运算放大器线性应用
运算放大器的线性应用和非线性应用

充电
放电
++
Uo=Vz+ UDoN
31
(5)电容器端电压随时间变化规律为
32
二、设计过程
1、求R1和R2的值,可使F=0.47,则 T=2RC
图7-16
方波发生器
29
3、设计条件 (1)电源电压为:±9V (2)负载阻抗 RL=10KΩ
4、分析 (1)R、C作为积分电路,即:定时电路. (2)从电路结构看,它由一个迟滞比较器和RC充
放电电路组成.其中迟滞比较器作为状态记忆电 路,RC作为定时电路.
(3)电路的正反馈系数F为:
30
强调:
39
实验箱双电源的接法
40
四运放管脚图
TL084、LM324
41
运放的检测电路
当Uo=Ui1时,运放是好的。
42
T1.设计一个文氏桥正弦波振荡器
技术指标要求:
1、电路结构要求
2、电路指标 (1)f=1KHZ (2)UO=1V
3、设计条件 (1)电源电压为:±9V (2)负载电阻RL=10KΩ
16
五、反相加法器
17
又因为 if=i1+i2+i3,则
18
六、同相相加器
19
实验三十六 运算放大器线性应用电路
J1.设计一个反相比例放大器 (一)设计技术指标 1)Au=20 2)Ri=1KΩ 3)Uopp≥1V (二)设计条件
1) Ec= ±9V
2) RL= 5.1KΩ
集成电路运算放大器的线性应用

高开环增益
输入端几乎不吸收电流, 使得输入信号源不受负
载影响。
输出端具有很低的内阻, 可以驱动较大的负载。
无反馈时的电压放大倍数 极高,使得运算放大器具
有很高的放大能力。
高共模抑制比
对共模信号(两个输入端共 有的信号)有很强的抑制能
力,提高了抗干扰性能。
常见集成电路运算放大器类型
通用型运算放大器
高精度运算放大器
故障诊断与排除方法
01 02 03 04
当运算放大器出现故障时,首先检查电源和接地是否正常,排除电源 故障。
检查输入信号是否正常,以及输入电路是否存在短路或开路现象。
观察运算放大器的输出信号是否正常,如有异常则检查反馈电路和元 件是否损坏。
使用示波器等测试工具对运算放大器进行测试,进一步确定故障原因 并进行修复。
参考运算放大器的典型应 用电路,选择合适的外围 元件和参数。
应用注意事项与技巧
01 在使用运算放大器前,应对其进行充分的测 试和验证,确保其性能稳定可靠。
02
合理设计运算放大器的输入和输出电路,避 免引入不必要的噪声和失真。
03
注意运算放大器的电源和接地设计,确保电 源稳定且接地良好。
04
根据应用需求选择合适的反馈电路和元件, 以实现所需的放大倍数和带宽。
音频滤波器
通过配置运算放大器和外围元件,构成 各种滤波器,如低通、高通、带通等, 对音频信号进行频率选择和处理。
传感器信号调理电路
传感器信号放大电路
01
针对传感器输出的微弱信号,利用运算放大器进行放大,提高
信号的幅度和信噪比。
传感器信号滤波电路
02
去除传感器信号中的噪声和干扰,提取有用的信号成分,提高
集成运算的线性应用实验报告.doc

集成运算的线性应用实验报告篇一:集成运算放大器的线性应用--实验篇集成运算放大器的线性应用一、实验名称:集成运算放大器的线性应用二、实验任务及目的1.基本实验任务用运放设计运算电路。
2.扩展实验任务用运放构成振荡频率为500Hz的RC正弦波振荡器。
3.实验目的掌握运放线性应用电路的设计和测试方法三、实验原理及电路1.实验原理运算放大器的线性应用,即将运放接入深度负反馈时,在一定范围内输入输出满足线性关系。
2.实验电路图2.15.1 U0=5Ui1+Ui2(Rf=100k)电路(注意平衡电阻的取值!)图2.15.2 U0=5Ui2-Ui1(Rf=100k)电路(注意输入端电阻的匹配!)图2.15.3 uo??(Cf=0.01?F)电路?图2.15.4 可调恒压源电路(注意电位器的额定功率!)图2.15.5 恒流源电路(注意负载电阻的取值!)图2.15.6 RC正弦波振荡器四、实验仪器及器件1.实验仪器稳压电源1台,使用正常;数字万用表1台,使用正常;示波器1台,使用正常;函数信号发生器1台,使用正常。
2.实验器件DC信号源1个,使用正常;uA741运放2个,使用正常;1kΩ电阻1个,10kΩ电阻2个,15kΩ电阻1个,17kΩ电阻1个,20kΩ电阻2个,33kΩ电阻1个,51kΩ电阻1个,100kΩ电阻4个,0.01μF电容1个,10kΩ电位器1个,使用正常。
五、实验方案与步骤1.按照图2.15.1接好电路,将输入端接地(ui1=0,ui2=0),万用表监测输出电压,接通±15V电源后,调整调零电位器,尽量使Uo接近零,若不为零,则需记录该失调电压的数值。
将DC信号源接通电源,万用表监测DC信号源输出,按照表格中要求的参数调整旋钮,测量输出电压。
2.按照图2.15.2接好电路,记录该失调电压,将DC信号源接通电源,按照表格中要求的参数调整旋钮,测量输出电压。
3.按照图 2.15.3接好电路,调节函数信号发生器输出1kHz/4V的方波信号。
集成运算放大器的线性应用实验

6 积分器
模拟电路实验箱-集成运算放大器的线性应用
业
一、实验目的
精
于 勤
1、掌握用集成运算放大器构成各种基
本运算电路的方法;
技
精
2、掌握用集成运算放大器构成的各种
于 专
基本运算电路的调试和测试方法;
学 以
3、通过实验初步掌握集成运算放大器 的使用方法。
致
用
模拟电路实验箱-集成运算放大器的线性应用
匠心智拓(天津)科技有限公司
业 精 于 勤 技 精 于 专 学 以 致 用
模拟电路实验箱
模拟电路实验箱-集成运算放大器的线性应用
业
一 实验目的
精 于
二 实验设备
勤
三 实验原理
技
四 实验内容
精 于
五 讨论题
专
六 实验报告
学
以 1 放大器调零
2 反相比例放大器
致 用
3 同相比例放大器
4 加法器
5 减法器
技 端之间,便构成同相比例放大器电
精 路。如右图所示。其运算关系为:
于 专
Uo=(1+Rf/R1)Ui
该式表明,输出电压与输入电
学 压是比例运算关系。
以
若R1不接或Rf=0,则为跟随
致 用
器。
Uo=Ui
模拟电路实验箱-集成运算放大器的线性应用
业 1. 按图接好电路,在反相端加入交流信号Ui=1KHz,
∞ 100K
用
模拟电路实验箱-集成运算放大器的线性应用
业 精 于 勤 技 精 于 专 学 以 致 用
模拟电路实验箱-集成运算放大器的线性应用
业
3.4、加法器
精
电子技术基础--第七章--集成运算放大器的线性应用和非线性应用

i1 i f 0
u O (1
Rf R1
)u i
u I 0 R1i1
uI i2 i1 R1
i1
uI R1
0 u M R2 i2
u M R2 i 2 R2 uI R1
0 u M R3i3
减法器的输出电压为两个输入信号之差乘以放大系数 Rf/R1, 故又称它为差分放大器。 为减小失调误差 R1//Rf=R2//R3
(五)反相积分运算电路
duC i 2 C dt
uC 0 uO
duo i2 C dt
u I 0 R1i1
i1 i2 0
du uI (C o ) 0 R1 dt
vI T
(同相过零比较器)
O
2
3
4
t
电压传输特性
vO
vO VOH
VOH O t
O VOL
vI
VOL
思考
1.若过零比较器如图所示,则它 的电压传输特性将是怎样的? 2.输入为正负对称的正弦波时, 输出波形是怎样的?
+VCC vI + A -VEE vO
vI T 2
+VCC vI + A -VEE vO
具体电路的工作原理,其它问题也就迎刃而解了。
比例运算电路 加法电路
减法电路 积分电路
微分电路
一、运算电路
• (一)反相比例运算电路 • (二)同相比例运算电路
(一)反相比例运算电路
i1 i f 0
u N uo R f i f
if u N uO u O Rf Rf
9 集成运算放大器线性应用

习题九集成运算放大器线性应用1. 测量放大器具有输入阻抗 _______,共模抑制比_______等特点。
(a) 高,高 (b) 低,高 (c) 高,低2. 测量放大器常用于具有较大_______信号的检测。
(a) 差模 (b) 共模干扰 (c) 幅值3. 测量放大器常用于检测_________信号。
(a) 交流大 (b) 直流大 (c) 直流缓变微弱4.当传感器工作在高电压、强电磁场干扰等场所时,为了将检测、控制系统与主回路实现电气上的隔离,这时应采用_________。
(a) 测量放大器 (b) 隔离放大器 (c) 功率放大器5. 在隔离放大器中,输入和输出回路之间是电绝缘的。
是指_______。
(a) 输入和输出回路是两个没有任何电联系的独立的回路(b) 输入和输出回路是两个独立的回路,但仍有公共接地端(c) 输入和输出回路是通过绝缘材料联接起来的6. 在隔离放大器中,输入和输出回路之间是电绝缘的,电信号是无法直接传递的。
但为了能够有效的传递电信号,必须_______。
(a) 先将电能转换为机械能,再将机械能转换为电能(b) 先将电信号转化为其它形式的信号,然后再还原为电信号(c) 先将模拟信号转换为数字信号,再将数字信号转换为模拟信号7.光电耦合隔离放大器的工作原理是_______。
(a) 将光信号转化为电信号(b) 先将电信号转换为光信号,再将光信号转换为电信号(c) 先将光信号转换为电信号,再将电信号转换为光信号8. 变压器耦合隔离放大器是利用_______来传递信号的。
(a) 光电耦合 (b) 直接耦合 (c) 电磁耦合9. 与光电耦合隔离放大器相比,变压器耦合隔离放大器的带宽_______。
(a) 较窄 (b)较宽 (c) 相差不大10. 按电路_______的不同,滤波器可分为低通、高通、带通和带阻滤波器。
(a) 截止频率 (b) 工作频率 (c) 通带增益11. 按实现滤波器使用的元器件不同,滤波器可分为_________滤波器。
运放的线性运用

R’
+ u0 -
运算放大器的线性应用
6、加法与减法运算电路(1) 加法与减法运算电路( ①反向加法器: 输入信号均加入反向端 平衡电阻R’=R1//R2//R3//Rf 若取R1=R2=R3=R,则
R’ ui3 ui2 ui1 R3 R2 R1 i2 i1 Δ ∞ + + i3 if Rf
u0
uo= −
0.1 ui(mV)
-10 线性区
运算放大器的线性应用
2、线性运放的分析特点 设U+与U-为运放同相与反相端的电位, 因为对于理想运放有Aod=∞,所以
UU+ RF
Δ A + uo
+
U+=U-(虚短) (虚短)
设I+与I-为同相与反相端的输入电流, 因为对于理想运放有rid=∞,所以
ui1 uid ui2 + rid ro + uo -
运算放大器的线性应用
Rf
1、运放线性运用的条件: 运放线性运用的条件: 引入深度负反馈
+ ui -
R1
Af =
当 1 + AF
A 1 + AF
Δ ∞ + + R’
+ u0 -
1 = 1 时, Af ≈ AF F
A
uo(V) 10 -0.1 0
非线性区
因此,引入深度负反馈后,闭环增益 与开环增益无关,而实际中F并不趋近 于零,因此放大器可实现线性工作
Rf R
(ui1 + ui 2 +u i 3 )
运算放大器的线性应用
6、加法与减法运算电路(2) 加法与减法运算电路( ②同向加法器:
电工电子实验报告实验46运算放大器的线性应用

电工电子实验报告实验46运算放大器的线性应用
实验目的:
1.了解运算放大器的基本原理和特性;
2.了解运算放大器在线性应用中的应用;
3.掌握运算放大器的性能参数的测试方法。
实验仪器和材料:
1.运算放大器集成电路;
2.函数发生器;
3.直流电源供电电路;
4.信号发生器;
5.锁相放大器;
6.示波器。
实验原理:
运算放大器是一种特殊的放大器,它的主要特点是输入电阻极大,输
出电阻极小,倍数稳定。
运算放大器一般由差动放大器、输入级、中间级、输出级和负反馈电路组成。
实验步骤:
1.将运算放大器集成电路插入插座中,接入电源电压;
2.使用函数发生器产生一个频率为1kHz的正弦信号,调整振幅为1V;
3.将信号源连接到运算放大器集成电路的非反相输入端,将运算放大器集成电路的输出端连接到示波器的通道1;
4.调整示波器的刻度,使正弦信号波形在示波器屏幕上显示完整;
5.调整函数发生器的频率,并观察示波器屏幕上信号波形的变化;
6.测量运算放大器的输入电阻、输出电阻。
实验结果:
通过实验可以观察到随着函数发生器频率的变化,示波器屏幕上信号波形的变化情况。
当频率较低时,波形显示完整;当频率逐渐增加时,波形开始变形,幅度逐渐减小。
实验总结:
通过本次实验,我们深入了解了运算放大器的基本原理和特性,学会了运算放大器在线性应用中的应用。
同时,我们还掌握了运算放大器的性能参数的测试方法,如输入电阻、输出电阻的测量方法。
运算放大器在电子电路中具有广泛的应用,对于电子工程专业的学生来说,掌握运算放大器的使用非常重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运算放大器的线性应用
实验目的
1.掌握检查运算放大器好坏的方法。
2.掌握运算放大器组成比例,求和运算,积分运算电路的工作原理以及运算功能。
3.掌握以上各种应用电路的组成及其测试方法。
实验仪器
1.双踪示波器X1
2.函数发生器X1
3.数字万用表X1
4.直流稳压电源X1
5.运算放大器X1;面包板X1;电阻若干;导线若干
实验原理
1.运算放大器是一种包含许多晶体管的集成电路,其作用是把输入电压放大一定倍数后在输送出去,其输出电压与输入电压的比值称为电压的放大倍数。
2.在集成运放应用的电路中,运放的工作范围有两种:工作在线性区(指输入电压U0与输出电压Ud成正比时的输入电压范围)或工作在非线性区。
3.集成运放工作在线性区有两个特点:
虚短:集成运放两个输入端之间的电压接近于零。
虚断:流入集成运放两个输入端的电流可视为零。
4. UM741的引脚图:
实验内容:
基本操作:
将电源1,电源2分别调为12V,将电源1的黑色夹子接在放大器的引脚4(正电源端),将电源2的黑色夹子接在放大器的引脚11(负电源端),接着电源1,2的红色夹子接在一起(接地端),使电源输出±12V。
(1).运算放大器的好坏检测
实验电路图:
实验步骤:
1.调节信号发生器,并将红色夹子接在放大器的引脚3(同相输入端),使其输入1kHz,
1V峰峰值的正弦波信号Ui,黑色夹子接地。
2.将引脚2用导线接在引脚14(输出端口4),并将示波器的红色夹子接在引脚14上,黑色夹子接地。
3.观察示波器上显示的输出电压U0;比较Ui与U0的大小。
实验结果:
(2)反相比例运算放大器
实验电路图:
实验步骤:
1.如图连接电路,在反相输入端接入直流电压Ui。
2.根据下表内容进行测量,并完成表格,绘制传输特性。
实验结果:
(3)积分电路
实验电路图:
操作步骤:
1.如上图所示连接电路,并输入峰峰值为2V,f=1kHz的正弦信号。
2.观察并记录示波器上Ui,U0的波形,绘制波形。
实验结果:
(4)积分电路
操作步骤:
1.如图连接电路,并输入峰峰值为2V ,f=1kHz的方波信号。
2.观察并记录示波器Ui,U0的波形,绘制波形。
实验结果:
(5)频率特性测定:
实验电路图:
操作步骤:
1.如图所示连接电路,输入端输入峰峰值为0.5V的正弦波。
2.改变输入信号的频率,测出相应的输出信号的幅值。
3.计算各电压的放大倍数
4.绘制幅频特性曲线
实验结果:
(6)开拓型实验
实验电路图:
操作步骤:
1.如上图连接电路。
2.输入测试信号Ui(峰峰值为2V,频率为1kHz),用示波器观察并记录输入输出波形。
3.根据波形,分析输入输出关系,验证电路的正确性。
实验结果:
实验总结:。