高中数学 1.2.2充要条件 新人教版选修2-1

合集下载

数学:1.2《充分条件与必要条件》PPT课件(新人教A版-选修2-1)

数学:1.2《充分条件与必要条件》PPT课件(新人教A版-选修2-1)
2
(充要条件) 4)同旁内角互补"是 " 两直线平行 "的 "
5)" x 5" 是 " x 3"的
(必要不充分条件) 6)" a b " 是 " a c b c "的 (充要条件)
7)已知ABC不是直角三角形, "A<B" 是 "tan A tan B "的 (既不充分也不必要条件)
例3、求3x 10x k 0有两个同号且不相等
2
实根的充要条件 .
25 0k . 3
作业:
P.15
A组 第4题
B组第2题
引申
①从命题角度看
㈠若p则q是真命题,那么p是q的充分条件 q是p的必要条件. ㈡若p则q是真命题,若q则p为假命题,那么p是 q 的充分不必要条件,q是p必要不充分条件. (三)若p则q,若q则p都是真命题,那么p是q的 充要条件 (四)若p则q,若q则p都是假命题,那么p是q的 既不充分也不必要条件,q是p既不充分也不必 要条件.
例2、以“充分不必要条件”、“必要不充分条件”、“ 要条件”与”既不充分也不必要条件“中选出适当的一种 填空. 1)" x 0, y 0" 是 " xy 0"的(充分不必要条件) 2)a N "是 " a Z "的 (充分不必要条件) "
3) x 1 0" 是 " x 1 0"的 (必要不充分条件) "
引申
②从集合角度看
命题“若p则q”
已知A= x | x满足条件p},B= x | x满足条件q} { {

2014-2015学年高中数学(人教版选修2-1)配套课件第一章 1.2.2 充 要 条 件

2014-2015学年高中数学(人教版选修2-1)配套课件第一章 1.2.2 充 要 条 件
(2)对于实数x,y,p:x+y≠8,q:x≠2或y≠6. (3)已知x,y∈R,p:(x-1)2+(y-2)2=0,q:(x -1)· (y-2)=0.

变 式 迁 移
解析:(1)在△ABC 中, 显然有∠A >∠B⇔BC > AC,所以 p 是 q 的充要条 件. (2)因为 x=2 且 y=6⇒ x+y=8,即﹁q⇒ ﹁ p, 但﹁p ﹁q,所以 p 是 q 的充分不必要条件. (3)因为 p:A={(1,2)},q:B={(x,y)|x=1 或 y=2}, 所以 A B,所以 p 是 q 的充分不必要条件.
栏 目 链 接
判断,对于条件或结论是不等关系(或否定式)的命题,
一般运用等价法.

变 式 迁 移 1.指出下列各题中,p是q的什么条件(在“充分不 必要条件”“必要不充分条件”“充要条件”“既不充分 又不必要条件”中选出一种作答).
栏 目 链 接
(1)在△ABC中,p:∠A>∠B,q:BC>AC.

点评:数学概念的定义具有相称性,即数学概念
的定义都可以看成是充要条件,既是概念的判断依据,
又是概念所具有的性质.
栏 目 链 接
证明命题条件的充要性时,既要证明原命题成立
(即条件的充分性),又要证明它的逆命题成立(即条件的 必要性).

变 式 训 练 2.求证:关于x的方程ax2+bx+c=0有一个根为 2的充要条件是4a+2b+c=0.
栏 目 链 接
1是x=1的必要不充分条件;α =β 是tan α =tan β 的
充分不必要条件;|a|>|b|是a2>b2的充要条件.故选B. 答案:B

自 测 自 评 3.用充分条件、必要条件、充要条件填空. 必要条件 (1)x>3是x>5的____________________ . (2)x = 3 是 x2 - 2x - 3 = 0 的 充分条件 ______________________________________________ . (3) 两 个 三 角 形 全 等 是 两 个 三 角 形 相 似 的 充分条件 __________________ .

【全程复习方略】2014-2015学年高中数学 1.2.2充要条件的应用课件 新人教A版选修2-1

【全程复习方略】2014-2015学年高中数学 1.2.2充要条件的应用课件 新人教A版选修2-1

(2)已知ab≠0,求证a+b=1的充要条件是a3+b3+ab-a2-b2=0.
【解题探究】1.题(1)中方程ax2+2x+1=0一定是一元二次方程
吗?为什么?
2.题(2)中证明命题中的条件与结论各是什么?
【探究提示】1.方程ax2+2x+1=0不一定是一元二次方程. 当a=0时是一元一次方程;当a≠0时是一元二次方程. 2.命题中条件是a3+b3+ab-a2-b2=0,结论是a+b=1.
所以(a+b-1)(a2-ab+b2)=0. 又因为ab≠0,所以a≠0且b≠0, 从而a2-ab+b2≠0, 所以a+b-1=0,即a+b=1,故充分性成立. 所以a+b=1的充要条件是a3+b3+ab-a2-b2=0.
【方法技巧】 1.求充要条件的方法 求一个问题的充要条件,就是利用等价转化的思想,使得转化前 后的两个命题所对应的解集是两个相同的集合.这就要求我们 转化的时候思维要缜密.
1 ”是“一元二次方程x2+x+m=0无实根”的既不充分 4
所以“m<
也不必要条件.
ห้องสมุดไป่ตู้
【方法技巧】判断p是q的什么条件的两种思路 (1)命题角度:判断p是q的什么条件,主要是判断p⇒q及q⇒p这 两个命题是否成立,若p⇒q成立,则p是q的充分条件,同时q是p 的必要条件;若q⇒p成立,则p是q的必要条件,同时q是p的充分 条件;若二者都成立,则p与q互为充要条件.
【自主解答】(1)①当a=0时,原方程化为2x+1=0,此时根为 x=- 1 ,满足条件.
2
②设f(x)=ax2+2x+1,当a≠0时,因为方程的常数项为1不为0, 方程没有零根. (ⅰ)若方程有两异号的实根x1,x2,则x1x2= 1 <0,

1.2充分条件与必要条件-人教A版高中数学选修2-1课件

1.2充分条件与必要条件-人教A版高中数学选修2-1课件
第一章 1.2充分条件与必要条件
1.2 充分条件与必要条件
旧知复习
原命题 若p则q
互 否 命 题 真 假 无 关
否命题 若﹁ p则﹁ q
逆命题 若q则p
互 否 命 题 真 假 无 关
逆否命题 若﹁ q则﹁p
课堂导入
情境一:
如果同学甲是我校高二年级的学生, 那么该生一定是我校学生吗?
反之,若同学甲是我校学生,则他 一定是我校高二年级学生吗?
充分条件的含义用通俗语言来说是指“有它就行” 必要条件的含义用通俗语言来说是指“缺它不行”
【定义得出】
定义:如果命题“若p,则q”为真命题,即p q, 那 么我们就说p是q的充分条件;q是p的必要条件.
注: ①充分性:条件是充分的,也就是说条件是充足的,足够 的,足以保证的。符合“若p则q”为真(p=>q)的情势, 即“有之必成立”。
自主建构 【课堂活动】
请同学们自己举例给出 p, q 并判断其二者之间存
在的是否是充分条件或必要条件的关系.
知识联系
p: xZ, q: xR
pq
思考:充分条件和必要条件与集合之间的联系.
p : x A, q : x B ,且 p q ,则集合 A 与 B 有怎样的关系?
任意x A,则x B, 即:A B
A
B
A、B
历史文化
p : x A, q : x B ,且 p q ,则 A B .
A
B
A、B
我国战国时期,墨子所著《墨经》 充分条件:有之则必然,无之则未必不然; 必要条件:无之则必不然,有之则未必然 。
理性认识
原命题: 若 p 则 q , 为真命题; 逆否命题:若 q 则 p ,为真命题.

最新人教版高二数学选修2-1电子课本课件【全册】

最新人教版高二数学选修2-1电子课本课件【全册】
最新人教版高二数学选修2-1电 子课本课件【全册】目录
0002页 0106页 0174页 0257页 0341页 0457页 0479页 0520页 0545页 0585页 0608页 0637页 0734页
第一章 常用逻辑用语 1.2 充分条件与必要条件 1.4 全称量词与存在量词 复习参考题 2.1 曲线与方程 探究与发现 为什么截口曲线是椭圆 2.3 双曲线 2.4 抛物线 阅读与思考 复习参考题 3.1 空间向量及其运算 3.2 立体几何中的向量方法 复习参考题
最新人教版高二数学选修2-1电子 课本课件【全册】
探究与发现 为什么截口曲线 是椭圆
最新人教版高二数学选修2-1电子 课本课件【全册】
信息技术应用 用《几何画板 》探究点的轨迹:椭圆
最新人教版高二数学选修2-1电子 课本课件【全册】
最新人教版高二数学选修2-1电子 课本课件【全册】
2.1 曲线与方程
最新人教版高二数学选修2-1电子 课本课件【全册】
2.2 椭圆
第一章 常用逻辑用语
最新人教版高二数学选修2-1电子 课本课件【全册】
1.1 命题及其关系
最新人教版高二数学选修2-1电子 课本课件【全册】
1.2 充分条件与必要条件
小结
最新人教版高二数学选修2-1电子 课本课件【全册】
复习参考题
最新人教版高二数学选修2-1电子 课本课件【全册】
第二章 圆锥曲线与方程
最新人教版高二数学选修2-1电子 课课件【全册】
1.3 简单的逻辑联结词
最新人教版高二数学选修2-1电子 课本课件【全册】
1.4 全称量词与存在量词
最新人教版高二数学选修2-1电子 课本课件【全册】

人教版A版高中数学选修2-1课后习题解答

人教版A版高中数学选修2-1课后习题解答

高中数学选修2-1 课后习题答案 [ 人教版 ]高中数学选修2-1 课后习题答案第一章常用逻辑用语1.1命题及其关系练习( P4)1、例:(1)若x2x 2 0,则 x 1;(2) 若x 1,则x2x 20 .2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题 .(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称 . 这是真命题 .(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题 .练习( P6)1、逆命题:若一个整数能被 5 整除,则这个整数的末位数字是0. 这是假命题 .否命题:若一个整数的末位数字不是0,则这个整数不能被 5 整除 . 这是假命题 .逆否命题:若一个整数不能被 5 整除,则这个整数的末位数字不是0. 这是真命题 .2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题 .否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题 .逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题 .3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题 .否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题 .逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题 .练习( P8)证明:证明:命题的逆否命题是:若 a b 1,则 a2b22a 4b 3a2b22a 4b 3 (a b) (a b) 2 (a b )2b当 a b 1时原式 a b 2 2 b 3 a b 10所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题 1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数 a 与b的和a b 是偶数,则 a,b 都是偶数 . 这是假命题 .否命题:若两个整数a,b 不都是偶数,则 a b 不是偶数 . 这是假命题 .逆否命题:若两个整数 a 与b的和a b 不是偶数,则a, b 不都是偶数 . 这是真命题 .高中数学选修2-1 课后习题答案 [ 人教版 ] ( 2)逆命题:若方程x2x m 0 有实数根,则 m 0 . 这是假命题 .否命题:若 m 0 ,则方程 x2x m 0 没有实数根 . 这是假命题 .逆否命题:若方程x2x m 0 没有实数根,则m 0 . 这是真命题 .3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等 .逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题 .否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等 .这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上 .这是真命题.( 2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题 .否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题 .逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题 .4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 1.1 B组(P8)证明:要证的命题可以改写成“若p ,则 q ”的形式:若圆的两条弦不是直径,则它们不能互相平分 .此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设AB,CD 是O 的两条互相平分的相交弦,交点是E,若 E和圆心 O 重合,则 AB,CD 是经过圆心 O 的弦, AB,CD 是两条直径 . 若 E 和圆心O 不重合,连结AO, BO ,CO 和DO,则OE是等腰AOB,COD的底边上中线,所以,OE AB OE CD.,AB 和 CD 都经过点 E ,且与 OE 垂直,这是不可能的 . 所以, E 和 O 必然重合 . 即 AB 和 CD 是圆的两条直径 .原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习( P10)1、(1);(2);(3);(4).2、(1). 3(1).4、(1)真;(2)真;(3)假;(4)真 .练习( P12)1、(1)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是 q 的必要条件 .2、(1) p 是 q 的必要条件;(2)p是q的充分条件;( 3) p 是 q 的充要条件;(4)p是q的充要条件.习题 1.2 A组(P12)1、略 .2、( 1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是 a2b2r 2 .习题 1.2 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:( 1)充分性:如果 a2b2c2ab ac bc ,那么 a2b2c2ab ac bc0 .所以 (a b)2(a c)2(b c)20所以, a b 0 , a c 0 , b c0 .即 a b c ,所以,ABC 是等边三角形 .( 2)必要性:如果ABC 是等边三角形,那么 a b c所以 (a b)2 (a c)2 (b c)2 0所以 a2 b2 c2 ab ac bc 0所以 a2 b2 c2 ab ac bc1.3简单的逻辑联结词练习( P18)1、(1)真;(2)假.2、(1)真;(2)假.3、(1) 2 2 5 ,真命题;(2)3不是方程x290 的根,假命题;(3) ( 1)21,真命题 .习题 1.3 A组(P18)1、(1) 4 {2,3} 或 2 {2,3} ,真命题;(2)4{2,3} 且 2 {2,3} ,假命题;(3)2 是偶数或 3 不是素数,真命题;(4)2是偶数且3不是素数,假命题.2、(1)真命题;(2)真命题;(3)假命题.3、(1) 2 不是有理数,真命题;(2)5是15的约数,真命题;(3) 2 3 ,假命题;(4)8715 ,真命题;(5)空集不是任何集合的真子集,真命题.习题 1.3 B组(P18)(1)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(2)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(3)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题;(4)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题 .1.4全称量词与存在量词练习( P23)1、(1)真命题;(2)假命题;(3)假命题.2、(1)真命题;(2)真命题;(3)真命题.练习( P26)1、(1)n0Z, n0Q ;(2)存在一个素数,它不是奇数;( 3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形;(2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题 1.4 A组(P26)1、(1)真命题;(2)真命题;(3)真命题;(4)假命题.2、(1)真命题;(2)真命题;(3)真命题.3、(1)x0N , x03x02;(2)存在一个可以被 5 整除的整数,末位数字不是0;(3)x R, x2x 1 0 ;(4)所有四边形的对角线不互相垂直.习题 1.4 B组(P27)( 1)假命题 . 存在一条直线,它在y 轴上没有截距;( 2)假命题 . 存在一个二次函数,它的图象与x轴不相交;( 3)假命题 . 每个三角形的内角和不小于 180 ;( 4)真命题 . 每个四边形都有外接圆 .第一章复习参考题 A 组( P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题 .2、略 .3、( 1)假;(2)假;(3)假;(4)假.4、(1)真;(2)真;(3)假;(4)真;(5)真.5、(1)n N ,n2 0 ;(2)P { P P 在圆 x2 y2 r 2上}, OP r (O 为圆心);(3)( x, y) {( x, y) x, y是整数 } , 2x 4y 3 ;( 4)x0 { x x 是无理数}, x03 { q q 是有理数} .6、(1) 3 2 ,真命题;(2) 5 4 ,假命题;( 3)x0 R, x0 0 ,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章复习参考题 B 组( P31)1、(1) p q;(2) ( p) ( q) ,或( p q) .2、(1)Rt ABC , C 90,A, B, C 的对边分别是 a, b, c ,则 c2 a2 b2;(2)ABC ,A, B, C 的对边分别是a b c a, b, c ,则.sin A sin B sin C第二章 圆锥曲线与方程2.1曲线与方程练习( P37)1、是 . 容易求出等腰三角形 ABC 的边 BC 上的中线 AO 所在直线的方程是 x 0 .2、 a 32 , b 18 .25 253、解:设点 A, M 的坐标分别为 (t,0) , ( x, y) .(1)当 t 2 时,直线 CA 斜率 k CA2 0 22 t2 t1 t 2所以, k CB2kCA由直线的点斜式方程,得直线 CB 的方程为 y2 t 2 ( x 2) .2令 x 0 ,得 y 4 t ,即点 B 的坐标为 (0,4 t) .由于点 M 是线段 AB 的中点,由中点坐标公式得xt, y 4 t .t4 t ,22由 x得 t 2x ,代入 y2 2得 y42x,即 x y 20 ⋯⋯①2( 2)当 t 2 时,可得点 A, B 的坐标分别为 (2,0) , (0,2)此时点 M 的坐标为 (1,1) ,它仍然适合方程①由( 1)( 2)可知,方程①是点 M 的轨迹方程,它表示一条直线.习题 2.1 A组( P37)1、解:点 A(1, 2) 、 C (3,10) 在方程 x 2xy 2 y 1 0 表示的曲线上;点 B(2, 3) 不在此曲线上2、解:当 c 0 时,轨迹方程为 xc 1;当 c 0 时,轨迹为整个坐标平面 .23、以两定点所在直线为 x 轴,线段 AB 垂直平分线为 y 轴,建立直角坐标系,得点 M 的轨迹方程为 x 2y 24.4、解法一:设圆 x 2 y 2 6x 5 0 的圆心为 C ,则点 C 的坐标是 (3,0) .由题意,得 CMAB ,则有 k CM k AB1 .高中数学选修 2-1 课后习题答案 [ 人教版 ]所以,yy 1 (x 3, x0)x 3x化简得 x 2y 2 3x 0 (x 3, x 0)当 x 3 时, y0 ,点 (3,0) 适合题意;当 x 0 时, y0 ,点 (0,0) 不合题意 .解方程组x 2 y 2 3x 0, 得 x5, y2 5x 2y 26x 5 033所以,点 M 的轨迹方程是 x2y 2 3x0 ,5x 3.OCM 是直角三角形,3解法二:注意到利用勾股定理,得 x 2 y 2 ( x 3)2 y 2 9 ,即 x 2 y 2 3x0 . 其他同解法一 .习题 2.1 B 组( P37)1、解:由题意,设经过点P 的直线 l 的方程为 xy 1 .a b因为直线 l 经过点 P(3,4) ,所以34 1 因此, ab 4a 3ba b由已知点 M 的坐标为 (a,b) ,所以点 M 的轨迹方程为 xy4x 3y 0 .2、解:如图,设动圆圆心 M 的坐标为 (x, y) .y由于动圆截直线 3x y 0 和 3x y 0 所得弦分别为BAB , CD ,所以, AB8 , CD4 .过点M 分别CMF E作直线 3xy 0 和 3x y 0 的垂线,垂足分别为 E ,DF ,则 AE4, CF 2 . A3x y3x yME, MF10 .10Ox连接 MA , MC ,因为 MAMC ,(第 2题)22CF 22 则有, AE MEMF所以, 16 (3 x y)24 (3 x y) 2 ,化简得, xy 10 .10 10因此,动圆圆心的轨迹方程是xy 10 .高中数学选修2-1 课后习题答案 [ 人教版 ]2.2椭圆练习( P42)1、 14. 提示:根据椭圆的定义,PF1 PF2 20 ,因为 PF1 6 ,所以 PF22、(1)x2y2 1;(2) y2 x2 1;(3) x2 y2 1,或 y2 x2 16 16 36 16 36 163、解:由已知, a 5 , b 4 ,所以c a2 b2 3.(1)AF1 B 的周长 AF1 AF2 BF1 BF2.由椭圆的定义,得 AF1 AF2 2a , BF1 BF2 2a .所以,AF1B 的周长4a20 .(2)如果 AB 不垂直于x轴,AF1B的周长不变化 .这是因为①②两式仍然成立,AF1B 的周长20,这是定值.4、解:设点 M 的坐标为 ( x, y) ,由已知,得直线 AM 的斜率y(x 1) ;kAMx 1直线 BM 的斜率y(x 1) ;kBMx 1由题意,得kAM2 ,所以y 2 y (x 1, y 0) k BM x 1 x 1化简,得 x 3 ( y 0)因此,点 M 的轨迹是直线 x 3 ,并去掉点 ( 3,0) .练习( P48)yB2 1、以点B2(或B1)为圆心,以线段OA2 (或 OA1)为半径画圆,圆与 x 轴的两个交点分别为 F1 , F2. A 1 F1O点 F1 , F2就是椭圆的两个焦点.B 1 这是因为,在 Rt B2OF2中, OB2 b , B2 F2 OA2 a ,(第 1题)所以, OF2 c . 同样有 OF1 c .2、(1)焦点坐标为( 8,0) , (8,0) ;14 .1.F2A2x( 2)焦点坐标为 (0,2) , (0, 2) .3、(1)x 2 y 21;( 2) y2x 2 1 .36 3225 164、(1)x 2y21( 2) x2y21 ,或 y 2x 2 1. 94100 64100645、(1)椭圆 9x2y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是 1 ,316 12 2因为221,所以,椭圆x 2y 2 1 更圆,椭圆 9x 2y 2 36 更扁;3216 12(2)椭圆 x29 y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是10 ,36105 因为2210,所以,椭圆x 2y 2 1 更圆,椭圆 x 2 9 y 2 36更扁 .356106、(1) (3, 8) ; (2) (0,2) ; (3) ( 48 , 70) .7、82 . 5 3737 7习题 2.2 A组( P49)1、解:由点 M (x, y) 满足的关系式x 2 ( y 3)2 x 2 ( y 3) 2 10 以及椭圆的定义得,点 M 的轨迹是以 F 1(0, 3) , F 2 (0,3) 为焦点,长轴长为 10 的椭圆 .它的方程是y 2x 2 1.25 162、(1)x 2y 21; ( 2)y 2x 21 ;(3) x2y 21 ,或 y 2x 21.36 3225 9494049403、(1)不等式 2 x 2 , 4 y 4 表示的区域的公共部分;(2)不等式 25 x2 5 , 10 y10表示的区域的公共部分 .图略 .334、(1)长轴长 2a8,短轴长 2b 4 ,离心率 e 3 ,2焦点坐标分别是 ( 2 3,0) , (2 3,0) ,顶点坐标分别为 ( 4,0) , (4,0) , (0, 2) , (0,2) ;(2)长轴长 2a18 ,短轴长 2b6 ,离心率 e2 2 ,3焦点坐标分别是 (0, 6 2) , (0,6 2) ,顶点坐标分别为 (0, 9) ,(0,9) , ( 3,0) , (3,0) .5、(1)x2y2 1 ;(2) x2 y2 1,或 y2 x2 1 ;8 5 9 81 9(3) x2 y2 1,或 y 2 x2 1 .25 9 25 96、解:由已知,椭圆的焦距F1F2 2.因为PF1F2的面积等于1,所以,1F1F2 y P 1,解得y P1. 2代入椭圆的方程,得x2 1 1 ,解得 x 15 .P5 4 215 l所以,点 P 的坐标是1) ,共有 4 个 .( ,2 QA 7、解:如图,连接 QA . 由已知,得 QA QP . O所以, QO QA QO QP OP r .又因为点 A 在圆内,所以OA OP(第 7题)根据椭圆的定义,点 Q 的轨迹是以 O, A 为焦点,r为长轴长的椭圆 .8、解:设这组平行线的方程为y 3 x m .2把 y 3 x2 y21 ,得 9x2 6mx 2 18 0.x m 代入椭圆方程92m2 4这个方程根的判别式36m2 36(2m2 18)( 1)由0 ,得 3 2 m 3 2 .当这组直线在 y 轴上的截距的取值范围是( 3 2,3 2) 时,直线与椭圆相交. ( 2)设直线与椭圆相交得到线段AB ,并设线段 AB 的中点为 M (x, y) .则 x x1 x2 m .2 3因为点 M 在直线 y 3 x m 上,与 x m联立,消去 m ,得3x 2y 0 .2 3这说明点 M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上 .高中数学选修2-1 课后习题答案 [ 人教版 ]x2y29、3.5252 2.87521.10、地球到太阳的最大距离为 1.5288 108 km,最下距离为 1.4712108 km. 习题 2.2 B 组( P50)1、解:设点 M 的坐标为 ( x, y) ,点 P 的坐标为( x0, y0),则 x x0,y 3y0 . 所以 x0 x ,y0 2 y ⋯⋯① .2 3因为点 P(x0 , y0 ) 在圆上,所以 x02 y02 4 ⋯⋯②.将①代入②,得点 M 的轨迹方程为 x2 4 y2 4,即 x2 y2 19 4 9所以,点 M 的轨迹是一个椭圆与例 2 相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为P( x, y) ,半径为 R ,两已知圆的圆心分别为 O1, O2.分别将两已知圆的方程x 2 y2 6x 5 0 , x2 y2 6x 91 0配方,得(x 3)2 y 2 4 , ( x 3)2 y2 100当 P 与O1: ( x 3)2 y2 4 外切时,有O1P R 2 ⋯⋯①当P 与O2:( x 3)2y2100内切时,有O2P 10 R⋯⋯②①②两式的两边分别相加,得 O1P O2 P 12即, ( x 3)2 y2 (x 3) 2 y2 12 ⋯⋯③化简方程③ .先移项,再两边分别平方,并整理,得 2 (x 3)2 y2 12 x ⋯⋯④将④两边分别平方,并整理,得3x2 4 y2 108 0 ⋯⋯⑤将常数项移至方程的右边,两边分别除以108,得x2y2 1 ⋯⋯⑥36 27由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,6 3 . 解法二:同解法一,得方程( x 3)2 y2 ( x 3)2 y2 12 ⋯⋯①由方程①可知,动圆圆心P(x, y) 到点O1( 3,0)和点O2(3,0) 距离的和是常数12,第11页共38页。

高中数学第一章常用逻辑用语1.2充分条件与必要条件优化练习新人教A版选修2-1(2021年整理)

高中数学第一章常用逻辑用语1.2充分条件与必要条件优化练习新人教A版选修2-1(2021年整理)

2017-2018学年高中数学第一章常用逻辑用语1.2 充分条件与必要条件优化练习新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第一章常用逻辑用语1.2 充分条件与必要条件优化练习新人教A版选修2-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第一章常用逻辑用语1.2 充分条件与必要条件优化练习新人教A版选修2-1的全部内容。

1.2 充分条件与必要条件[课时作业][A组基础巩固]1.设a,b∈R,那么“错误!>1”是“a>b〉0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:由错误!〉1得,错误!-1=错误!〉0,即b(a-b)〉0,得错误!或错误!,即a>b>0或a<b<0,所以“ab〉1"是“a〉b>0”的必要不充分条件,选B.答案:B2.“θ≠错误!"是“cos θ≠错误!”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:因为“θ≠π3”是“cos θ≠错误!”的逆否命题:“cos θ=错误!”是“θ=错误!”的必要不充分条件,选B.答案:B3.命题p:错误!〉0;命题q:y=a x是R上的增函数,则p是q成立的( )A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件解析:由错误!〉0得a〉1或a〈0;由y=a x是R上的增函数得a>1。

因此,p是q成立的必要不充分条件,选A。

【全程复习方略】2014-2015学年高中数学 1.2.2充要条件的应用课时作业 新人教A版选修2-1

【全程复习方略】2014-2015学年高中数学 1.2.2充要条件的应用课时作业 新人教A版选修2-1

充要条件的应用(30分钟50分)一、选择题(每小题3分,共18分)1.(2014·郑州高二检测)在△ABC中,“A>B”是“a>b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选C.在△ABC中,A>B⇔a>b.【举一反三】本题中“A>B”若换为“sinA>sinB”,其结论又如何呢?【解析】选C.在△ABC中,由正弦定理知a=2RsinA,b=2RsinB,因此,a>b⇔sinA>sinB.2.(2014·荆门高二检测)钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.“好货不便宜”是“便宜没好货”的逆否命题,根据互为逆否命题的真假一致得到:“好货不便宜”是真命题.所以“好货”⇒“不便宜”,但“不便宜”“好货”,所以“不便宜”是“好货”的必要不充分条件.3.“a≠1或b≠2”是“a+b≠3”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解题指南】由于“a≠1或b≠2”推“a+b≠3”不方便判断真假,所以利用原命题与逆否命题的真假等价性,转化到逆否命题的真假判断上来,从而使问题易于解决.【解析】选B.记p:a≠1或b≠2,q:a+b≠3,q:a+b=3,p:a=1且b=2,因为q p但p⇒q,所以q是p的必要不充分条件,即p是q的必要不充分条件.故选B.4.(2014·北京高考)设a,b是实数,则“a>b”是“a2>b2”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解题指南】利用不等式的性质验证充分性与必要性.【解析】选D.“a>b”推不出“a2>b2”,例如,2>-3,但4<9;“a2>b2”也推不出“a>b”,例如,9>4,但-3<2.5.(2014·杭州高二检测)若a,b都是实数,则“->0”是“a2-b2>0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选A.->0⇔>⇔a>b≥0⇒a2>b2,但a2>b2a>b≥0,如a=-2,b=-1,故->0是a2-b2>0的充分不必要条件.6.(2014·武汉高二检测)不等式<1的解集记为p,关于x的不等式x2+(a-1)x-a>0的解集记为q,若p 是q的充分不必要条件,则实数a的取值范围是( )A.(-2,-1]B.[-2,-1]C.(-∞,-2]∪[-1,+∞)D.(-∞,-2)∪(-1,+∞)【解析】选A.由题意知p:x>2或x<1;而x2+(a-1)x-a>0,可化为(x+a)(x-1)>0,若-a>1,则q:x<1或x>-a. 由p是q的充分不必要条件.如图得1≤-a<2即-2<a≤-1,若-a≤1,则q:x<-a或x>1.由p是q的充分不必要条件,如图得,-a=1,综上得:-2<a≤-1.【变式训练】已知命题p:<1;命题q:(x+a)(x-1)<0,若p是q的充要条件,则a的值为( )A.0B.-1C.1D.2【解析】选C.因为<1⇔<0⇔-1<x<1,又因为p⇔q,所以(x+a)(x-1)<0的解是-1<x<1,故a=1.二、填空题(每小题4分,共12分)7.(2014·南昌高二检测)若p:x2-1>0,q:(x+1)(x-2)>0,则p是q的条件(填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”其中一个).【解题指南】化简p与q,判断q是p的什么条件即可.【解析】p:x2-1>0⇔x2>1⇔x>1或x<-1,q:(x+1)(x-2)>0⇔x>2或x<-1,故q⇒p,但p q,所以q是p的充分不必要条件,所以p是q的充分不必要条件.答案:充分不必要8.已知条件p:|x-1|>a和条件q:2x2-3x+1>0,则使p是q的充分不必要条件的最小整数a= ________. 【解析】依题意a>0.由条件p:|x-1|>a得x-1<-a,或x-1>a,所以x<1-a,或x>1+a.由条件q:2x2-3x+1>0,得x<,或x>1.要使p是q的充分不必要条件,即“若p,则q”为真命题,逆命题为假命题,应有解得a≥.令a=1,则p:x<0,或x>2,此时必有x<,或x>1.即p⇒q,反之不成立.答案:1【变式训练】设n∈N+,一元二次方程x2-4x+n=0有整数根的充要条件是n= .【解析】一元二次方程x2-4x+n=0有实数根⇔(-4)2-4n≥0⇔n≤4.又n∈N+,则n=4时,方程x2-4x+4=0,有整数根2;n=3时,方程x2-4x+3=0,有整数根1,3;n=2时,方程x2-4x+2=0,无整数根;n=1时,方程x2-4x+1=0,无整数根.所以n=3或n=4.答案:3或49.已知p是r的充分条件而不是必要条件,s是r的必要条件,q是r的充分条件,q是s的必要条件.现有下列命题:①s是q的充要条件;②p是q的充分条件而不是必要条件;③r是q的必要条件而不是充分条件;④p是s的必要条件而不是充分条件;⑤r是s的充分条件而不是必要条件.则正确命题序号是.【解析】由p是r的充分条件而不是必要条件,可得p⇒r,由s是r的必要条件可得r⇒s,由q是r的充分条件得q⇒r,由q是s的必要条件可得s⇒q,故可得推出关系如图所示,据此可判断命题①②④正确.答案:①②④【变式训练】已知p,q,r是三个命题,若p是r的充要条件且q是r的必要条件,那么q是p的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.p是r的充要条件且q是r的必要条件,故有p⇔r⇒q,即p⇒q,q p,所以q是p的必要不充分条件.三、解答题(每小题10分,共20分)10.(2014·贵阳高二检测)命题p:x>0,y<0,命题q:x>y,>,则p是q的什么条件?【解析】p:x>0,y<0,则q:x>y,>成立;反之,由x>y,>⇒>0,因y-x<0,得xy<0,即x,y异号,又x>y,得x>0,y<0.所以“x>0,y<0”是“x>y,>”的充要条件.11.已知a,b,c均为实数,求证ac<0是关于x的方程ax2+bx+c=0有一个正根和一个负根的充要条件.【证明】①充分性.若ac<0,则Δ=b2-4ac>0.所以方程ax2+bx+c=0有两个不相等的实根,设其两根为x1,x2,因为ac<0,所以x1·x2=<0,即x1,x2的符号相反.所以方程有一个正根和一个负根.②必要性.若方程ax2+bx+c=0有一个正根和一个负根,设其两根为x1,x2,不妨设x1<0,x2>0,则x1·x2=<0,所以ac<0.由①②知ac<0是关于x的方程ax2+bx+c=0有一个正根和一个负根的充要条件.(30分钟50分)一、选择题(每小题4分,共16分)1.(2014·大庆高二检测)已知a,b∈R,则“a>b”是“<”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选C.因为a>b⇔<,所以a>b是<的充要条件.2.(2014·珠海高二检测)已知向量a=(x-1,2),b=(2,1),则a⊥b的充要条件是( ) A.x=- B.x=-1C.x=5D.x=0【解析】选D.a⊥b⇔a·b=0,又因为a·b=(x-1,2)·(2,1)=2(x-1)+2×1=2x,所以x=0,故选D.3.函数f(x)=a+sinx+cosx有零点的充要条件为( )A.a≤2B.a≥-2C.-2<a<2D.-2≤a≤2【解析】选 D.函数f(x)=a+sinx+cosx有零点⇔方程a+sinx+cosx=0有实数根⇔方程-a=sinx+cosx有实数根,由于-a=sinx+cosx=2sin(x+60°),所以-2≤-a≤2,即-2≤a≤2.【举一反三】本题改为函数没有零点的充要条件为.【解析】函数f(x)=a+sinx+cosx没有零点⇔方程a+sinx+cosx=0没有实数根⇔方程-a=sinx+cosx没有实数根.由于-a=sinx+cosx=2sin(x+60°),所以-2≤-a≤2,即-2≤a≤2.所以函数f(x)=a+sinx+cosx没有零点的充要条件为a<-2或a>2.答案:a<-2或a>24.已知实系数一元二次方程ax2+bx+c=0(a≠0),下列结论正确的是( )①Δ=b2-4ac≥0是这个方程有实根的充要条件;②Δ=b2-4ac=0是这个方程有实根的充分条件;③Δ=b2-4ac>0是这个方程有实根的必要条件;④Δ=b2-4ac<0是这个方程没有实根的充要条件.A.③④B.②③C.①②③D.①②④【解题指南】可利用Δ=b2-4ac的值判断方程根的情况,Δ=0方程有两相等实根;Δ>0方程有两不等实根;Δ<0方程无实根.【解析】选D.①对,Δ≥0⇔方程ax2+bx+c=0有实根;②对,Δ=0⇒方程ax2+bx+c=0有实根;③错:Δ>0⇒方程ax2+bx+c=0有实根,但ax2+bx+c=0有实根Δ>0;④对,Δ<0⇔方程ax2+bx+c=0无实根,故选D.二、填空题(每小题5分,共10分)5.(2014·天津高二检测)已知直线l1:x+ay+6=0和l2:(a-2)x+3y+2a=0,则l1∥l2的充要条件是a= . 【解析】由1×3-a×(a-2)=0得,a=3或-1,而a=3时,两条直线重合,所以a=-1.答案:-1【举一反三】本题中“l1∥l2”若换为“l1⊥l2”,其结论又如何呢?【解析】因为l1⊥l2,所以1×(a-2)+3a=0,所以a=.6.数列{a n}既是等差数列又是等比数列的充要条件为.【解析】依题意,a n+1-a n=d,且=q(d,q为常数),对一切正整数n都成立,则qa n-a n=d,所以a n(q-1)=d对一切正整数n都成立,故d=0,q=1,数列{a n}为常数列.由于a n=0不是等比数列,所以数列{a n}既是等差数列又是等比数列的充要条件是数列{a n}是非零常数列. 答案:数列{a n}为非零常数列三、解答题(每小题12分,共24分)7.求函数f(x)=ax2+2(a-1)x+2在区间(-∞,4]上为减函数的充要条件.【解题指南】解答本题需对a分a=0和a≠0两种情况求解.【解析】当a=0时,f(x)=-2x+2,显然在(-∞,4]上是减函数,当a≠0时,f(x)为二次函数,其图象是抛物线,对称轴方程为x==-1,若f(x)在(-∞,4]上为减函数,则有即0<a≤,综上可知,当0≤a≤时,f(x)在(-∞,4]上为减函数,反之,当f(x)在(-∞,4]上单调递减时,0≤a≤.所以函数f(x)在区间(-∞,4]上为减函数的充要条件是0≤a≤.8.(2014·深圳高二检测)已知数列{a n}的前n项和为S n=(n+1)2+c,探究{a n}是等差数列的充要条件.【解析】当{a n}是等差数列时,因为S n=(n+1)2+c,所以当n≥2时,S n-1=n2+c,所以a n=S n-S n-1=2n+1,所以a n+1-a n=2为常数.又a1=S1=4+c,所以a2-a1=5-(4+c)=1-c,因为{a n}是等差数列,所以a2-a1=2,所以1-c=2.所以c=-1,反之,当c=-1时,S n=n2+2n, 可得a n=2n+1(n≥1,n∈N*)为等差数列, 所以{a n}为等差数列的充要条件是c=-1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变.若A是B的必要而不充分条件,C是B的充 要条件,D是C的充分而不必要条件, 那么D是A的_充__分_不__必__要条件
注、定义法(图形分析)
ppt课件
若A是B的充分不必要条件, 则A是B的()条件.
必要不充分条件
ppt课件
2:填写“充分不必要,必要不充分,充要, 既不充分又不必要。 既不充分又不必要 1)sinA>sinB是A>B的___________条件。 2)在ΔABC中,sinA>sinB是 A>B的
ppt课件
练习2、
1、设集合M={x|x>2},N={x|x<3},那么”x∈M或
x∈N”是“x∈M∩N”的
B
A.充要条件
B必要不充分条件
C充分不必要 D不充分不必要
注、集合法
2、a∈R,|a|<3成立的一个必要不充分条件是
A.a<3 B.|a|<2 C.a2<9 D.0<a<2
A
ppt课件
练习3、
ppt课件
求:已知关于x的方程 (1-a)x2+(a+2)x-4=0(a∈R).
求:⑴方程有两个正根的充要条件; ⑵方程至少有一个正根的充要条件。
【解题回顾】 一是容易漏掉讨论方程二次项系数是否为零, 二是只求必要条件忽略验证充分条件.即以所求 的必要条件代替充要条件.
ppt课件
回顾总结: 1、条件的判断方法
ppt课件
练习5 求证:关于x的方程ax2+bx+c=0有一个根 为-1的充要条件是a-b+c=0.
【解题回顾】充要条件的证明一般分两步: 证充分性即证A =>B, 证必要性即证B=>A
ppt课件
练习:设x、y∈R,求证|x+y|=|x|+|y|成立的充 要条件是xy≥0
充要条件的证明的两个方面: 1、必要性:|x+y|=|x|+|y|→xy≥0 2、充分性: xy≥0→ |x+y|=|x|+|y| 3、点明结论
当且仅当A B时,甲为乙的充分条件; 当且仅当B A时,甲为乙的必要条件; 当且仅当A B时,甲为乙的充要条件.
ppt课件
3、从集合与集合的关系看充分条件、 必要条件
一般情况下若条件甲为x∈A,条件乙为x∈B
1)若A B且B A,则甲是乙的
充分非必要条件
2) 若AB且B A,则甲是乙的
必要非充分条件
定义法 集合法 等价法(逆否命题) 2、图形分析法(网)
ppt课件
ppt课件
例4 已知:⊙O的半径为r,圆心O到直线L 的距离为d.
求证:d=r是直线L与⊙O相切的充要条件.
分析: 设:p:d=r, q:直线L与⊙O相切. 要证p是q的充要条件,只需分别证明
充分性q p 和必要性p q 即可
ppt课件
练习1、 1、已知p,q都是r的必要条件,
s是r的充分条件,q是s的充分条件,则 (1)s是q的什么条件? 充要条件 (2)r是q的什么条件? 充要条件 (3)P是q的什么条件? 必要条件
3)若A B且B A,则甲是乙的
既不充分也不必要条件 4)若A=B ,则甲是乙p的pt课件充分且必要条件。
小结 充分必要条件的判断方法
定义法 集合法 等价法(逆否命题)
ppt课件
例3、下列各题中,那些p是q的充要条件?
(1) p: b=0, q: 函数f(x)=ax2+bx+c是偶函数; (2) P: x>0,y>0, q: xy>0; (3) P: a>b, q: a+c>b+c.
显然,如果p是q的充要条件,那么q也是p的充要条件
p与q互为充要条件(也可以说成”p与q等价”)
ppt课件
各种条件的可能情况
1、充分且必要条件 2、充分非必要条件 3、必要非充分条件 4、既不充分也不必要条件
ppt课件
2、从逻辑推理关系看充分条件、必要条件:
1)A B且B A,则A是B的
充分非必要条件
_充__要__条_件__条件。
注、定义法(图形分析)
ppt课件
3、a>b成立的充分不必要的条件是( D)
A. ac>bc
B. a/c>b/c
C. a+c>b+c D. ac2>bc2
4.关于x的不等式:|x|+|x-1|>m的
解集为R的充要条件是( C)
(A)m<0
(B)m件
复习 1、充分条件,必要条件的定义:
若 pq,则p是q成立的_充_分__条件
q是p成立的_必_要__条件
ppt课件
思考: 已知p:整数a是6的倍数,
q:整数a是2和3的倍数,
定义:
那么p是q的什么条件?
如 果 既 有 p q , 又 有 q p 就 记 做 p q
称:p是q的充分必要条件,简称充要条件
则┐p是┐q的( A )
(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既不充分也不必要条件
2、已知p:|x+1|>2,q:x2<5x-6,
则非p是非q的( A)
A.充分不必要条件 B.必要不充分条件
C.充要条件
D.既非充分又非必要条件
集合法与转化法
ppt课件
注意点
1.在判断条件时,要特别注意的是它们能否互相 推出,切不可不加判断以单向推出代替双向推出.
2.搞清 ①A是B的充分条件与A是B的充分非必要条件之间的 区别与联系; ②A是B的必要条件与A是B的必要非充分条件之间的 区别与联系
3、注意几种方法的灵活使用: 定义法、集合法、逆否命题法
ppt课件
4、判断的技巧 ①向定语看齐,顺向为充(原命题真) 逆向为必(逆命题为真) ②等价性:逆否为真即为充, 否命为真即为必
1.已知p是q的必要而不充分条件, 那么┐p是┐q的___充__分_不__必__要_条__件__.
注、等价法(转化为逆否命题)
2:若┐A是┐B的充要条件,┐C是┐B的充 要条
件,则A为C的( )条A件
A.充要
B必要不充分
C充分不必要 D不充分不必要
ppt课件
练习4、
1.已知P:|2x-3|>1;q:1/(x2+x-6)>0,
2)若A B且B A,则A是B的
必要非充分条件
3)若A B且B A,则A是B的
既不充分也不必要条件
4)A B且B A,则A是B的
ppt课件
充分且必要条件
3、从集合与集合的关系看充分条件、必要条件
例 题 : 0 x 5 是 不 等 式 x 2 4 成 立 的 ( ) 条 件 。
注:一般情况下若条件甲为x∈A,条件乙为x∈B
相关文档
最新文档