传感器——通信电子工程类中英文翻译、外文翻译

合集下载

传感器SRM驱动器中英文对照外文翻译文献

传感器SRM驱动器中英文对照外文翻译文献

中英文对照翻译(文档含英文原文和中文翻译)A Simple Excitation Position Detection Method for Sensorless SRM DriveAcknowledgementsThe research for this paper was performed in Dr. G. Schröder’s laboratory during Mr. Kim’s 2006summer intern program of Siegen University, Germany. The authors thank KRF(Korea ResearchFoundation) for supporting the program.Keywords« Switched Reluctance Drive », « Sensorless Control »AbstractThis paper describes a simplified novel sensorless control of an SRM by detecting a current levelduring the non-excitation period. Since the inductance of the motor is a function of the rotor position,a simple detecting current pulse caused by a regulated pulse voltage gives information on the rotorposition. In this paper, a small detecting pulse current is compared to the preset current levels whichare proportional to turn-on and turn-off positions. And the comparison results are used for theexcitation of the next phase. The suggested method is verified by some simulations and experimentaltests.IntroductionA switched reluctance motor (hereinafter referred to as an “SRM”) is a power drive device whichcan be easily and inexpensively manufactured, and it has relatively high reliability since it is proofagainst certain drive faults. Hence, an SRM drive system has some characteristics comparable with anexisting induction motor in view of high torque, a high output density, a high-efficient variable speeddrive, and an economic power inverter in application fields such as industrial machinery, airplanes,automobiles, consumer devices, and others[1-2].In the control of an SRM, on accurate information of rotor position is essential for correctphasewinding excitation. Since the output torque is dependent on the excitation period and excited phasecurrent, the accuracy of the rotor position is very important. In a general speed control system, anoptical encoder is widely used for detecting of the rotor position. Recently, sensorless control andposition detecting techniques are interesting in practical applications due to problems of opticalencoder in harsh environment and cost.In order to get a sensorless rotor position, mathematical based observers and flux detecting methodsare used[3-6]. Since the accuracy of the estimated rotor position of an observer is dependent on themathematical model and electrical parameters, the estimation error is large in the low speed range.And it is very difficult to get the rotor position in standstill. Although the flux detecting method caneasily estimate the rotor position without any complex mathematical model, a look-up table of fluxand rotor position is required. And the relationship of flux and rotor position has non-linearcharacteristic due to the saturation effect. Recently, fuzzy logic and ANN(Artificial Neural Networks)have been used in speed estimation[7-8]This paper presents a simplified novel approach of sensorless control without a complex calculationof the rotor position from the estimated inductance. Since the output torque is dependent on excitationposition and excited current, the proposed sensorless scheme determines the excitation pattern onlyfrom the detecting current in a non-excited phase winding during the detecting period. The turn-on andturn-off positions are determined by the detecting phase current levels that are inverse-proportional torotor position in the detecting period of the previously excited phase. In order to get a linearrelationship between rotor position and detected phase current, a short test voltage is applied duringthe detecting period. Since the proposed sensorless scheme does not use a complex inductancecalculation, the excitation pattern can be easily determined by a simple comparator. The suggestedmethod is verified by some simulations and experimental tests.The General Principles of SRMFig. 1 shows an SR drive system and its torque characteristics. In the Fig. 1, the output torque isproduced in the inductance variation region shown in Fig. 1(b).(a) SR drivesystem(b) Torque characteristicswith constant currentFig. 1: SR drive system and torque characteristicsThe output torque can be explained by the relationship of current and inductance as follows.In order to estimate the phase inductance, the phase current excited by a switching test pulse voltageis used at every sampling period shown as Fig. 2.Fig. 2: Waveform of test pulse voltage and phase current for inductance estimationThe voltage equation for estimating the phase inductance can be derived disregarding the voltagedrop of the phase resistance and the back-emf. From (2), the phase inductance that is a function of therotor position is calculated, and the rotor position is estimated from the calculated inductance according to (3). In spite of a complex calculation, the estimated rotor position from the calculatedinductance has some error due to the saturation effect including the non-linear characteristics of theinductance and the voltage drop of the phase resistance.The Proposed Sensorless Control Scheme of SRMSwitching Pattern DeterminationFig. 3: The proposed detecting scheme of sensorless excitationFig. 3 shows the proposed detecting algorithm of the sensorless excitation of the 3-phase SRM.Differently from a general excitation method, the proposed scheme has excitation, detecting and nonexcitationperiods in each phase.In the excitation period which is determined by the others non-excited phases, excited phase currentproduces output torque. And the applied voltage of each phase winding in the excitation period iscontrolled by the speed controller and excitation current controller. The amplified detected current inthe detecting period, is compared to preset turn-on and turn-off currents, I on and I off which aredetermined by position-current characteristic of the proto-type SRM. The comparison result offers the other phase’s turn-on and turn-off position θon and θoff , respectively. In the non-excitation period,the phase current does not flow through the phase winding. In the detecting period, the amplifieddetected current has nearly linear slope due to the decreasing phase inductance. Since the width of thetest pulse voltage is very narrow and the detected current is very small, saturation effect of phaseinductance can be ignored. So the slope of the detecting current is linear according to rotor position ineach phase windings. But the detecting period of an un-excited phase is located inthe negative torqueregion shown as Fig. 2. Since the detecting phase current produces negative torque and DC-linkvoltage can be changed, test pulse voltage should be limited and controlled for the stable operation. Inorder to limit the negative torque produced from detecting current, the duration of test pulse voltage iscontrolled according to DC-link voltage in this paper. The maximum detecting phase current isproduced in the minimum inductance range and the detecting period of voltage pulse can be derived asfollows with negative torque limit T NLMT. In this paper, the negative torque limit T NLMT is determined as2% of rated torqueof SRM, and the maximum period of test pulse is limited to 20[us].where, θmax and θmin are the rotor position of maximum inductance, L max and minimum inductance,L min , respectively.Fig. 4 shows the detailed block diagram of the sensorless switching position detecting method. Theproposed turn-on and turn-off position estimator consists of the position level generator and thecurrent level comparator. The position level generator produces turn-on and turn-off current levelsfrom pre-calculated look-up table.Fig. 4: The block diagram of the proposed sensorless switching position detectionThe content of the look-up table is simply measured with a fixed test voltage pulse according torotor position. Because the test voltage pulse is short due to the limitation of negative torqueproduction, the output current levels are approximately inverse proportional to the inductance. If thesensorless control system uses a fixed turn-on and turn-off position, thelook-up table can be omitted.Since the detecting pulse current is very small due to the limitation of negative torque, it is amplifiedand limited a by zener diode. The referenceturn-on and turn-off position, θ*on , θ*off change with I on and I off from the position-current look-up table. The look-up table is simple pre-measured with testpulses. And the presetturn-on and turn-off position current are compared to the amplified detectingcurrent. The trigger pulses are generated when the detecting current is larger then each preset value.The trigger pulses are input as interrupts of the DSP, and estimated turn-on, turn-off position are determined. The rotor speed is simply estimated by the estimated turn-on and turn-off position of eachphase.The Excitation Phase and Position at StandstillIn the standstill, the first switching pattern is determined from detecting current explained in the Fig.4. It shows the relationship between detecting current and each possible position at standstill. In theideal case, point a0, b0 and c0 which the maximum period of each detectingcurrent are the criticalboundary for the first excitation phase.Fig. 5: The detecting currents of each phase according to the standstill positionThe Experimental ResultsIn order to verify the proposed sensorless scheme, a 12/8 SRM and a DSP controller with asymmetric converter are used. Table 1 shows the specifications of the 12/8 SRM under test. The maincontroller is implemented by a TMS320F2812 from Texas Instruments and a600V/25A asymmetricconverter module SK25GAD063T from SEMIKRON.Fig. 6: The experiment set-upThe proposed sensorless PI controller is implemented in a TMS320F2812. An encoder is used forposition monitoring. The asymmetric converter is located under the DSP controller and supplies pulsepower to the motor.Fig. 7 shows the detecting currents according to the rotor position. The peak envelope is reverseproportionalto the phase inductance. Consequently, the estimated rotor position can be derived fromthe peak envelope detection of unexcited windings.Fig. 7: The detecting currents of phase-a according to the rotor positionFig. 8: Phase voltage, switching signal and current of phase-a for switching of phase-b and phase-cFig .8 shows the phase voltage, switching signal and phase-a current. The switching on of phase-cand switching off of phase-b are carried out during the switching signal's interval. Fig. 9 shows the excitation current and amplified detecting current of the phases. The phase currenthas excitation and detecting current periods. The excitation current produces the operating torque. Andthe detecting current pulse is used for excitation position estimation and excitation sequence of otherphases. The amplified peak of the phase excitation current is limited by a zener diode, and the peak ofthe detecting current is amplified for the excitation sequence detection.Fig. 9: The excitation current and detecting currents of each phaseConclusionThis paper presents a simple sensorless control of the SRM using current peak detection at nonexcitedphase winding. Due to a simple current comparator for the excitation sequence determination,a complex calculation for excitation position estimation from estimated inductance that is calculatedby detecting current is not required. Without complex look-up table of flux and rotor position, theexcitation sequence of each phase can be changed by the comparison of peak detecting current in thedetection period of other phases. For the speed estimation, the peak value of the detecting current isused and the filtered estimated speed is used in the speed controller. Since the peak value of detectingcurrent is limited to 200[mA], the saturation effect can be ignored. Accordingly the peak detectedcurrent is limited by the detection sampling period and the period is controlled by the link voltageinformation. The experimental results show that the validation of the proposed method is simple.References[1] J.W. Ahn, “Switched Reluctance Motor”, Osung Media, pp. 364~418, 2004[2] P. J. Lawrenson. "A Brief Status Review of Switched Reluctance Drives", EPE Vol. 2, No. 3, pp. 133-144,1992.[3] M. Ehsani, I. Husain, A. B. Kulkarni, "Elimination of discrete position sensor and currrent sensor in switchedreluctance Mototr Drives", IEEE Trans on IA, Vol.28, pp.128-135, 1992[4] J.W. Ahn, S. J. Park, T. H. Kim, “Inductance Reasoning Method for Sensorles s Control of an SRM”, Journalof KIPE, Vol. 8, No. 5, pp.427~434, Oct. 2003.[5] Ji Lili, Chen hao, "Nonlinear modeling and simulation of switch reluctance motor drive system based onMatlab" Journal of Southeast University, Nov. 2004 pp.149-154 Vol.34 Sep.[6] J. P. Lyns, S. R. MacMinn, and M. A. Preston, “Flux/current Methods for SRM Rotor Position Estimation”,in Conf. Rec. 1991/IEEE-IAS Annu. Meeting, Vol. 1, pp. 484-487 , 1991.[7] E. Mese and D. A. Torrey, “Sensorless Position Estimation for Variable-Relucatnce Machine Using ArtificialNeural Networks”, in Conf. Rec. 1997 IEEE-IAS Annu. Meeting, pp. 540-547.[8] L. Xu and J. Bu, “Position Transducerless Control of a Switched Relucance Motor Using Minimum Magnetizing Input”, , in Conf. Rec. 1997 IEEE-IAS Annu. Meeting, pp. 533-549.传感器SRM驱动器的一种简易励磁位置检测方法鸣谢这篇论文的研究工作是2006年暑假金先生在德国锡根大学做实习项目时在G. 施罗德博士的实验室进行的。

传感器中英文介绍

传感器中英文介绍

传感器中英文介绍(总5页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除. sensorssensors(English name: transducer/sensor) is a kind of detection device, can feel the measured information, and will feel information transformation according to certain rule become electrical signal output, or other form of information needed to satisfy theinformation transmission, processing, storage, display, record and control requirements.Sensor's features include: miniaturization, digital, intelligent, multi-functional, systematic and network. It is the first step of automatic detection and automatic control. The existence and development of the sensor, let objects have sensory, such as touch, taste and smell let objects become live up slowly. Usually accordingto its basic cognitive functions are divided into temperature sensor, light sensor, gas sensor, force sensor, magnetic sensor, moisture sensor, acoustic sensor, radiation sensitive element, color sensorand sensor etc. 10 major categories.temperature transducerTemperature sensors (temperature transducer) refers to can feel temperature translates into usable output signal of the sensor. The temperature sensor is the core part of the temperature measuring instrument, wide variety. According to measuring methods could be divided into two types: contact and non-contact, according to the sensor material and electronic component features divided into two categories, thermal resistance and thermocouple.1 principle of thermocoupleThermocouple is composed of two different materials of metal wire, the welded together at the end. To measure the heating part of the environment temperature, can accurately know the temperature of the hot spots. Because it must have two different material of the conductor, so called the thermocouple. Different material to make the thermocouple used in different temperature range, their sensitivityis also each are not identical. The sensitivity of thermocouplerefers to add 1 ℃ hot spot temperature changes, the output variation of potential difference. For most of the metal material supportther mocouple, this value about between 5 ~ 40 microvolt / ℃.As a result of the thermocouple temperature sensor sensitivityhas nothing to do with the thickness of material, use very fine material also can make the temperature sensor. Also due to the production of thermocouple metal materials have good ductility, the slight temperature measuring element has high response speed, can measure the process of rapid change.Its advantages are:(1)high precision measurement. Because of thermocouple direct contact with the object being measured, not affected by intermediate medium.(2)the measurement range. Commonly used thermocouple from1600 ℃ to 50 ℃ ~ + sustainable measurement, some special thermocouple minimum measurable to - 269 ℃ (e.g., gold iron nickel chrome), the h ighest measurable to + 2800 ℃ (such as tungsten rhenium).(3) simple structure, easy to use. Thermocouple is usually composed of two different kinds of metal wire, but is not limited by the size and the beginning of, outside has protective casing, so very convenient to use. The thermocouple type and structure of the form.2. The thermocouple type and structure formation(1)the types of thermocoupleThe commonly used thermocouple could be divided into two types: standard thermocouple and non-standard thermocouple. Standard thermocouple refers to the national standard specifies its thermoelectric potential and the relationship between temperature, permissible error, and a unified standard score table of thermocouple, it has with matching display instrument to choose from. Rather than a standard thermocouple or on the order of magnitude less than therange to use standardized thermocouple, in general, there is no uniform standard, it is mainly used for measurement of some special occasions.Standardized thermocouple is our country from January 1, 1988, thermocouple and thermal resistance of all production according toIEC international standard, and specify the S, B, E, K, R, J, T sevenstandardization thermocouple type thermocouple for our countryunified design.(2)to ensure that the thermocouple is reliable, steady work, the structure of thermocouple requirements are as follows:①of the two thermocouple thermal electrode welding must be strong;②two hot electrode should be well insulated between each other, in case of short circuit;③compensation wires connected to the free cod of a thermocouple to convenient and reliable;④protect casing thermal electrodes should be able to make sufficient isolation and harmful medium.3.The thermocouple cold end temperature compensationDue to the thermocouple materials are generally more expensive (especially when using precious metals), and the temperature measurement points are generally more far, the distance to the instrument in order to save materials, reduce cost, usually adopt the compensating conductor) (the free end of the cold junction of the thermocouple to the steady control of indoor temperature, connectedto the meter terminals. It must be pointed out that the role of the thermocouple compensation wire extension hot electrode, so that only moved to the control room of the cold junction of the thermocouple instrument on the terminal, it itself does not eliminate the cold end temperature change on the influence of temperature, cannot have the compensation effect. So, still need to take some of the other correction method to compensate of the cold end temperatureespecially when t0 indicates influence on measuring temperature 0 ℃.Must pay attention to when using thermocouple compensating conductor model match, cannot be wrong polarity, compensation conductor should be connected to the thermocouple temperature should not exceed 100 ℃.传感器传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

传感器技术论文中英文对照资料外文翻译文献

传感器技术论文中英文对照资料外文翻译文献

传感器技术论文中英文对照资料外文翻译文献Development of New Sensor TechnologiesSensors are devices that can convert physical。

chemical。

logical quantities。

etc。

into electrical signals。

The output signals can take different forms。

such as voltage。

current。

frequency。

pulse。

etc。

and can meet the requirements of n n。

processing。

recording。

display。

and control。

They are indispensable components in automatic n systems and automatic control systems。

If computers are compared to brains。

then sensors are like the five senses。

Sensors can correctly sense the measured quantity and convert it into a corresponding output。

playing a decisive role in the quality of the system。

The higher the degree of n。

the higher the requirements for sensors。

In today's n age。

the n industry includes three parts: sensing technology。

n technology。

and computer technology。

传感器技术外文文献及中文翻译

传感器技术外文文献及中文翻译

Sensor technologyA sensor is a device which produces a signal in response to its detecting or measuring a property ,such as position , force , torque , pressure , temperature , humidity , speed , acceleration , or vibration .Traditionally ,sensors (such as actuators and switches )have been used to set limits on the performance of machines .Common examples are (a) stops on machine tools to restrict work table movements ,(b) pressure and temperature gages with automatics shut-off features , and (c) governors on engines to prevent excessive speed of operation . Sensor technology has become an important aspect of manufacturing processes and systems .It is essential for proper data acquisition and for the monitoring , communication , and computer control of machines and systems .Because they convert one quantity to another , sensors often are referred to as transducers .Analog sensors produce a signal , such as voltage ,which is proportional to the measured quantity .Digital sensors have numeric or digital outputs that can be transferred to computers directly .Analog-to-coverter(ADC) is available for interfacing analog sensors with computers .Classifications of SensorsSensors that are of interest in manufacturing may be classified generally as follows:Machanical sensors measure such as quantities aspositions ,shape ,velocity ,force ,torque , pressure , vibration , strain , and mass .Electrical sensors measure voltage , current , charge , and conductivity .Magnetic sensors measure magnetic field ,flux , and permeablity .Thermal sensors measure temperature , flux ,conductivity , and special heat .Other types are acoustic , ultrasonic , chemical , optical , radiation , laser ,and fiber-optic .Depending on its application , a sensor may consist of metallic , nonmetallic , organic , or inorganic materials , as well as fluids ,gases ,plasmas , or semiconductors .Using the special characteristics of these materials , sensors covert the quantity or property measured to analog or digital output. The operation of an ordinary mercury thermometer , for example , is based on the difference between the thermal expansion of mercury and that of glass.Similarly , a machine part , a physical obstruction , or barrier in a space can be detected by breaking the beam of light when sensed by a photoelectric cell . A proximity sensor ( which senses and measures the distance between it and an object or a moving member of a machine ) can be based on acoustics , magnetism , capacitance , or optics . Other actuators contact the object and take appropriate action ( usually by electromechanical means ) . Sensors are essential to the conduct of intelligent robots , and are being developed with capabilities that resemble those of humans ( smart sensors , see the following ).This is America, the development of such a surgery Lin Bai an example, through the screen, through a remote control operator to control another manipulator, through the realization of the right abdominal surgery A few years ago our country theexhibition, the United States has been successful in achieving the right to the heart valve surgery and bypass surgery. This robot has in the area, caused a great sensation, but also, AESOP's surgical robot, In fact, it through some equipment to some of the lesions inspections, through a manipulator can be achieved on some parts of the operation Also including remotely operated manipulator, and many doctors are able to participate in the robot under surgery Robot doctor to include doctors with pliers, tweezers or a knife to replace the nurses, while lighting automatically to the doctor's movements linked, the doctor hands off, lighting went off, This is very good, a doctor's assistant.Tactile sensing is the continuous of variable contact forces , commonly by an array of sensors . Such a system is capable of performing within an arbitrarythree-dimensional space .has gradually shifted from manufacturing tonon-manufacturing and service industries, we are talking about the car manufacturer belonging to the manufacturing industry, However, the services sector including cleaning, refueling, rescue, rescue, relief, etc. These belong to the non-manufacturing industries and service industries, so here is compared with the industrial robot, it is a very important difference. It is primarily a mobile platform, it can move to sports, there are some arms operate, also installed some as a force sensor and visual sensors, ultrasonic ranging sensors, etc. It’s surrounding environment for the conduct of identification, to determine its campaign to complete some work, this is service robot’s one of the basic characteristicsIn visual sensing (machine vision , computer vision ) , cameral optically sense the presence and shape of the object . A microprocessor then processes the image ( usually in less than one second ) , the image is measured , and the measurements are digitized ( image recognition ) .Machine vision is suitable particularly for inaccessible parts , in hostile manufacturing environments , for measuring a large number of small features , and in situations where physics contact with the part may cause damage .Small sensors have the capability to perform a logic function , to conducttwo-way communication , and to make a decisions and take appropriate actions . The necessary input and the knowledge required to make a decision can be built into a smart sensor . For example , a computer chip with sensors can be programmed to turn a machine tool off when a cutting tool fails . Likewise , a smart sensor can stop a mobile robot or a robot arm from accidentally coming in contact with an object or people by using quantities such as distance , heat , and noise .Sensor fusion . Sensor fusion basically involves the integration of multiple sensors in such a manner where the individual data from each of the sensors ( such as force , vibration , temperature , and dimensions ) are combined to provide a higher level of information and reliability . A common application of sensor fusion occurs when someone drinks a cup of hot coffee . Although we take such a quotidian event for granted ,it readily can be seen that this process involves data input from the person's eyes , lips , tongue , and hands .Through our basic senses of sight , hearing , smell , taste , and touch , there is real-time monitoring of relative movements , positions , and temperatures . Thus if the coffee is too hot , the hand movement of the cup toward the lip is controlled and adjusted accordingly .The earliest applications of sensor fusion were in robot movement control , missile flight tracking , and similar military applications . Primarily because these activities involve movements that mimic human behavior . Another example of sensor fusion is a machine operation in which a set of different but integrated sensors monitors (a) the dimensions and surface finish of workpiece , (b) tool forces , vibrations ,and wear ,(c) the temperature in various regions of the tool-workpiece system , and (d) the spindle power .An important aspect in sensor fusion is sensor validation : the failure of one particular sensor is detected so that the control system maintains high reliability . For this application ,the receiving of redundant data from different sensors is essential . It can be seen that the receiving , integrating of all data from various sensors can be a complex problem .With advances in sensor size , quality , and technology and continued developments in computer-control systems , artificial neural networks , sensor fusion has become practical and available at low cost .Movement is relatively independent of the number of components, the equivalent of our body, waist is a rotary degree of freedom We have to be able to hold his arm, Arm can be bent, then this three degrees of freedom, Meanwhile there is a wrist posture adjustment to the use of the three autonomy, the general robot has six degrees of freedom. We will be able to space the three locations, three postures, the robot fully achieved, and of course we have less than six degrees of freedomFiber-optic sensors are being developed for gas-turbine engines . These sensors will be installed in critical locations and will monitor the conditions inside the engine , such as temperature , pressure , and flow of gas . Continuous monitoring of the signals from thes sensors will help detect possible engine problems and also provide the necessary data for improving the efficiency of the engines .传感器技术传感器一种通过检测某一参数而产生信号的装置。

传感器中英文介绍

传感器中英文介绍

传感器中英文介绍Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998. sensorssensors(English name: transducer/sensor) is a kind of detection device, can feel the measured information, and will feel information transformation according to certain rule become electrical signal output, or other form of information needed to satisfy the information transmission, processing, storage, display, record and control requirements.Sensor's features include: miniaturization, digital, intelligent, multi-functional, systematic and network. It is the first step of automatic detection and automatic control. The existence and development of the sensor, let objects have sensory, such as touch, taste and smell let objects become live up slowly. Usually according to its basic cognitive functions are divided into temperature sensor, light sensor, gas sensor, force sensor, magnetic sensor, moisture sensor, acoustic sensor, radiation sensitive element, color sensor and sensor etc. 10 major categories.temperature transducerTemperature sensors (temperature transducer) refers to can feel temperature translates into usable output signal of the sensor. The temperature sensor is the core part of the temperature measuring instrument, wide variety. According to measuring methods could be divided into two types: contact and non-contact, according to the sensor material and electronic component features divided into two categories, thermal resistance and thermocouple.1 principle of thermocoupleThermocouple is composed of two different materials of metal wire, the welded together at the end. To measure the heating part of the environment temperature, can accurately know the temperature of the hot spots. Because it must have two different material of the conductor, so called the thermocouple. Different material to make the thermocouple used in different temperature range, their sensitivity is also each are not identical. The sensitivity of thermocouple refers to add 1 ℃ hot spot temperature changes, the output variation of potential difference. For most of the metal material support thermocouple, this value about between 5 ~ 40 microvolt / ℃.As a result of the thermocouple temperature sensor sensitivity has nothing to do with the thickness of material, use very fine material also can make the temperature sensor. Also due to the production of thermocouple metal materials have good ductility, the slight temperature measuring element has high response speed, can measure the process of rapid change.Its advantages are:(1)high precision measurement. Because of thermocouple direct contact with the object being measured, not affected by intermediate medium.(2)the measurement range. Commonly used thermocouple from 1600 ℃ to50 ℃ ~ + sustainable measurement, some special thermocouple minimum measurable to - 269 ℃ ., gold iron nickel chrome), the highest measurable to + 2800 ℃ (such as tungsten rhenium).(3) simple structure, easy to use. Thermocouple is usually composed of two different kinds of metal wire, but is not limited by the size and the beginning of, outside has protective casing, so very convenient to use. The thermocouple type and structure of the form.2. The thermocouple type and structure formation(1)the types of thermocoupleThe commonly used thermocouple could be divided into two types: standard thermocouple and non-standard thermocouple. Standard thermocouple refers to the national standard specifies its thermoelectric potential and the relationship between temperature, permissible error, and a unified standard score table of thermocouple, it has with matching display instrument to choose from. Rather than a standard thermocouple or on the order of magnitude less than the range to use standardized thermocouple, in general, there is no uniform standard, it is mainly used for measurement of some special occasions.Standardized thermocouple is our country from January 1, 1988, thermocouple and thermal resistance of all production according to IEC international standard, and specify the S, B, E, K, R, J, T seven standardization thermocouple type thermocouple for our country unified design.(2)to ensure that the thermocouple is reliable, steady work, the structure of thermocouple requirements are as follows:①of the two thermocouple thermal electrode welding must be strong;②two hot electrode should be well insulated between each other, in case of short circuit;③compensation wires connected to the free cod of a thermocouple to convenient and reliable;④protect casing thermal electrodes should be able to make sufficient isolation and harmful medium.3.The thermocouple cold end temperature compensationDue to the thermocouple materials are generally more expensive (especially when using precious metals), and the temperature measurement points are generally more far, the distance to the instrument in order to save materials, reduce cost, usually adopt the compensating conductor) (the free end of the cold junction of the thermocouple to the steady control of indoor temperature, connected to the meter terminals. It must be pointed out that the role of the thermocouple compensation wire extension hot electrode, so that only moved to the control room of the cold junction of the thermocouple instrument on the terminal, it itself does not eliminate the cold end temperature change on the influence of temperature, cannot have the compensation effect. So, still need to take some of the other correction method to compensate of the cold end temperature especially when t0 indicates influence on measuring temperature 0 ℃.Must pay attention to when using thermocouple compensating conductor model match, cannot be wrong polarity, compensation conductor should be connected to the thermocouple temperature should not exceed 100 ℃.传感器传感器(名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

红外传感器中英文对照外文翻译文献

红外传感器中英文对照外文翻译文献

中英文对照翻译外文资料Moving Object Counting with an Infrared Sensor NetworkAbstractWireless Sensor Network (WSN) has become a hot research topic recently. Great benefit can be gained through the deployment of the WSN over a wide range ofapplications, covering the domains of commercial, military as well as residential. In this project, we design a counting system which tracks people who pass through a detecting zone as well as the corresponding moving directions. Such a system can be deployed in traffic control, resource management, and human flow control. Our design is based on our self-made cost-effective Infrared Sensing Module board which co-operates with a WSN. The design of our system includes Infrared Sensing Module design, sensor clustering, node communication, system architecture and deployment. We conduct a series of experiments to evaluate the system performance which demonstrates the efficiency of our Moving Object Counting system.Keywords:Infrared radiation,Wireless Sensor Node1.1 Introduction to InfraredInfrared radiation is a part of the electromagnetic radiation with a wavelength lying between visible light and radio waves. Infrared have be widely used nowadaysincluding data communications, night vision, object tracking and so on. People commonly use infrared in data communication, since it is easily generated and only suffers little from electromagnetic interference. Take the TV remote control as an example, which can be found in everyone's home. The infrared remote control systems use infrared light-emitting diodes (LEDs) to send out an IR (infrared) signal when the button is pushed. A different pattern of pulses indicates the corresponding button being pushed. To allow the control of multiple appliances such as a TV, VCR, and cable box, without interference, systems generally have a preamble and an address to synchronize the receiver and identify the source and location of the infrared signal. To encode the data, systems generally vary the width of the pulses (pulse-width modulation) or the width of the spaces between the pulses (pulse space modulation). Another popular system, bi-phase encoding, uses signal transitions to convey information. Each pulse is actually a burst of IR at the carrier frequency.A 'high' means a burst of IR energy at the carrier frequency and a 'low' represents an absence of IR energy. There is no encoding standard.However, while a great many home entertainment devices use their own proprietary encoding schemes, some quasi-standards do exist. These include RC-5, RC-6, and REC-80. In addition, many manufacturers, such as NEC, have also established their own standards.Wireless Sensor Network (WSN) has become a hot research topic recently. Great benefit can be gained through the deployment of the WSN over a wide range ofapplications, covering the domains of commercial, military as well as residential. In this project, we design a counting system which tracks people who pass through a detecting zone as well as the corresponding moving directions. Such a system can be deployed in traffic control, resource management, and human flow control. Our design is based on our self-made cost-effective Infrared Sensing Module board which co-operates with a WSN. The design of our system includes Infrared Sensing Module design, sensor clustering, node communication, system architecture and deployment. We conduct a series of experiments to evaluate the system performance which demonstrates the efficiency of our Moving Object Counting system.1.2 Wireless sensor networkWireless sensor network (WSN) is a wireless network which consists of a vast number of autonomous sensor nodes using sensors to monitor physical or environmental conditions, such as temperature,acoustics, vibration, pressure, motion or pollutants, at different locations. Each node in a sensor network is typically equipped with a wireless communications device, a small microcontroller, one or more sensors, and an energy source, usually a battery. The size of a single sensor node can be as large as a shoebox and can be as small as the size of a grain of dust, depending on different applications. The cost of sensor nodes is similarly variable, ranging from hundreds of dollars to a few cents, depending on the size of the sensor network and the complexity requirement of the individual sensor nodes. The size and cost are constrained by sensor nodes, therefore, have result in corresponding limitations on available inputs such as energy, memory, computational speed and bandwidth. The development of wireless sensor networks (WSN) was originally motivated by military applications such as battlefield surveillance. Due to the advancement in micro-electronic mechanical system technology (MEMS), embedded microprocessors, and wireless networking, the WSN can be benefited in many civilian application areas, including habitat monitoring, healthcare applications, and home automation.1.3 Types of Wireless Sensor NetworksWireless sensor network nodes are typically less complex than general-purpose operating systems both because of the special requirements of sensor network applications and the resource constraintsin sensor network hardware platforms. The operating system does not need to include support for user interfaces. Furthermore, the resource constraints in terms of memory and memory mapping hardware support make mechanisms such as virtual memory either unnecessary or impossible to implement. TinyOS [TinyOS] is possibly the first operating system specifically designed for wireless sensor networks. Unlike most other operating systems, TinyOS is based on an event-driven programming model instead of multithreading. TinyOS programs are composed into event handlers and tasks with run to completion-semantics. When an external event occurs, such as an incoming data packet or a sensor reading, TinyOS calls the appropriate event handler to handle the event. The TinyOS system and programs are both written in a special programming language called nesC [nesC] which is an extension to the C programming language. NesC is designed to detect race conditions between tasks and event handlers. There are also operating systems that allow programming in C. Examples of such operating systems include Contiki [Contiki], and MANTIS. Contiki is designed to support loading modules over the network and supports run-time loading of standard ELF files. The Contiki kernel is event-driven, like TinyOS, but the system supports multithreading on a per-application basis. Unlike the event-driven Contiki kernel, the MANTIS kernel is based on preemptive multithreading. With preemptive multithreading, applications do not needto explicitly yield the microprocessor to other processes.1.4 Introduction to Wireless Sensor NodeA sensor node, also known as a mote, is a node in a wireless sensor network that is capable of performing processing, gathering sensory information and communicating with other connected nodes in the network. Sensor node should be in small size, consuming extremely low energy, autonomous and operate unattended, and adaptive to the environment. As wireless sensor nodes are micro-electronic sensor device, they can only be equipped with a limited power source. The main components of a sensor node include sensors, microcontroller, transceiver, and power source. Sensors are hardware devices that can produce measurable response to a change in a physical condition such as light density and sound density. The continuous analog signal collected by the sensors is digitized by Analog-to-Digital converter. The digitized signal is then passed to controllers for further processing. Most of the theoretical work on WSNs considers Passive and Omni directional sensors. Passive and Omni directional sensors sense the data without actually manipulating the environment with active probing, while no notion of “direction” involved in these measurements. Commonly people deploy sensor for detecting heat (e.g. thermal sensor), light (e.g. infrared sensor), ultra sound (e.g. ultrasonic sensor), or electromagnetism (e.g. magnetic sensor). In practice, a sensor node can equip with more than one sensor.Microcontroller performs tasks, processes data and controls the operations of other components in the sensor node. The sensor node is responsible for the signal processing upon the detection of the physical events as needed or on demand. It handles the interruption from the transceiver. In addition, it deals with the internal behavior, such as application-specific computation.The function of both transmitter and receiver are combined into a single device know as transceivers that are used in sensor nodes. Transceivers allow a sensor node to exchange information between the neighboring sensors and the sink node (a central receiver). The operational states of a transceiver are Transmit, Receive, Idle and Sleep. Power is stored either in the batteries or the capacitors. Batteries are the main source of power supply for the sensor nodes. Two types of batteries used are chargeable and non-rechargeable. They are also classified according to electrochemical material used for electrode such as NiCd(nickel-cadmium), NiZn(nickel-zinc), Nimh(nickel metal hydride), and Lithium-Ion. Current sensors are developed which are able to renew their energy from solar to vibration energy. Two major power saving policies used areDynamic Power Management (DPM) and Dynamic V oltage Scaling (DVS). DPM takes care of shutting down parts of sensor node which are not currently used or active. DVS scheme varies the power levelsdepending on the non-deterministic workload. By varying the voltage along with the frequency, it is possible to obtain quadratic reduction in power consumption.1.5 ChallengesThe major challenges in the design and implementation of the wireless sensor network are mainly the energy limitation, hardware limitation and the area of coverage. Energy is the scarcest resource of WSN nodes, and it determines the lifetime of WSNs. WSNs are meant to be deployed in large numbers in various environments, including remote and hostile regions, with ad-hoc communications as key. For this reason, algorithms and protocols need to be lifetime maximization, robustness and fault tolerance and self-configuration. The challenge in hardware is to produce low cost and tiny sensor nodes. With respect to these objectives, current sensor nodes usually have limited computational capability and memory space. Consequently, the application software and algorithms in WSN should be well-optimized and condensed. In order to maximize the coverage area with a high stability and robustness of each signal node, multi-hop communication with low power consumption is preferred. Furthermore, to deal with the large network size, the designed protocol for a large scale WSN must be distributed.1.6 Research IssuesResearchers are interested in various areas of wireless sensornetwork, which include the design, implementation, and operation. These include hardware, software and middleware, which means primitives between the software and the hardware. As the WSNs are generally deployed in the resources-constrained environments with battery operated node, the researchers are mainly focus on the issues of energy optimization, coverage areas improvement, errors reduction, sensor network application, data security, sensor node mobility, and data packet routing algorithm among the sensors. In literature, a large group of researchers devoted a great amount of effort in the WSN. They focused in various areas, including physical property, sensor training, security through intelligent node cooperation, medium access, sensor coverage with random and deterministic placement, object locating and tracking, sensor location determination, addressing, energy efficient broadcasting and active scheduling, energy conserved routing, connectivity, data dissemination and gathering, sensor centric quality of routing, topology control and maintenance, etc.中文译文移动目标点数与红外传感器网络摘要无线传感器网络(WSN)已成为最近的一个研究热点。

传感器的基础知识中英文对照外文翻译文献

传感器的基础知识中英文对照外文翻译文献

中英文对照外翻译Basic knowledge of transducersA transducer is a device which converts the quantity being measured into an optical, mechanical, or-more commonly-electrical signal. The energy-conversion process that takes place is referred to as transduction.Transducers are classified according to the transduction principle involved and the form of the measured. Thus a resistance transducer for measuring displacement is classified as a resistance displacement transducer. Other classification examples are pressure bellows, force diaphragm, pressure flapper-nozzle, and so on.1、Transducer ElementsAlthough there are exception ,most transducers consist of a sensing element and a conversion or control element. For example, diaphragms,bellows,strain tubes and rings, bourdon tubes, and cantilevers are sensing elements which respond to changes in pressure or force and convert these physical quantities into a displacement. This displacement may then be used to change an electrical parameter such as voltage, resistance, capacitance, or inductance. Such combination of mechanical and electrical elements form electromechanical transducing devices or transducers. Similar combination can be made for other energy input such as thermal. Photo, magnetic and chemical,giving thermoelectric, photoelectric,electromaanetic, and electrochemical transducers respectively.2、Transducer SensitivityThe relationship between the measured and the transducer output signal is usually obtained by calibration tests and is referred to as the transducer sensitivity K1= output-signal increment / measured increment . In practice, the transducer sensitivity is usually known, and, by measuring the output signal, the input quantity is determined from input= output-signal increment / K1.3、Characteristics of an Ideal TransducerThe high transducer should exhibit the following characteristicsa) high fidelity-the transducer output waveform shape be a faithful reproduction of the measured; there should be minimum distortion.b) There should be minimum interference with the quantity being measured; the presence of the transducer should not alter the measured in any way.c) Size. The transducer must be capable of being placed exactly where it is needed.d) There should be a linear relationship between the measured and the transducer signal.e) The transducer should have minimum sensitivity to external effects, pressure transducers,for example,are often subjected to external effects such vibration and temperature.f) The natural frequency of the transducer should be well separated from the frequency and harmonics of the measurand.4、Electrical TransducersElectrical transducers exhibit many of the ideal characteristics. In addition they offer high sensitivity as well as promoting the possible of remote indication or mesdurement. Electrical transducers can be divided into two distinct groups:a) variable-control-parameter types,which include:i)resistanceii) capacitanceiii) inductanceiv) mutual-inductance typesThese transducers all rely on external excitation voltage for their operation.b) self-generating types,which includei) electromagneticii)thermoelectriciii)photoemissiveiv)piezo-electric typesThese all themselves produce an output voltage in response to the measurand input and their effects are reversible. For example, a piezo-electric transducer normally produces an output voltage in response to the deformation of a crystalline material; however, if an alternating voltage is applied across the material, the transducer exhibits the reversible effect by deforming or vibrating at the frequency of the alternating voltage.5、Resistance TransducersResistance transducers may be divided into two groups, as follows:i) Those which experience a large resistance change, measured by using potential-divider methods. Potentiometers are in this group.ii)Those which experience a small resistance change, measured by bridge-circuit methods. Examples of this group include strain gauges and resistance thermometers.5.1 PotentiometersA linear wire-wound potentiometer consists of a number of turns resistance wire wound around a non-conducting former, together with a wiping contact which travels over the barwires. The construction principles are shown in figure which indicate that the wiperdisplacement can be rotary, translational, or a combination of both to give a helical-type motion. The excitation voltage may be either a.c. or d.c. and the output voltage is proportional to the input motion, provided the measuring device has a resistance which is much greater than the potentiometer resistance.Such potentiometers suffer from the linked problem of resolution and electrical noise. Resolution is defined as the smallest detectable change in input and is dependent on thecross-sectional area of the windings and the area of the sliding contact. The output voltage is thus a serials of steps as the contact moves from one wire to next.Electrical noise may be generated by variation in contact resistance, by mechanical wear due to contact friction, and by contact vibration transmitted from the sensing element. In addition, the motion being measured may experience significant mechanical loading by the inertia and friction of the moving parts of the potentiometer. The wear on the contacting surface limits the life of a potentiometer to a finite number of full strokes or rotations usually referred to in the manufacture’s specification as the ‘number of cycles of life expectancy’, a typical value being 20*1000000 cycles.The output voltage V0 of the unload potentiometer circuit is determined as follows. Let resistance R1= xi/xt *Rt where xi = input displacement, xt= maximum possible displacement, Rt total resistance of the potentiometer. Then output voltage V0= V*R1/(R1+( Rt-R1))=V*R1/Rt=V*xi/xt*Rt/Rt=V*xi/xt. This shows that there is a straight-line relationship between output voltage and input displacement for the unloaded potentiometer.It would seen that high sensitivity could be achieved simply by increasing the excitation voltage V. however, the maximum value of V is determined by the maximum power dissipation P of the fine wires of the potentiometer winding and is given by V=(PRt)1/2 .5.2 Resistance Strain GaugesResistance strain gauges are transducers which exhibit a change in electrical resistance in response to mechanical strain. They may be of the bonded or unbonded variety .a) bonded strain gaugesUsing an adhesive, these gauges are bonded, or cemented, directly on to the surface of the body or structure which is being examined.Examples of bonded gauges arei) fine wire gauges cemented to paper backingii) photo-etched grids of conducting foil on an epoxy-resin backingiii)a single semiconductor filament mounted on an epoxy-resin backing with copper or nickel leads.Resistance gauges can be made up as single elements to measuring strain in one direction only,or a combination of elements such as rosettes will permit simultaneous measurements in more than one direction.b) unbonded strain gaugesA typical unbonded-strain-gauge arrangement shows fine resistance wires stretched around supports in such a way that the deflection of the cantilever spring system changes the tension in the wires and thus alters the resistance of wire. Such an arrangement may be found in commercially available force, load, or pressure transducers.5.3 Resistance Temperature TransducersThe materials for these can be divided into two main groups:a) metals such as platinum, copper, tungsten, and nickel which exhibit and increase in resistance as the temperature rises; they have a positive temperature coefficient of resistance.b) semiconductors, such as thermistors which use oxides of manganese, cobalt, chromium, or nickel. These exhibit large non-linear resistance changes with temperature variation and normally have a negative temperature coefficient of resistance.a) metal resistance temperature transducersThese depend, for many practical purpose and within a narrow temperature range, upon the relationship R1=R0*[1+a*(b1-b2)] where a coefficient of resistance in ℃-1,and R0 resistance in ohms at the reference temperature b0=0℃ at the reference temperature range ℃.The international practical temperature scale is based on the platinum resistance thermometer, which covers the temperature range -259.35℃ to 630.5℃.b) thermistor resistance temperature transducersThermistors are temperature-sensitive resistors which exhibit large non-liner resistance changes with temperature variation. In general, they have a negative temperature coefficient. For small temperature increments the variation in resistance is reasonably linear; but, if large temperature changes are experienced, special linearizing techniques are used in the measuring circuits to produce a linear relationship of resistance against temperature.Thermistors are normally made in the form of semiconductor discs enclosed in glass vitreous enamel. Since they can be made as small as 1mm,quite rapid response times are possible.5.4 Photoconductive CellsThe photoconductive cell , uses a light-sensitive semiconductor material. The resistance between the metal electrodes decrease as the intensity of the light striking the semiconductor increases. Common semiconductor materials used for photo-conductive cells are cadmium sulphide, lead sulphide, and copper-doped germanium.The useful range of frequencies is determined by material used. Cadmium sulphide is mainly suitable for visible light, whereas lead sulphide has its peak response in the infra-red regionand is, therefore , most suitable for flame-failure detection and temperature measurement. 5.5 Photoemissive CellsWhen light strikes the cathode of the photoemissive cell are given sufficient energy to arrive the cathode. The positive anode attracts these electrons, producing a current which flows through resistor R and resulting in an output voltage V.Photoelectrically generated voltage V=Ip.RlWhere Ip=photoelectric current(A),and photoelectric current Ip=Kt.BWhere Kt=sensitivity (A/im),and B=illumination input (lumen)Although the output voltage does give a good indication of the magnitude of illumination, the cells are more often used for counting or control purpose, where the light striking the cathode can be interrupted.6、Capacitive TransducersThe capacitance can thus made to vary by changing either the relative permittivity, the effective area, or the distance separating the plates. The characteristic curves indicate that variations of area and relative permittivity give a linear relationship only over a small range of spacings. Thus the sensitivity is high for small values of d. Unlike the potentionmeter, the variable-distance capacitive transducer has an infinite resolution making it most suitable for measuring small increments of displacement or quantities which may be changed to produce a displacement.7、Inductive TransducersThe inductance can thus be made to vary by changing the reluctance of the inductive circuit. Measuring techniques used with capacitive and inductive transducers:a)A.C. excited bridges using differential capacitors inductors.b)A.C. potentiometer circuits for dynamic measurements.c) D.C. circuits to give a voltage proportional to velocity for a capacitor.d) Frequency-modulation methods, where the change of C or L varies the frequency of an oscillation circuit.Important features of capacitive and inductive transducers are as follows:i)resolution infiniteii) accuracy+- 0.1% of full scale is quotediii)displacement ranges 25*10-6 m to 10-3miv) rise time less than 50us possibleTypical measurands are displacement, pressure, vibration, sound, and liquid level.8、Linear Variable-differential Ttransformer9、Piezo-electric Transducers10、Electromagnetic Transducers11、Thermoelectric Transducers12、Photoelectric Cells13、Mechanical Transducers and Sensing Elements传感器的基础知识传感器是一种把被测量转换为光的、机械的或者更平常的电信号的装置。

传感器中英文介绍

传感器中英文介绍

. sensorssensors(English name: transducer/sensor) is a kind of detection device, can feel the measured information, and will feel information transformation according to certain rule become electrical signal output, or other form of information needed to satisfy the information transmission, processing, storage, display, record and control requirements.Sensor's features include: miniaturization, digital, intelligent, multi-functional, systematic and network. It is the first step of automatic detection and automatic control. The existence and development of the sensor, let objects have sensory, such as touch, taste and smell let objects become live up slowly. Usually according to its basic cognitive functions are divided into temperature sensor, light sensor, gas sensor, force sensor, magnetic sensor, moisture sensor, acoustic sensor, radiation sensitive element, color sensor and sensor etc. 10 major categories.temperature transducerTemperature sensors (temperature transducer) refers to can feel temperature translates into usable output signal of the sensor. The temperature sensor is the core part of the temperature measuring instrument, wide variety. According to measuring methods could be divided into two types: contact and non-contact, according to the sensor material and electronic component features divided into two categories, thermal resistance and thermocouple.1 principle of thermocoupleThermocouple is composed of two different materials of metal wire, the welded together at the end. To measure the heating part of the environment temperature, can accurately know the temperature of the hot spots. Because it must have two different material of the conductor, so called the thermocouple. Different material to make the thermocouple used in different temperature range, their sensitivity is also each are not identical. The sensitivity of thermocouple refers to add 1 ℃hot spot temperature changes, the output variation of potential difference. For most of the metal material support thermocouple, this value about between 5 ~ 40 microvolt / ℃.As a result of the thermocouple temperature sensor sensitivity has nothing to do with the thickness of material, use very fine material also can make the temperature sensor. Also due to the production of thermocouple metal materials have good ductility, the slight temperature measuring element has high response speed, can measure the process of rapid change.Its advantages are:(1)high precision measurement. Because of thermocouple direct contact with the object being measured, not affected by intermediate medium.(2)the measurement range. Commonly used thermocouple from 1600 ℃to 50 ℃ ~ + sustainable measurement, some special thermocouple minimum measurable to - 269 ℃ (e.g., gold iron nickel chrome), the highest measurable to + 2800 ℃ (such as tungsten rhenium).(3) simple structure, easy to use. Thermocouple is usually composed of two different kinds of metal wire, but is not limited by the size and the beginning of, outside has protective casing, so very convenient to use. The thermocouple type and structure of the form.2. The thermocouple type and structure formation(1)the types of thermocoupleThe commonly used thermocouple could be divided into two types: standard thermocouple and non-standard thermocouple. Standard thermocouple refers to the national standard specifies its thermoelectric potential and the relationship between temperature, permissible error, and a unified standard score table of thermocouple, it has with matching display instrument to choose from. Rather than a standard thermocouple or on the order of magnitude less than the range to use standardized thermocouple, in general, there is no uniform standard, it is mainly used for measurement of some special occasions.Standardized thermocouple is our country from January 1, 1988, thermocouple and thermal resistance of all production according to IEC international standard, and specify the S, B, E, K, R, J, T seven standardization thermocouple type thermocouple for our country unified design.(2)to ensure that the thermocouple is reliable, steady work, the structure of thermocouple requirements are as follows:①of the two thermocouple thermal electrode welding must be strong;②two hot electrode should be well insulated between each other, in case of short circuit;③compensation wires connected to the free cod of a thermocouple to convenient and reliable;④protect casing thermal electrodes should be able to make sufficient isolation and harmful medium.3.The thermocouple cold end temperature compensationDue to the thermocouple materials are generally more expensive (especiallywhen using precious metals), and the temperature measurement points are generally more far, the distance to the instrument in order to save materials, reduce cost, usually adopt the compensating conductor) (the free end of the cold junction of the thermocouple to the steady control of indoor temperature, connected to the meter terminals. It must be pointed out that the role of the thermocouple compensation wire extension hot electrode, so that only moved to the control room of the cold junction of the thermocouple instrument on the terminal, it itself does not eliminate the cold end temperature change on the influence of temperature, cannot have the compensation effect. So, still need to take some of the other correction method to compensate of the cold end temperature especially when t0 indicates influence on measuring temperature 0 ℃.Must pay attention to when using thermocouple compensating conductor model match, cannot be wrong polarity, compensation conductor should be connected to the thermocouple temperature should not exceed 100 ℃.传感器传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

What is a smart sensorOne of the biggest advances in automation has been the development and spread of smart sensors. But what exactly is a "smart" sensor? Experts from six sensor manufacturers define this term.A good working "smart sensor" definition comes from Tom Griffiths, product manager, Honeywell Industrial Measurement and Control. Smart sensors, he says, are "sensors and instrument packages that are microprocessor driven and include features such as communication capability and on-board diagnostics that provide information to a monitoring system and/or operator to increase operational efficiency and reduce maintenance costs."No failure to communicate"The benefit of the smart sensor," says Bill Black, controllers product manager at GE Fanuc Automation, "is the wealth of information that can be gathered from the process to reduce downtime and improve quality." David Edeal, Temposonics product manager, MTS Sensors, expands on that: "The basic premise of distributed intelligence," he says, is that "complete knowledge of a system, subsystem, or component's state at the right place and time enables the ability to make 'optimal' process control decisions."Adds John Keating, product marketing manager for the Checker machine vision unit at Cognex, "For a (machine vision) sensor to really be 'smart,' it should not require the user to understand machine vision."A smart sensor must communicate. "At the most basic level, an 'intelligent' sensor has the ability to communicate information beyond the basic feedback signals that are derived from its application." saysEdeal. This can be a HART signal superimposed on a standard 4-20 mA process output, a bus system, or wireless arrangement. A growing factor in this area is IEEE 1451, a family of smart transducer interface standards intended to give plug-and-play functionality to sensors from different makers.Diagnose, programSmart sensors can self-monitor for any aspect of their operation, including "photo eye dirty, out of tolerance, or failed switch," says GE Fanuc's Black. Add to this, says Helge Hornis, intelligent systems manager, Pepperl+Fuchs, "coil monitoring functions, target out of range, or target too close." It may also compensate for changes in operating conditions. "A 'smart' sensor," says Dan Armentrout, strategic creative director, Omron Electronics LLC, "must monitor itself and its surroundings and then make a decision to compensate for the changes automatically or alert someone for needed attention."Many smart sensors can be re-ranged in the field, offering "settable parameters that allow users to substitute several 'standard' sensors," says Hornis. "For example, typically sensors are ordered to be normally open (NO) or normally closed (NC). An intelligent sensor can be configured to be either one of these kinds."Intelligent sensors have numerous advantages. As the cost of embedded computing power continues to decrease, "smart" devices will be used in more applications. Internal diagnostics alone can recover the investment quickly by helping avoid costly downtime.Sensors: Getting into PositionAs the saying goes, 'No matter where you go, there you are.' Still, most applications require a bit more precision and repeatability than that, so here's advice on how to select and locate position sensors.The article contains online extra material.What's the right position sensor for a particular application? It depends on required precision, repeatability, speed, budget, connectivity, conditions, and location, among other factors. You can bet that taking the right measurement is the first step to closing the loop on any successful application.Sensor technologies that can detect position are nearly as diverse as applications in providing feedback for machine control and other uses. Spatial possibilities are linear, area, rotational, andthree-dimensional. In some applications, they're used in combination. Sensing elements are equally diverse.Ken Brey, technical director, DMC Inc., a Chicago-based system integrator, outlined some the following position-sensing options.Think digitallyFor digital position feedback:∙Incremental encoders are supported by all motion controllers; come in rotary and linear varieties and in many resolutions; are simulated by many other devices; and require a homing process to reference the machine to a physical marker, and when power is turned off.∙Absolute encoders are natively supported by fewer motion controllers; can be used by all controllers that have sufficient available digital inputs; report a complete position within theirrange (typically one revolution); and do not require homing.∙Resolvers are more immune to high-level noise in welding applications; come standard on some larger motors; simulate incremental encoders when used with appropriate servo amps; and can simulate absolute encoders with some servo amps.∙Dual-encoder feedback, generally under-used, is natively supported by most motion controllers; uses one encoder attached to the motor and another attached directly to the load; and is beneficial when the mechanical connection between motor and load is flexible or can slip.∙Vision systems , used widely for inspection, can also be used for position feedback. Such systems locate objects in multiple dimensions, typically X, Y, and rotation; frequently find parts ona conveyor; and are increasing in speed and simplicity.A metal rolling, stamping, and cut-off application provides an example of dual-encoder feedback use, Brey says. 'It required rapid and accurate indexing of material through a roll mill for a stamping process. The roll mill creates an inconsistent amount of material stretch and roller slip,' Brey explains.'By using the encoder on the outgoing material as position feedback and the motor resolver as velocity feedback in a dual-loop configuration, the system was tuned stable and a single index move provided an accurate index length. It was much faster and more accurate than making a primary move, measuring the error, then having to make a second correction move,' he says.Creative, economicalSam Hammond, chief engineer, Innoventor, a St. Louis, MO-area system integrator, suggests that the application's purpose should guide selection of position sensors; measurements and feedback don't have to be complex. 'Creative implementations can provide simple, economical solutions,' he says. For instance, for sequencing, proximity sensors serve well in many instances.Recent sensor applications include the AGV mentioned in lead image and the following.∙In a machine to apply the top seals to tea containers, proximity and through-beam sensors locate incoming packages. National Instruments vision system images are processed to find location ofa bar code on a pre-applied label, and then give appropriate motorcommands to achieve the desired position (rotation) setting to apply one of 125 label types. Two types of position sensors were used. One was a simple inductive proximity sensor, used to monitor machine status to ensure various motion components were in the right position for motion to occur. The camera also served as a position sensor, chosen because of its multi purpose use, feature location, and ability to read bar codes.∙ A progressive-die stamping machine operates in closed loop. A linear output proximity sensor provides control feedback for optimizing die operation; a servo motor adjusts die position in the bend stage. A linear proximity sensor was selected to give a dimensional readout from the metal stamping operation; data are used in a closed-loop control system.∙Part inspection uses a laser distance measurement device to determine surface flatness. Sensor measures deviation in return beams, indicating different surface attributes to 10 microns insize. An encoder wouldn't have worked because distance was more thana meter. Laser measurement was the technology chosen because it hadvery high spatial resolution, did not require surface contact, and had a very high distance resolution.An automotive key and lock assembly system uses a proximity sensor for detecting a cap in the ready position. A laser profile sensor applied with a robot measures the key profile.What to use, where?Sensor manufacturers agree that matching advantages inherent to certain position sensing technologies can help various applications.David Edeal, product marketing manager, MTS Sensors Div., says, for harsh factory automation environments, 'the most significant factors even above speed and accuracy in customer's minds are product durability and reliability. Therefore, products with inherently non-contact sensing technologies (inductive, magnetostrictive, laser, etc.) have a significant advantage over those that rely on physical contact (resistive, cable extension, etc.)'Other important factors, Edeal says, are product range of use and application flexibility. 'In other words, technologies that can accommodate significant variations in stroke range, environmental conditions, and can provide a wide range of interface options are of great value to customers who would prefer to avoid sourcing a large variety of sensor types. All technologies are inherently limited with respect to these requirements, which is why there are so many options.'Edeal suggest that higher cost of fitting some technologies to a certain application creates a limitation, such as with linear variabledifferential transformers. 'For example, LVDTs with stroke lengths longer than 12 inches are rare because of the larger product envelope (about twice the stroke length) and higher material and manufacturing costs. On the other hand, magnetostrictive sensing technology has always required conditioning electronics. With the advent of microelectronics and the use of ASICs, we have progressed to a point where, today, a wide range of programmable output types (such as analog, encoder, and fieldbus) are available in the same compact package. Key for sensor manufacturers is to push the envelope to extend the range of use (advantages) while minimizing the limitations (disadvantages) of their technologies.'Listen to your appDifferent sensor types offer distinct advantages for various uses, agrees Tom Corbett, product manager, Pepperl+Fuchs. 'Sometimes the application itself is the deciding factor on which mode of sensing is required. For example, a machine surface or conveyor belt within the sensing area could mean the difference between using a standard diffused mode sensor, and using a diffused mode sensor with background suppression. While standard diffused mode models are not able to ignore such background objects, background suppression models evaluate light differently to differentiate between the target surface and background surfaces.'Similarly, Corbett continues, 'a shiny target in a retro-reflective application may require use of a polarized retro-reflective model sensor. Whereas a standard retro-reflective sensor could falsely trigger when presented with a shiny target, a polarized retro-reflective model uses a polarizing filter to distinguish the shiny target from the reflector.'MTS' Edeal says, 'Each technology has ideal applications, which tend to magnify its advantages and minimize its disadvantages. For example, inthe wood products industry, where high precision; varied stroke ranges; and immunity to high shock and vibration, electromagnetic interference, and temperature fluxuations are critical, magnetostrictive position sensors are the primary linear feedback option. Likewise, rotary optical encoders are an ideal fit for motor feedback because of their packaging, response speed, accuracy, durability, and noise immunity. When applied correctly, linear position sensors can help designers to ensure optimum machine productivity over the long haul.'Thinking broadly first, then more narrowly, is often the best way to design sensors into a system. Edeal says, 'Sensor specifications should be developed by starting from the machine/system-level requirements and working back toward the subsystem, and finally component level. This is typically done, but what often happens is that some system-level specifications are not properly or completely translated back to component requirements (not that this is a trivial undertaking). For example, how machine operation might create unique or additional environmental challenges (temperature, vibration, etc.) may not be clear without in-depth analysis or past experience. This can result in an under-specified sensor in the worst situation or alternatively an over-specified product where conservative estimates are applied.'Open or closedEarly in design, those involved need to decide if the architecture will be open-loop or closed-loop. Paul Ruland, product manager, AutomationDirect, says, 'Cost and performance are generally the two main criteria used to decide between open-loop or closed-loop control in electromechanical positioning systems. Open-loop controls, such as stepping systems, can often be extremely reliable and accurate when properly sized for the system. The burden of tuning a closed-loop systemprior to operation is not required here, which inherently makes it easy to apply. Both types can usually be controlled by the same motion controller. A NEMA 23 stepping motor with micro-stepping drive is now available for as little as $188, compared to an equivalent servo system at about $700.'Edeal suggests, 'Control systems are created to automate processes and there are many good examples of high-performance control systems that require little if any feedback. However, where structural system (plant) or input (demand or disturbance) changes occur, feedback is necessary to manage unanticipated changes. On the process side, accuracy—both static and dynamic—is important for end product quality, and system stability and repeatability (robustness) are important for machine productivity.'For example,' Edeal says, 'in a machining or injection molding application, the tool, mold or ram position feedback is critical to the final dimension of the fabricated part. With rare exceptions, dimensional accuracy of the part will never surpass that of the position sensor. Similarly, bandwidth (response speed) of the sensor may, along with response limitations of the actuators, limit production rates.'Finally, a sensor that is only accurate over a narrow range of operating conditions will not be sufficient in these types of environments where high shock and vibration and dramatic temperature variations are common.'The latestWhat are the latest position sensing technologies to apply to manufacturing and machining processes and why?Ruland says, 'Some of the latest developments in positioning technologies for manufacturing applications can be found in even the simplest ofdevices, such as new lower-cost proximity switches. Many of these prox devices are now available for as little as $20 and in much smaller form factors, down to 3 mm diameter. Some specialty models are also available with increased response frequencies up to 20 kHz. Where mounting difficulties and cost of an encoder are sometimes impractical, proximity switches provide an attractive alternative; many position control applications can benefit from increased performance, smaller package size, and lower purchase price and installation cost.'Corbett concurs. 'Photoelectric sensors are getting smaller, more durable, and flexible, and are packed with more standard features than ever before. Some new photoelectrics are about half the size of conventional cylindrical housings and feature welded housings compared with standard glued housings. Such features are very desirable in manufacturing and machining applications where space is critical and durability is a must. And more flexible connectivity and mounting options—side mount or snout mount are available from the same product—allow users to adapt a standard sensor to their machine, rather than vice versa.'Another simple innovation, Corbett says, is use of highly visible,360-degree LED that clearly display status information from any point of view. 'Such enhanced LED indicates overload and marginal excess gain, in addition to power and output. Such sensors offer adjustable sensitivity as standard, but are available with optional tamperproof housings to prevent unauthorized adjustments.'Photoelectric SensorsPhotoelectric sensors are typically available in at least nine or more sensing modes, use two light sources, are encapsulated in three categories of package sizes, offer five or more sensing ranges, and can be purchasedin various combinations of mounting styles, outputs, and operating voltages. It creates a bewildering array of sensor possibilities and a catalog full of options.This plethora of choices can be narrowed in two ways: The first has to do with the object being sensed. Second involves the sensor's environment.Boxed inThe first question to ask is: What is the sensor supposed to detect? "Are we doing bottles? Or are we detecting cardboard boxes?" says Greg Knutson, a senior applications engineer with sensor manufacturer Banner Engineering.Optical properties and physical distances will determine which sensing mode and what light source work best. In the case of uniformly colored boxes, for example, it might be possible to use an inexpensive diffuse sensor, which reflects light from the box.The same solution, however, can't be used when the boxes are multicolored and thus differ in reflectivity. In that case, the best solution might be an opposed or retroreflective mode sensor. Here, the system works by blocking a beam. When a box is in position, the beam is interrupted and the box detected. Without transparent boxes, the technique should yield reliable results. Several sensors could gauge boxes of different heights.Distance plays a role in selecting the light source, which can either be an LED or a laser. LED is less expensive. However, because LED are a more diffuse light source, they are better suited for shorter distances. A laser can be focused on a spot, yielding a beam that can reach long distances. Tight focus can also be important when small features have tobe sensed. If a small feature has to be spotted from several feet, it may be necessary to use a laser.Laser sensors used to cost many times more than LED. That differential has dropped with the plummeting price of laser diodes. There's still a premium for using a laser, but it's not as large as in the past.Environmental challengesOperating environment is the other primary determining factor in choosing a sensor. Some industries, such food and automotive, tend to be messy, dangerous, or both. In the case of food processing, humidity can be high and a lot of fluids can be present. Automotive manufacturing sites that process engines and other components may include grit, lubricants, and coolants. In such situations, the sensor's environmental rating is of concern. If the sensor can't handle dirt, then it can't be used. Such considerations also impact the sensing range needed because it may be necessary to station the sensor out of harm's way and at a greater distance than would otherwise be desirable. Active alarming and notification may be useful if lens gets dirty and signal degrades.Similar environmental issues apply to the sensor's size, which can range from smaller than a finger to something larger than an open hand. A smaller sensor can be more expensive than a larger one because it costs more to pack everything into a small space. Smaller sensors also have a smaller area to collect light and therefore tend to have less range and reduced optical performance. Those drawbacks have to be balanced against a smaller size being a better fit for the amount of physical space available.Sensors used in semiconductor clean room equipment, for example, don't face harsh environmental conditions, but do have to operate in tight spaces. Sensing distances typically run a few inches, thus the sensorstend to be small. They also often make use of fiber optics to bring light into and out of the area where changes are being detected.Mounting, pricingAnother factor to consider is the mounting system. Frequently, sensors must be mechanically protected with shrouds and other means. Such mechanical and optical protection can cost more than the sensor itself—a consideration for the buying process. If vendors have flexible mounting systems and a protective mounting arrangement for sensors, the products could be easier to implement and last longer.List prices for standard photoelectric sensors range from $50 or so to about $100.Laser and specialty photoelectric sensors cost between $150 and $500. Features such as a low-grade housing, standard optical performance, and limited or no external adjustments characterize the lower ends of each category. The higher end will have a high-grade housing, such as stainless steel or aluminum, high optical performance, and be adjustable in terms of gain or allow timing and other options. Low-end products are suitable for general applications, while those at the higher end may offer application-specific operation at high speed, high temperature, or in explosive environments.Finally, keep in mind that one sensing technology may not meet all of the needs of an application. And if needs change, a completely different sensor technology may be required. Having to switch to a new approach can be made simpler if a vendor offers multiple technologies in the same housing and mounting footprint, notes Ed Myers, product manager at sensor manufacturer Pepperl+Fuchs. If that's the case, then one technology can be more easily swapped out for another as needs change.译文什么是智能传感器自动化领域所取得的一项最大进展就是智能传感器的发展与广泛使用。

相关文档
最新文档