;R w变化(以下以增大为例)时I CQ减小,那么r be增大,电压增益A i仍然减小,输入电阻R i增大,输出电阻R O基本不变,与直流无关;(3)放大电路电压增益的幅频特性和频带放大电路一般含有电抗,使得电路对不同频率的信号具有不同的放大能力,即电压增益是频率的函数。

电压增益的大小与频率的函数关系即是幅频特性。

需要注意的是:测量放大电路的动态指标必须在波形不失真的条件下进行,因此输入信号不能太大,实验中一般使用示波器监视输出信号的波形。

三、实验内容与扩展内容(1)工作点的调整;调节R w,分别使I CQ=1mA和2mA,测量V CEQ的值;(2)工作点对放大电路的动态特性的影响;在I CQ=1mA和2mA时,测量电压放大倍数、幅频特性(只测上下截止频率)、输入电阻、输出电阻。

其中输入正弦电压信号V i的幅度为5mV,频率为1kHz。

(3)射极负反馈电阻对动态特性的影响;(扩展内容)如果将发射极旁路电容C E改为与R E2并联,R E1成为交流负反馈电阻,在I CQ=1mA时,测量电压放大倍数、幅频特性(只测上下截止频率)、输入电阻、输出电阻,总结射极负反馈电阻对电路动态特性的影响;四、注意事项:(1)实验中要将直流电源、信号源、示波器等电子仪器和实验线路接地,以免引起干扰;(2)电路性能指标的测试要在输出电压波形不失真和没有明显干扰的情况下进行;五、仿真(仿真报告请见文档“仿真报告”)1)仿真电路图见《电子电路实验》p77图3.1“单管共发射极放大电路”。

其中R S=0,为实验室所用信号发生器的内阻。

与器件盒中的器件参数相匹配。

2)Multisim 7中的元件选择三极管选用实际元件,型号为MRF9011L,将模型参数中的β(即BF)改为212;其它元件都选用虚拟器件。

2)仿真内容a. 静态工作点在I CQ=1mA和2mA时,测量V CEQ的值,并记录R B1的值。

R B1可选用Multisim中的“Virtual Linear Potentiometer”元件。

b. 动态特性仿真在I CQ=1mA和2mA时,测量电压放大倍数和幅频特性。

其中输入正弦电压信号V i的幅度为5mV,频率为1kHz。

六、仿真心得:1)在仿真进行过程中,应保持R W的值不变;2)R W的量程要为100 kΩ;3)新接入万用表后,对电流和电压是有影响的,也就是会产生误差;4)看清楚要对谁测量,提前做好测量准备,以免测量时出现遗漏或差错;(一)预习报告1、预习计算晶体管的主要参数为:B=260,VBE=0.7V,rbb’=10欧,fT=300MHz,Cb’c=1pF,计算实验地那路的主要性能指标,以备与实验测试结果进行分析比较。

(1)首先计算直流状态下的I CQ、U CEQ以及此时的R w:I BQ=(V BB- U BEQ)/(R B+(I+ß)(R E1+ R E2))U CEQ =V CC- I CQ(R C+ R E1+ R E2)I CQ=1mA时,I BQ= I CQ/ ß=1/260mA; 带入,解得R B1=77.170kΩ;此时,U CEQ=7.495VI CQ=2mA时,I BQ= I CQ/ ß=2/260mA; 带入,解得R B1=41.357kΩ;此时,U CEQ=2.991V(2)其次,计算各交流量:电压放大倍数A U、输入电阻Ri、输出电阻R O:<1>I CQ=1mA时, R B1=77.170KΩ;此时r be=r bb’+U T/ I BQ=0.010+26*0.26=6.86 KΩ;电压放大倍数为:A U =U O / U i=-ß(R C// R L)/ r be=-75.94;输入电阻Ri= R B1// R B2//r be=4.44 kΩ;输出电阻R O=R C=3.3 kΩ;<2>I CQ=2mA时, R B1=41.357KΩ;此时r be=r bb’+U T/ I BQ=0.01+26*0.26/2=3.39 KΩ;电压放大倍数为:A U =U O / U i=-ß(R C// R L)/ r be=-153.666;输入电阻Ri= R B1// R B2//r be=2.59 kΩ;输出电阻R O=R C=3.3 kΩ;2、主要实验步骤a)实验数据表格(2)测量计算电压放大倍数OCQb)主要实验步骤:(1)测量ß:(2)测量直流工作点:用万用表测量集电极对地电压使之为8.4V(I CQ=1mA时,U C=12V-3.6V=8.4V)和4.8V(I CQ=2mA时,U C=12V-3.6V*2=4.8V);记录下此时的R w;并测量U CEQ;(3)测量动态特性:电压放大倍数:将输入电压、输出电压分别加在示波器两输入端,调节R w的值分别为上步骤中记录的值,测量U i、U O的峰值,相比后得到A U;测量输入电阻Ri:在输入端串联R1=3.6kΩ,调节R w的值分别为上步骤中记录的值,测量输出电压U o、U o’;由公式Ri= U o’/( U o- U o’)即可计算Ri;测量输出电阻R O: 在输出端串联R2=4.7kΩ,调节R w的值分别为上步骤中记录的值,测量输出电压U o、U o’;由公式R O=(U OC/U OC’-1)* R2即可计算R O;测量频带:调节R w的值分别为上步骤中记录的值,保持输入电压为近似5mV不变,分别向上、向下调节函数信号发生器的频率,测量输出电压的幅值使之为5mV* A U/√2,读取此时的频率,记录。

(二)终结报告1、实验数据记录、处理及分析1)数据记录、处理(1)测量β值=实验中利用学习机和示波器测得MRF9011L的输出特性曲线,测得β=∆i c∆i B 212,小与理论值的260。

(2)测量直流工作点(3)测量计算电压放大倍数(4)测量计算输入电阻Ri(5O(6(7CQ注:该提高要求是由王剑晓同学在课堂上完成,但由于当时未能完成全部的数据处理,因此未经任老师批准,只将部分处理好的数据以及原始数据交给助教老师过目。

2)数据分析通过理论估算与仿真结果,我们来进行实验结果的对比分析。

(1)理论计算根据测量结果,ß=212首先计算直流状态下的I CQ、U CEQ以及此时的R wI BQ=(V BB- U BEQ)/(R B+(I+ß)(R E1+ R E2))U CEQ =V CC- I CQ(R C+ R E1+ R E2)I CQ=1mA时,I BQ= I CQ/ ß=1/212mA; 带入解得R B1=79.74kΩ;此时,U CEQ=7.50V.I CQ=2mA时,I BQ= I CQ/ ß=2/212mA; 带入解得R B1=43.07kΩ;此时,U CEQ=3.00V.其次,计算各交流量:电压放大倍数A U、输入电阻Ri、输出电阻R O:I CQ=1mA时, R B1=79.74KΩ;此时r be=r bb’+U T/ I BQ=10+26*212=5.52 KΩ;电压放大倍数为:A U =U O / U i=-ß(R C// R L)/ r be=-76.95;输入电阻Ri= R B1// R B2//r be=3.84 kΩ;输出电阻R O=R C=3.3 kΩ;I CQ=2mA时, R B1=43.07KΩ;此时r be=r bb’+U T/ I BQ=10+26*212/2=2.77 KΩ;电压放大倍数为:A U =U O / U i=-ß(R C// R L)/ r be=-153.34;输入电阻Ri= R B1// R B2//r be=2.22 kΩ;输出电阻R O=R C=3.3kΩ;提高要求:(I CQ=1mA)此时R B1=79.74KΩ,r be=5.52 KΩ;电压放大倍数为:A U =U O / U i=-ß(R C// R L)/((1+ ß)*R E1+r be)=-8.83 输入电阻Ri= R B1// R B2//(r be+(1+ ß)*R E1)=10.00KΩ;输出电阻R O=R C=3.3 kΩ;(2)理论值、仿真值、实验值的对比表格如下CQ②I CQ=2mA时:③提高要求(I CQ=1mA):从数据直观看:大多数实验数据相比仿真值比相对理论值更相近,说明实际电路较理论更复杂,其各量的影响因素更多。

相关文档
最新文档