实验3 Okumura-Hata方法计算计算机仿真

合集下载

计算机仿真技术实验指导书

计算机仿真技术实验指导书

《计算机仿真技术》实验指导书中北大学电气与控制工程学院2019.6实验一 面向方程的数值积分方法仿真一、实验目的通过实验,学习4阶龙格-库塔法的基本思路和计算公式,加深理解4阶龙格-库塔法的原理及其稳定域。

加深理解仿真的稳定性,仿真步长对仿真精度的影响。

二、实验内容1、线性定常系统[]1112223332010002001010060000600x x x x x u y x x x x -⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=-+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦;)(1000)0()0()0(321t u x x x =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡2、非线性系统 ()()()()()()()()x t rx t ax t y t y t sx t bx t y t =-⎧⎨=-+⎩其中:r=0.001, a=2⨯10-6, s=0.01, b=1⨯10-6, x(0)=12000, y(0)=600。

三、实验原理运用SIMULINK 仿真工具进行实验。

四、实验设备和仪器微型计算机、MATLAB 软件。

五、实验方法运行MA TLAB ,在MA TLAB 窗口中按SimuLink 按钮,启动SimuLink 库浏览器,在浏览器窗口上选create a new modem 命令,得到一个空模型,从Library: SimuLink 窗口中找到需要的模块,将这些模块拖到空模型窗口中。

将空模型窗口中的排好,并按要求连接。

在保存好的模型窗口中,选Simulation\Paramters 命令设置各模块的参数和仿真参数。

给模型取一个名字,保存起来。

选Simulation\Start 命令,进行仿真。

六、实验报告1、所采用方法的基本思路和计算公式。

2、仿真步骤及说明。

3、仿真过程及仿真结果分析要点:(1)学习4阶龙格-库塔法的基本思路和计算公式;(2)为了保证仿真的稳定,分析线性定常系统,其最大仿真步长为多少?4、实验的心得体会。

计算机仿真的过程与方法

计算机仿真的过程与方法

《通信系统仿真》实验报告姓名杨利刚班级A0811 实验室203 组号28 学号28 实验日期实验名称实验一计算机仿真的过程与方法实验成绩教师签字一、实验目的1、掌握计算机仿真的一般过程2、掌握Matlab编程仿真的基本方法3、掌握动态系统模型的状态方程求解方法4、掌握基于概率模型的蒙特卡罗方法二、实验原理1、计算机仿真的一般过程通信系统的计算机仿真就是根据物理系统的运行原理建立相应的数学描述,并进行计算机数值求解的过程。

系统的数学描述称为系统数学模型或仿真模型。

为了对系统数学模型进行计算机数值分析,还需要将数学模型以某种计算机语言表达出来,然后进行调试、运行,最后得出数值结果。

用计算机语言重新表达的数学模型称为系统的计算机仿真模型。

根据物理模型的不同特点、原理以及不同的系统仿真目标所得出的数学模型和相应求解算法也不尽相同。

通信系统的计算机仿真过程往往是多种形式数学模型和各种算法综合的数值计算过程。

对仿真模型和仿真结果的检验是仿真数据有效性的保证。

通常的验证方法是证伪,而不是证实。

通过模型的相互比较就能够查找出错误根源,进而改进和修正模型。

2、基于动态系统模型的状态方程求解方法动态系统,就是有记忆系统的数学描述是状态方程。

对动态系统建模,就是根据研究对象的物理模型找出相应的状态方程的过程。

所谓对动态系统的仿真,就是利用计算机来对所得出的状态方程进行数值求解的过程。

3、基于概率模型的蒙特卡罗方法对于不确定系统,使用基于概率模型的蒙特卡罗方法。

蒙特卡罗方法是一种基于随机试验和统计计算的数值方法,也称计算机随机模拟方法或统计模拟方法。

蒙特卡罗方法的数学基础是概率论中的大数定理和中心极限定理。

大数定理指出,随着独立随机试验次数增加,试验统计事件出现的概率将接近于该统计事件的概率。

蒙特卡罗方法的基本思想:当所求解问题是某种随机事件出现的概率,或某个随机变量的期望值时,通过某种实验的方法,以这种事件出现的概率来估计该随机事件的概率,或者得出这个随机变量的某些数字特征,并将其作为问题的解。

移动通信课程设计—链路预算模型含源程序)

移动通信课程设计—链路预算模型含源程序)

3链路预算模型3.1概述 移动通信系统的性能主要受到无线信道特性的制约。

发射机与接收机之间的传播路径一般分布有复杂的地形地物,而电磁波在无线信道中传播受到反射、绕射、散射、多经传播等多种因素的影响,其信道往往是非固定的和不可预见的。

具有复杂时变的电波传播特性,因而造成了信道分析和传播预测的困难。

影响无线信道最主要的因素就是信号衰减。

在无线通信系统中,电波传播经常在不规则地区。

在估计预测路径损耗时,要考虑特定地区的地形地貌,同时还要考虑树木、建筑物和其他遮挡物等因素的影响。

在无线通信系统工程设计中,常采用电波传播损耗模型来计算无线链路的传播损耗,这些模型的目标是为了预测特定点的或特定区域的信号场强。

常用的电波传播模型损耗分为宏蜂窝模型和室内模型两大类。

其中宏蜂窝模型中使用最广泛的是Okumura 模型,还有建立在Okumura 模型基础上的其他模型,如Okumura-Hata 模型,COST-231-Hata 模型,COST-231 Wslfisch-Ikegami 模型等;室内模型有衰减因子模型,Motley 模型,对数距离路径损耗模型等。

下面就着重来讨论这些模型并对部分模型进行仿真分析。

3.2宏蜂窝模型3.2.1 Okumura 模型(1)概述Okumura 模型为预测城区信号时使用最广泛的模型。

应用频率在150MHz 到1920MHz 之间(可扩展到300MHz ),收发距离为1km 到100km ,天线高度在30m 到1000m 之间。

Okumura 模型开发了一套在准平滑城区,基站有效天线高度h_b 为200m ,移动台天线高度h_m 为3m 的空间中值损耗(A mu )曲线。

基站和移动台均使用自由垂直全方向天线,从测量结果得到这些曲线,并画成频率从100MHz 到1920MHz 的曲线和距离从1km 到100km 的曲线。

使用Okumura 模型确定路径损耗,首先确定自由空间路径损耗,然后从曲线中读出A mu (f,d)值,并加入代表地物类型的修正因子。

基于城郊环境下Okumura_Hata预测模型的校正与实现

基于城郊环境下Okumura_Hata预测模型的校正与实现

距离(m) 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620
路径损耗(dB) 101 106 108 107 108 111
3 预测模型的校正
(1)Okumura-Hata 模型在城市郊区路径损耗的数学表
110 113 111 113 112 110 112 113 112
L = 69.55 + 26.16lg f − 13.82lg hte + (44.9 − 6.55lg hte ) lg d ° (17)
式为
L = k1 + k 2lg f + k3lg hte + (k 4 + k5lg hte ) lg d
(11)
L /km
把上式的各参数进一步简化可得:
图 1 实测值与拟合后曲线的对比仿真
【Abstract】Since the mobile communicative system is restricted by the wireless signal path, while the main factor that affects the wireless signal path is the geographical conditions of the wireless signal propagation. The geographical feature of mobile communication falls into three types: urban, suburb and countryside. This paper describes the adjustment of Okumura-Hata prediction model by applying linear regression method based on the on-the-spot tests of mobile communication base stations in the suburb of a city, including the comparison of emulational result with the measured data. The experiment proves that the prediction accuracy has been obviously raised by using this new method.

蒙特卡罗方法在计算机上的实现

蒙特卡罗方法在计算机上的实现


rm1 rm L Ωm
xm1 xm L um
ym1 ym L vm
zm1 zm L wm
其中 (um,vm, wm) 为 Ωm 的方向余弦,L 为两次碰撞点间的 距离。
1) 碰撞点位置的计算公式
L 的分布密度函数为:
L
f (L) t (rm1, Em ) exp 0 t (rm l Ωm, Em )dl ,
在直角坐标系下,取
cos 1 (1 cos *) OS 为 z 轴,抽样方法为:
cos R2 D02 sin2
R
u sin
v0
w cos
4) 次级粒子的源分布
在有关次级粒子(如裂变中子,中子生成光子, 光子生成中子)的输运过程中,次级粒子源分布的抽 样方法,主要可分为以下两种:
由 f (L) 抽样确定 L 的方法通常有三种: (1) 直接抽样方法
确定 L 的直接抽样方法是: f () e
首先由自由程分布
ln
中抽取ρ
L
0 t (rm l Ωm, Em )dl
再由下列关系式解出 L 。
L0
1) 碰撞点位置的计算公式
对于均匀介质,有 对于多层介质,如果
L ln
1. 源分布抽样过程
源分布抽样的目的是产生粒子的初始状 态S0 (r0, E0,Ω0 )
。下面我们介绍一些常见的特 定 类型的源分布抽样方法。
1) 源粒子的位置常见分布的随机抽样
(1) 圆内均匀分布
设圆半径为R0,粒子在圆内均匀分布时,从发射 点到中心的距离 r 的分布密度函数为:
2r
r
的抽样方法为:
粒子在介质中发生碰撞后,首先要确定与哪种原子 核发生何种反应。粒子发生碰撞后(吸收除外)的能量 Em+1 一般只与其碰撞前后运动方向的夹角(散射角)有 关。

移动通信原理与系统 第二版 课后答案

移动通信原理与系统 第二版 课后答案

移动通信原理与系统第二版课后答案第一章概述1.1简述移动通信的特点:答:①移动通信利用无线电波进行信息传输;②移动通信在强干扰环境下工作;③通信容量有限;④通信系统复杂;⑤对移动台的要求高。

1.2移动台主要受哪些干扰影响?哪些干扰是蜂窝系统所特有的?答:①互调干扰;②邻道干扰;③同频干扰;(蜂窝系统所特有的)④多址干扰。

1.3简述蜂窝式移动通信的发展历史,说明各代移动通信系统的特点。

答:第一代(1G)以模拟式蜂窝网为主要特征,是20世纪70年代末80年代初就开始商用的。

其中最有代表性的是北美的AMPS(Advanced Mobile Phone System)、欧洲的TACS(Total Access Communication System)两大系统,另外还有北欧的NMT及日本的HCMTS系统等。

从技术特色上看,1G以解决两个动态性中最基本的用户这一重动态性为核心并适当考虑到第二重信道动态性。

主要是措施是采用频分多址FDMA方式实现对用户的动态寻址功能,并以蜂窝式网络结构和频率规划实现载频再用方式,达到扩大覆盖服务范围和满足用户数量增长的需求。

在信道动态特性匹配上,适当采用了性能优良的模拟调频方式,并利用基站二重空间分集方式抵抗空间选择性衰落。

第二代(2G)以数字化为主要特征,构成数字式蜂窝移动通信系统,它于20世纪90年代初正式走向商用。

其中最具有代表性的有欧洲的时分多址(TDMA)GSM(GSM原意为Group Special Mobile,1989年以后改为Global System for Mobile Communication)、北美的码分多址(CDMA)的IS-95两大系统,另外还有日本的PDC系统等。

从技术特色上看,它是以数字化为基础,较全面地考虑了信道与用户的二重动态特性及相应的匹配措施。

主要的实现措施有:采用TDMA(GSM)、CDMA(IS-95)方式实现对用户的动态寻址功能,并以数字式蜂窝网络结构和频率(相位)规划实现载频(相位)再用方式,从而扩大覆盖服务范围和满足用户数量增长的需求。

计算机仿真技术实验报告-实验三

计算机仿真技术实验报告-实验三

《仿真技术与应用》实验报告计算机仿真技术实验报告实验三利用数值积分算法的仿真实验实验三 利用数值积分算法的仿真实验实验目的1) 熟悉MATLAB 勺工作环境;2) 掌握MATLAB 勺.M 文件编写规则,并在命令窗口调试和运行程序;3)掌握利用欧拉法、梯形法、二阶显式Adams 法及四阶龙格库塔法构建系统仿 真模型的方法,并对仿真结果进行分析。

实验内容系统电路如图2.1所示。

电路元件参数:直流电压源E =1V ,电阻R=10门,电感L =0.01H ,电容C 二WF 。

电路元件初始值:电感电流i L (0) =0A ,电容电压u c (0) = 0V 。

系统输出量为电容电压u c (t)。

连续系统输出响应u c (t)的解析解为:u c (t)二 U s (1 — e_at (cos ■ t si nt a/ J)三、要求1) 利用欧拉法、梯形法、二阶显式 Adams 法及显式四阶Runge-Kutta 法构建系统仿真模 型,并求出离散系统的输出量响应曲线;(2-1)其中, a =2L图2.1 RLC 串联电路2) 对比分析利用欧拉法、梯形法、二阶显式 Adams 法及显式四阶Runge-Kutta 法构建系 统仿真模型的仿真精度与模型运行的稳定性问题;3) 分别编写欧拉法、梯形法、二阶显式 Adams 法及显式四阶Runge-Kutta 法的.m 函数文 件,并存入磁盘中。

.m 函数文件要求输入参数为系统状态方程的系数矩阵、仿真时间及仿 真步长。

编写.m 命令文件,在该命令文件中调用已经编写完成的上述 .m 函数文件,完成 仿真实验;4) subplot 和plot 函数将输出结果画在同一个窗口中,每个子图加上对应的标题。

四. 实验原理(1) 连续系统解析解连续系统输出响应u c (t)的解析解为:u c (t)二U s (1-e^t (cos t si nt x/ ,))(2) 原系统的传递函数根据所示电路图,我们利用电路原理建立系统的传递函数模型,根据系统的传递函数 是在零初始条件下输出量的拉普拉斯变换与输入量的拉普拉斯变换之比,可得该系统的传 递函数:(3) 系统的仿真模型在连续系统的数字仿真算法中,较常用的有欧拉法、梯形法、二阶显式Adams 法及显式 四阶Runge-Kutta 法等。

课本思考题与习题

课本思考题与习题

课本思考题与习题第一章:1.移动通信主要使用VHF和UHF频段的主要原因有哪三点?2.移动通信系统中的150MHz频段、450MHz频段和900MHz频段的收发频差各是多少?f为多少?3.已知一同台运动速度v、工作频率f及电波到达角 ,则多普勒频移d4.移动通信按用户的通话状态和频率使用的方法可分为哪三种工作方式?5.移动通信与其他通信方式相比,具有哪些特点?6.小卫星通信具有哪五大特点?7.作为下一代(3G)标准的IMT-2000具有哪些特点?第二章:1.移动通信的服务区域覆盖方式有哪两种?各自的特点是什么?2.模拟蜂窝系统在通话期间靠什么连续监视无线传输质量?如何完成?3.什么是近端对远端的干扰?如何克服?4.SSR的主要作用是什么?5.在实际应用中,用哪三种技术来增大蜂窝系统容量?6.某通信网共有8个信道,每个用户忙时话务量为0.01Erl,服务等级B=0.1,问若采用专用呼叫信道方式,该通信网能容纳多少用户?7.以知在999个信道上,平均每小时有2400次呼叫,平均每次呼叫时间为2分钟,求这些信道上的呼叫话务量。

8.已知每天呼叫6次,每次的呼叫平均占用时间为120秒,忙时集中度为10%(K=0.1),求每个用户忙时话务量。

9.移动通信中信道自动选择方式有哪四种?试说明其中任一种信道自动选择方式的工作原理。

第三章:1.陆地移动通信的电波传播方式主要有哪三种?2.经过多径传输,接受信号的包络与相位各满足什么分布?当多径中存在一个起支配作用的直达波时,接受端接受信号的包络满足什么分布?3.视距传播的极限距离为多少?考虑空气的非平均性对电波传播轨迹的影响,修正后的视距极限距离为多少?4.在市区工作的某调度电话系统,工作频率为150MHz,基站天线高度为100m,移动台天线高度为2m,传输路径为不平坦地形,通信距离15km。

试用Egli公式计算其传输衰耗?5.在郊区工作的某一移动电话系统,工作频率为900MHz,基站天线高度为100m,移动台天线高度为1.5m,传输路径为准平滑地形,通信距离为10km。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程实验报告
课程3G移动通信实验
学院通信学院
专业通信工程
班级13083414
学号********
学生姓名李倩
实验Okumura-Hata 方法计算机仿真
【实验目的】
⏹ 加深对奥村模型的理解;
⏹ 能够使用C 语言(或者Matlab )利用Okumura-Hata 方法计算基本传输损耗; ⏹ 比较奥村模型和Okumura-Hata 方法获得的基本传输损耗的差异,分析Okumura-Hata 方法的误差。

【实验内容】
⏹ 使用C 语言(或者Matlab )利用Okumura-Hata 方法计算基本传输损耗; ⏹ 分析Okumura-Hata 方法的误差;
【实验设备】
⏹ 一台PC 机
【实验步骤】
1. 采用Okumura-Hata 方法分别计算大城市市区地区准平滑地形、郊区和开阔区,基站天线高度是hb=200米,手机天线高度是hm=3米情况下,不同传播距离d 和不同载波频率f 条件下的传播损耗中值。

画出相应的曲线。

050010001500
200025003000
80100
120
140
160
180
200
大城市
频率/MHz 损耗中值/d
B
2. 将计算结果和通过奥村模型实测测得的结果进行比较,验证计算结果的正确性。

050010001500
2000250030008090
100
110
120
130140150
160
170
180
郊区
频率/MHz
损耗中值/d
B 050010001500
200025003000
100120
140
160
180200
220
240开阔区
频率/MHz 损耗中值/d
B
3.分析Okumura-Hata方法在何距离以及何频率范围内存在较大的误差。

【程序代码】
clear all;
hb=200;
hm=3;
for d=[1 2 5 10 30 60 100]
f1=100:0.1:300;
f2=300:0.1:3000;
lb11=69.55+26.16*log10(f1)-13.82*log10(hb)-(8.29*(log10(1.54*hm).^2)-1.1)+((44.9-6.55*log1 0(hb))*log10(d));
lb12=69.55+26.16*log10(f2)-13.82*log10(hb)-(3.2*(log10(11.75*hm).^2)-4.97)+((44.9-6.55*log 10(hb))*log10(d));
lb21=lb11-2*(log10(f1/28)).^2-5.4;
lb22=lb12-2*(log10(f2/28)).^2-5.4;
lb31=lb11-4.78*(log10(f1)).^2+18.33*log(f1)-40.98;
lb32=lb12-4.78*(log10(f2)).^2+18.33*log(f2)-40.98;
f=[f1 f2];
lb1=[lb11 lb12];
lb2=[lb21 lb22];
lb3=[lb31 lb32];
figure(1);
hold on;
plot(f,lb1,'r');
title('大城市');
xlabel('频率/MHz');
ylabel('损耗中值/dB');
grid;
figure(2);
hold on;
plot(f,lb2,'b');
title('郊区');
xlabel('频率/MHz');
ylabel('损耗中值/dB');
grid;
figure(3);
hold on;
plot(f,lb3,'g');
title('开阔区');
xlabel('频率/MHz');
ylabel('损耗中值/dB');
grid;
end。

相关文档
最新文档