谐波分析产生原因,危害,解决方法

合集下载

电力系统中谐波分析与治理

电力系统中谐波分析与治理

电力系统中谐波分析与治理在当今高度依赖电力的社会中,电力系统的稳定和高效运行至关重要。

然而,谐波问题却成为了影响电力系统质量的一个不容忽视的因素。

谐波不仅会导致电力设备的损坏,还会增加电能损耗,降低电力系统的可靠性。

因此,对电力系统中的谐波进行深入分析,并采取有效的治理措施,具有十分重要的意义。

一、谐波的产生要理解谐波,首先需要了解它的产生原因。

谐波主要来源于电力系统中的非线性负载。

常见的非线性负载包括各种电力电子设备,如变频器、整流器、逆变器等,以及电弧炉、荧光灯等。

以变频器为例,它通过对电源进行快速的通断控制来实现对电机转速的调节。

在这个过程中,电流和电压的波形不再是标准的正弦波,而是包含了各种频率的谐波成分。

整流器在将交流电转换为直流电的过程中,由于其工作特性,也会产生谐波。

同样,电弧炉在工作时,电弧的不稳定燃烧会导致电流的剧烈变化,从而产生谐波。

二、谐波的危害谐波的存在给电力系统带来了诸多危害。

对电力设备而言,谐波会使变压器、电动机等设备产生额外的损耗,导致设备发热增加,缩短使用寿命。

对于电容器来说,谐波电流可能会使其过载甚至损坏。

在电能质量方面,谐波会导致电压和电流波形的畸变,使电能质量下降,影响用电设备的正常运行。

例如,对于计算机等精密电子设备,谐波可能会引起数据丢失、误操作等问题。

此外,谐波还会增加电力系统的无功功率,降低功率因数,从而增加线路损耗和电能浪费。

三、谐波的分析方法为了有效地治理谐波,首先需要对其进行准确的分析。

目前,常用的谐波分析方法主要有傅里叶变换、小波变换和瞬时无功功率理论等。

傅里叶变换是谐波分析中最常用的方法之一。

它可以将一个复杂的周期性信号分解为不同频率的正弦波分量,从而得到各次谐波的幅值和相位信息。

然而,傅里叶变换在处理非平稳信号时存在一定的局限性。

小波变换则能够很好地处理非平稳信号,它通过对信号进行多尺度分析,可以更准确地捕捉到信号在不同时间和频率上的特征。

电力系统中的谐波问题与分析技术研究

电力系统中的谐波问题与分析技术研究

电力系统中的谐波问题与分析技术研究引言:现代社会对电力的需求越来越大,电力系统的稳定运行对于社会经济的发展至关重要。

然而,电力系统在运行过程中会面临一些问题,如谐波问题。

谐波是电力系统中的一种普遍现象,它对系统的稳定性和设备的正常运行产生了不可忽视的影响。

因此,对电力系统中的谐波问题进行深入研究和分析,提出相应的解决方法和技术手段是非常必要的。

一、谐波问题的定义与影响1. 谐波的定义谐波是指电力系统中存在的频率是基波频率整数倍的谐振现象。

电力系统中产生谐波的主要原因包括非线性负载、发电机组的谐波励磁和谐波源的接入等。

谐波问题主要表现在电压和电流波形畸变、系统损耗增加以及设备寿命缩短等方面。

2. 谐波问题的影响谐波对电力系统的影响主要体现在以下几个方面:(1)设备损坏:谐波会导致电力设备的工作电流和温度升高,进而加速设备的老化和损坏;(2)电网损失:谐波会导致电网中的有功和无功损失增加,降低系统的效率;(3)通信干扰:谐波会对通信设备产生干扰,降低通信质量和可靠性。

二、谐波分析技术为了解决电力系统中的谐波问题,需要进行谐波分析,找出谐波源,并提出相应的处理措施。

目前,谐波分析技术主要包括频谱分析和时域分析两种方法。

1. 频谱分析频谱分析是通过观察电力系统中各频率成分的振幅和相位关系,以及谐波频率分布情况来分析谐波问题。

常用的频谱分析方法包括傅里叶变换和小波变换。

(1)傅里叶变换傅里叶变换能够将信号在频域中分解成各个频率成分,并得到各频率成分的幅度和相位信息。

通过对电压或电流波形进行傅里叶变换,可以得到具体的谐波频率及其振幅,从而判断谐波的产生原因。

(2)小波变换小波变换是一种时频分析方法,能够同时提供时间和频率信息。

它通过对信号进行连续的分解,得到各个频率成分在时域和频域上的分布情况,更能反映谐波在时间上的变化特性。

2. 时域分析时域分析是通过观察电力系统中各时刻的电压和电流波形来分析谐波问题。

常用的时域分析方法包括快速傅里叶变换和窗函数法。

电网谐波的危害及治理方案分析

电网谐波的危害及治理方案分析
有量 , 为谐波。 称
关键词: 电力 系 统 ; 波 ; 害 ; 理 谐 危 治
1概 述
在 理 想 电力 系 统 中 , 能是 以恒 定 频 率 和 幅 值 的三 相平 衡 电
3谐 波 的危 害
谐 波 污 染 是 电 网 的公 害 , 弓 起 的 经 济 损 失 主 要 是 恶 化 了 它 1 电能 质 量 指 标 , 低 了 电 网 的可 靠 性 , 降 增加 了 电 网损 失 , 短 了 缩 电气 设 备 的寿 命 , 低 了产 品质 量 。谐 波 的危 害 主 要 体 现 在 如 降 下几个方面:
的整 体 影 响 是 温 升 较 高 。
() 2 电力谐 波对 输 电线路 的影 响
谐 波 电流 使输 电线 路 的 电能 损 耗 增 大 , 当输 入 电 网 的谐 波
2谐 波 产 生 的原 因
配 电 网谐 波 主 要 来 源 于 三 个 方 面 : 电源 质 量 不 高 产 生 的 发 谐 波 ; 配 电系 统 产 生 的谐 波 ; 电设备 产 生 的谐 波 。 中 以用 输 用 其
电设 备 产 生 的 谐 波最 多 。
频 率位 于 电 网 的谐 振 点 附近 的 写 真 区 内时 , 输 电线 路 和 电 力 对
电缆 会 造 成 绝 缘 击 穿 。
() 3 电力谐 波对 电动机 的 影响
主要 表 现 在 产 生 附 加损 耗和 转矩 上 , 害 的严 重 性 与谐 波 危 电压 、 波 电流 以及 旋 转 电机 的形 式 和 结 构有 关 。比如 : 感应 谐 在 电动 机 的 定 子 绕 组 中所 有 正 序 谐 波 电流 都 将 产 生 正 方 向 的 电
发 电机 总 会 产 生 少 量 的谐 波 。 输 电和 配 电系统 中存 在 大 量 的 电力 变压 器 。因 变 压器 内铁 心饱 和 , 化 曲线 的非 线 特 性 以及 额 定 工 作 磁 密 位 于 磁 化 曲线 磁 近饱 和 段 上 等 诸 多 因 素 , 使 磁 化 电流 呈 尖 顶 形 , 含 大 量 奇 致 内

电网谐波及不均衡问题的分析与解决方法研究

电网谐波及不均衡问题的分析与解决方法研究

电网谐波及不均衡问题的分析与解决方法研究近年来,随着电力需求的不断增长和电力系统的不断扩容,电力系统中电网谐波及不均衡问题愈加突出。

这些问题会给电力系统的正常运行和电气设备带来很大的不利影响,因此,对电网谐波及不均衡问题进行深入的分析和研究,探求其解决方法是非常必要的。

一、电网谐波问题的影响及分析在电力系统中,特别是在大型电力负载设备中,各种信号和电流所形成的周期性变化会导致电网中出现谐波现象。

谐波会导致电压失真和电流失真,给电力系统带来很多负面影响,例如:1、谐波会导致设备的损坏在电力系统中,大部分的变压器、电容器等设备都不能很好地忍受谐波的影响,因此,谐波信号可能会导致电力系统中的这些设备损坏。

2、会影响电力质量谐波信号会导致电力系统中的电压失真和电流失真,从而提高了电路的损耗,影响了电力系统的电力质量。

3、会影响电力系统稳定运行谐波信号不仅会影响电力质量,还可能会导致电力系统中的各种故障,这些故障会影响电力系统的稳定运行。

针对电网谐波问题,解决方法常采用通过该系统中的谐波滤波处理方法。

多数情况下,使用谐波滤波解决方案可以有效地消除谐波,提高了电力系统的电力质量,从而保证了电力系统的稳定运行。

二、电网不均衡问题的影响及分析电网不均衡问题是指在电力系统中出现相电压、相电流和负荷的不平衡所带来的问题。

电网不均衡问题会对电力系统造成很多不利影响,例如:1、不均衡会影响三相电缆的电流分配由于三相电缆的负载并不相等,所以,不均衡导致的电流遥遥相对,会导致三相电缆中的电流分配不均,构成不平衡负载。

2、会导致电力系统中电压波动电网不均衡问题可能会导致电力系统中出现其它的正常电压波动,从而影响电力系统稳定运行。

3、会加剧设备的损害因为电网不均衡问题往往会导致相电流、负荷不平衡,而这些不平衡会短期内或者长期内加剧电气设备的损害。

从而增加电气设备的维护成本。

对于电网不均衡问题,我们也可以通过使用补偿器的解决方案来进行解决。

电力系统中电流谐波的分析与治理

电力系统中电流谐波的分析与治理

电力系统中电流谐波的分析与治理在当今的电力系统中,电流谐波问题日益凸显,对电力设备的正常运行、电能质量以及整个电力系统的稳定性都产生了不可忽视的影响。

因此,深入分析电流谐波的产生原因、特性,并采取有效的治理措施显得尤为重要。

一、电流谐波的产生电流谐波的产生源头较为多样。

电力电子设备的广泛应用是其中的主要因素之一。

例如,变频器、整流器、逆变器等在工作时,会将交流电源转换为直流电源或对交流电源进行变频控制,由于其开关动作的非线性特性,导致电流发生畸变,从而产生谐波。

非线性负载也是谐波的重要来源。

像电弧炉、电焊机等设备,其工作电流随时间变化呈现出非线性特征,使得输入的正弦电流发生扭曲,进而产生谐波电流。

此外,变压器的铁芯饱和也会引起电流谐波。

当变压器铁芯中的磁通密度超过饱和点时,励磁电流会出现明显的非线性增长,产生谐波分量。

二、电流谐波的特性电流谐波具有一些显著的特性。

首先是频率特性,谐波的频率通常是基波频率的整数倍。

例如,5 次谐波的频率是基波频率的 5 倍。

其次是幅值特性。

不同次数的谐波幅值大小不尽相同,一般来说,低次谐波的幅值相对较大,对电力系统的影响也更为显著。

电流谐波还具有相位特性。

各次谐波的相位关系较为复杂,会对电力系统中的功率传输和电能质量产生影响。

三、电流谐波的危害电流谐波给电力系统带来了诸多危害。

它会增加电力设备的损耗,如变压器、电动机等,导致设备发热加剧,降低其使用寿命。

对输电线路来说,谐波电流会引起线路的额外损耗,降低输电效率,同时可能引发谐振,导致过电压,威胁线路的安全运行。

在电能质量方面,谐波会导致电压波形畸变,影响供电的稳定性和可靠性,可能引起电气设备误动作,影响精密仪器和电子设备的正常工作。

四、电流谐波的分析方法为了有效地治理电流谐波,首先需要对其进行准确的分析。

常见的分析方法包括傅里叶变换、快速傅里叶变换(FFT)等。

傅里叶变换能够将时域中的电流信号转换为频域信号,从而清晰地展示出各次谐波的频率和幅值。

电力系统中的谐波与电磁干扰分析

电力系统中的谐波与电磁干扰分析

电力系统中的谐波与电磁干扰分析导言:电力系统是现代社会运转的重要基础设施之一,但在其运行过程中,常常会面临谐波和电磁干扰的问题。

谐波是指电力系统中出现的频率是基波频率的整数倍的电压或电流成分,而电磁干扰则是指电力系统中的电磁波辐射对其他电子设备和通信系统的干扰。

本文将深入分析电力系统中的谐波和电磁干扰的原因、危害以及相应的解决方法。

一、谐波的形成和危害1. 谐波的形成谐波是由于非线性负荷在电力系统中的存在引起的。

非线性负荷如电子电器、电感、电容等设备,在工作时会产生非线性电流,在电源电压的作用下,会将谐波电流注入电力系统中。

这些谐波电流会使电力系统中的电流波形变成失真的非正弦波形。

2. 谐波的危害谐波对电力系统和设备都会造成一定的危害。

首先,谐波会引起电力系统中的电流和电压的失真,导致电能质量下降。

其次,谐波会引发电力系统中的共振问题,进而损坏电容器、互感器等设备。

此外,谐波还会导致电力系统中的电机运行不稳定,降低设备的寿命,甚至引起设备的故障和损坏。

因此,谐波问题应引起足够的重视。

二、电磁干扰的产生和危害1. 电磁干扰的产生电磁干扰是电力系统中的电磁波辐射对其他电子设备和通信系统的干扰。

电力系统中各种设备和传输线路中的电流和电压会产生电磁场,这些电磁场以无线电波的形式辐射出去,与其他设备和系统产生相互作用,引起电磁干扰问题。

2. 电磁干扰的危害电磁干扰会带来许多危害。

首先,电磁干扰会影响通信系统的正常运行,导致通信中断、信息传递错误等问题。

其次,电磁干扰会影响其他电子设备的正常工作,引起设备的故障和损坏。

此外,电磁干扰还可能对人体健康造成一定的影响,引起生理和心理方面的问题。

三、谐波和电磁干扰的解决方法为了解决电力系统中的谐波和电磁干扰问题,可以采取以下方法:1. 谐波的解决方法(1)降低非线性负荷的影响:通过选用低谐波电器设备、采用滤波电容器等措施来减少非线性负荷对电力系统的谐波注入。

(2)滤波器的应用:在电力系统中安装合适的谐波滤波器,可以过滤掉谐波成分,减少谐波的产生和传播。

电力系统中谐波分析与治理

电力系统中谐波分析与治理

电力系统中谐波分析与治理在当今高度依赖电力的社会中,电力系统的稳定和高效运行至关重要。

然而,谐波问题却成为了影响电力系统性能的一个重要因素。

谐波的存在不仅会降低电能质量,还可能对电力设备造成损害,增加能耗,甚至影响整个电力系统的安全稳定运行。

因此,对电力系统中的谐波进行深入分析,并采取有效的治理措施,具有极其重要的意义。

一、谐波的产生谐波是指频率为基波频率整数倍的正弦波分量。

在电力系统中,谐波的产生主要源于以下几个方面:1、非线性负载电力系统中的许多负载,如电力电子设备(如变频器、整流器、逆变器等)、电弧炉、荧光灯等,其电流与电压之间不是线性关系,从而导致电流发生畸变,产生谐波。

2、电力变压器变压器的铁芯饱和特性会导致磁化电流出现尖顶波形,进而产生谐波。

3、发电机由于发电机的三相绕组在制作上很难做到绝对对称,以及铁芯的不均匀等因素,也会产生少量的谐波。

二、谐波的危害谐波对电力系统的危害是多方面的,主要包括以下几点:1、增加电能损耗谐波电流在电力线路中流动时,会增加线路的电阻损耗和涡流损耗,导致电能的浪费。

2、影响电力设备的正常运行谐波会使电机产生额外的转矩脉动和发热,降低电机的效率和使用寿命;对电容器来说,谐波可能导致其过电流和过电压,甚至损坏;对于变压器,谐波会增加铁芯损耗和绕组的发热。

3、干扰通信系统谐波会产生电磁干扰,影响通信设备的正常工作,导致信号失真、误码率增加等问题。

4、降低电能质量谐波会使电压和电流波形发生畸变,导致电压波动、闪变等问题,影响供电的可靠性和稳定性。

三、谐波的分析方法为了有效地治理谐波,首先需要对其进行准确的分析和测量。

常见的谐波分析方法主要有以下几种:1、傅里叶变换这是谐波分析中最常用的方法之一。

通过对周期性信号进行傅里叶级数展开,可以得到各次谐波的幅值和相位。

2、快速傅里叶变换(FFT)FFT 是一种快速计算傅里叶变换的算法,大大提高了计算效率,适用于对大量数据的实时分析。

试论电力系统谐波危害性分析及抑制措施

试论电力系统谐波危害性分析及抑制措施

采 用 电 力滤 波 装 置 就 近 吸收 谐 波 源所 产 生 的谐 波 电 流 ,是 抑 制 谐 波 污染 的有 效 措 施 。 通常 采 用 由电力 电容 器 、 电抗 器 和 电 阻
整 流变 压 器二 次 侧 的相 数越 多 , 整流 波 形 的脉 动 数越 器 适 当组 合 而 成 的无 源 滤 波装 置 相 当显 著 。从 理论 上 讲,
流, 引 起 电容 器 和与 之相 连 的 电抗器 、 电 阻器 的损 坏 。
从 图3 中可 以得 到 , 电 网 侧 的谐 波 电流 可 以写 为 :
1 : I ‘ I h — I ‘ 图3补偿 谐 波 等效 电路 图
只 要 控制 有 源 电 力 滤 波
器 的输 出电流I ‘ , 使 其满足 I = I , 即可使电网侧 的谐波 电流I . d 1 = O 。 与 无源 滤 波器 相 比 ,有源 电 力滤 波器 具有 高 度 可控 性 和快 速 响 应性 , 不 还可 抑 制 闪变 、 补 偿无 功 , 有一 机 多能 的特 点 : 1 . 5 谐波会对附近系统的信号传输产生干扰, 轻者引入噪声 , 重者导致信 仅 能补 偿各 次 谐 波 , 号丢失 , 使系统无法正常工作。 ①滤波特性不受 系统阻抗 的影响,可消除与系统阻抗发生谐振的危 险; ② 具有 自适 应 功 能 , 可 自动 跟踪 补偿 变 化着 的谐波 。 ③ 与无 源滤 波 器相 比较 , 2 谐 波产 生的 机理 有 源 电力滤 波 器 体积 小 、 占地少 , 但成 本 较高 。 1 _ 4谐波会引起一些敏感的 自动化设备误动作 ,同时也会导致 电气测量 仪表计量
1 . 1 谐 波使 企 业 电网 中 的设备 产 生 附加谐 波 损 耗 , 降低 电 网 、 输 电 及用 电 设 备 的使 用 效率 , 增加 电网线 损 。 在三 相 四线 制 系统 中 , 零 线会 由于流 过 大量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

谐波分析
一、谐波的相关概述
谐波是指电流中所含有的频率为基波的整数倍的电量,一般来说是指对周期性的非正弦电量进行傅里叶级数分解,其余大于基波频率的电流产生的电量,其实谐波是一个正弦波分量。

谐波产生的根本原因是非线性负载造成电网中的谐波污染、三相电压的不对称性。

由于非线性负荷的存在,使得电力系统中的供电电压即便是正弦波形,其电流波形也将偏离正弦波形而发生畸变。

当非正弦波形的电流在供电系统中传输时,将迫使沿途电压下降,其电压波形也将受其影响而产生不同程度的畸变,这种电能质量的下降会给电力系统和用电设备带来严重的危害。

电力系统中的谐波源主要有以下几类:(1)电源自身产生的谐波。

因为发电机制造的问题,使得电枢表面的磁感应强度分布偏离正弦波,所产生的电流偏离正弦电流。

(2)非线性负载,如各种变流器、整流设备、PWM变频器、交直流换流设备等电力电子设备。

(3)非线性设备的谐波源,如交流电弧炉、日光灯、铁磁谐振设备和变压器等。

二、谐波的危害
谐波对电力系统的危害主要表现在:(1)谐波使公用电网中的元件产生附加的谐波损耗,降低发电、输电及用电设备的效率。

(2)谐波影响各种电气设备的正常工作。

(3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,引发严重事故。

(4)谐波会导致继电保护和自动装置误动作,并使电气测量仪表计量不准确。

(5)谐波对临近的通信系统产生干扰,轻则产生噪声,降低通信质量;重则导致信息丢失,使通信系统无法正常工作。

三、谐波的分析
由于谐波导致的各种各样的事故和故障的几率一直在升高,谐波已成为电力系统的一大公害。

我国对于谐波相关工作的研究大致起源于20世纪80年代。

我国国家技术监督局于93年颁布了国家标准《电能质量——公用电网谐波》(GB/T 14549-1993)。

该标准对公用电网中各个等级的电压的限用值、电流的允许值等都做了相应的规定,并以附录的形式给出了测量谐波的方法和数据处理及测量仪器都作了相应的规定。

这个规定给我国相关人员进行谐波检测分析、谐波污染的抑制提供了理论依据和大致思路。

四、谐波的检测
对电力系统谐波问题的研究涉及面很广,如谐波源分析、谐波检测、畸变波形分析、谐波抑制等,其中很重要的一个方面就是谐波的检测,它是解决其他谐波问题的基础。

但由于电力系统的谐波受到随机性、非平稳性、分布性等多方面因素影响,要进行实时准确的检测并不容易,因此,随着交流电力系统的发展,也逐渐形成了多种谐波检测方法,如模拟滤波、基于傅氏变换的频域分析法、基于瞬时无功功率理论的检测方法、小波变换、神经网络等。

检测谐波是做好抑制与消除谐波工作的基础,目前大多数谐波测试仪都采用快速傅里叶变换(FFT)。

(1)从理论上讲,谐波测量通常是利用谐波分析的方法求出信号的各次谐波的幅值和相角,然后由相应公式求出总谐波畸变率(DFU)、谐波功率(Ph)、谐波阻抗(Zh)等值。

对于不同的谐波,采用不同的分析方法。

对于稳态谐波通常采用FFT算法、FHT算法以及离散W变换等;对于暂态谐波,则有改进的FFT分析及小波变换等。

(2)在实际测量过程中,应用谐波频谱分析仪对各个变压器的出线口、配电柜的各低压电容器支路、主要整流设备馈线支路和典型用户支路等测试点,进行电压和电流波形的测量、记录和保存;把测量的电压、电流波形,通过相应的分析软件,可以直接得到各次谐波分量的有效值及其占总有效值的百分比。

五、谐波的抑制
目前常用的谐波治理方法无外乎有两种,无源滤波和有源滤波。

1、无源滤波的主要结构是用电抗器与电容器串联起来,组成LC 串联回路,并联于系统中,LC回路的谐振频率设定在需要滤除的谐波频率上,例如5次、7次、11次谐振点上,达到滤除这3次谐波的目的。

其成本低,但滤波效果不太好,如果谐振频率设定得不好,会与系统产生谐振。

现在,市场上流通较多的采取的滤波方法就是这一种,主要是因为低成本,用户容易接受。

虽滤波的效果较差,只要满足国家对谐波的限制标准和电力部门对无功的要求就行了。

由于其低成本,市场的需求也就大,一般而言,低压0.4KV系统大多数采用无源滤波方式,高压10KV几乎都是采用这种方式对谐波进行治理。

由于我国的中小企业大多数是私有的,业主对谐波的危害认识不足,一般不愿意拿出大量的经费来治理谐波,而有的企业由于谐波的含量太大,常规的无功补偿不能凑效,供电部门对无功的要求又是十分严格的,达不到就要罚款。

因此,业主不得不要求滤波。

因而,其市场的前景可观,经济效益也就可观了。

无源滤波器可分为:1)单调谐滤波器;2)高通(或带通)滤波器(一阶、二阶和三阶)。

1)单调谐滤波器
这是最为常用的一种滤波器,由L、R、C串接而成,如图1(a)所示,它是针对某一次谐波而设计。

当系统中有该次谐波时,由于滤波器的存在使得谐波容抗与谐波感抗刚好抵消,整个滤波器电路对该次谐波仅相当于一个低阻通道,从而将该次谐波从系统中滤除。

2)双调谐滤波器
双调谐滤波器相当于由两个单调谐滤波器并联组成,如图1(b)所示,它可以同时吸收两种频率的谐波。

与两个单独的单调谐滤波器相比,它的基波损耗较小,但是结构比较复杂。

3)二阶减幅型滤波器
这种滤波器又称为高通滤波器,其结构如图1(c)所示,可与单调谐滤波器相配合,它对
于高于某次以上谐波的谐波阻抗较小,从而可以从系统中滤除高于该次以上的谐波。

这种滤波器基波损耗较小,阻抗频率特性较好,因此在电力系统中应用较多。

4)三阶减幅型滤波器
结构如图1(d)所示。

该滤波器在实际中应用较少,它的基波损耗比二阶减幅型滤波器小,但是特性较差。

图1 无源滤波器原理图
2、有源滤波装置是在无源滤波的基础上发展起来的,它的滤波效果好,在其额定的无功功率范围内,滤波效果是百分之百的。

它主要是由电力电子元件组成电路,使之产生一个和系统的谐波同频率、同幅度,但相位相反的谐波电流与系统中的谐波电流抵消。

但由于受到电力电子元件耐压,额定电流的发展限制,成本极高,其制作也较之无源滤波装置复杂得
多,成本也就高得多了。

其主要的应用范围是计算机控制系统的供电系统,尤其是写字楼的供电系统,工厂的计算机控制供电系统。

对单台的装置而言,其利润是可观的,但用户一般不愿意用有源滤波,对于谐波的含量,不必滤得太干净,只要不危害其他用电器也就可以了。

相关文档
最新文档