半导体光刻技术发展情况综述
光刻技术的现状和发展

光刻技术的现状和发展近两年来,芯片制造成为了半导体行业发展的焦点。
芯片制造离不开光刻机,而光刻技术则是光刻机发展的重要推动力。
在过去数十载的发展中,光刻技术也衍生了多个分支,除了光刻机外,还包括光源、光学元件、光刻胶等材料设备,也形成了极高的技术壁垒和错综复杂的产业版图。
光刻技术的重要性据华创证券此前的调研报道显示,半导体芯片生产的难点和关键点在于将电路图从掩模上转移至硅片上,这一过程通过光刻来实现,光刻的工艺水平直接决定芯片的制程水平和性能水平。
芯片在生产中需要进行20-30次的光刻,耗时占到IC生产环节的 50%左右,占芯片生产成本的1/3。
但光刻产业却存在着诸多技术难题有待解决。
西南证券的报告指出,光刻产业链主要体现在两点上,一是作为光刻核心设备的光刻机组件复杂,包括光源、镜头、激光器、工作台等组件技术往往只被全球少数几家公司掌握,二是作为与光刻机配套的光刻胶、光刻气体、光掩膜等半导体材料和涂胶显影设备等同样拥有较高的科技含量。
这些技术挑战,也为诸多厂商带来了发展机会。
时至今日,在这些细分领域当中,也出现了很多优秀的企业,他们在科技上的进步,不仅促进了光刻技术产业链的发展,也影响着半导体行业的更新迭代。
光源可靠性是光刻机的重要一环众所周知,在光刻机发展的历史当中,经过了多轮变革,光刻设备所用的光源,也从最初的g-line,i-line发展到了KrF、ArF,如今光源又在向EUV方向发展。
Gigaphoton是在全球范围内能够为光刻机提供激光光源的两家厂商之一(另外一家是Cymer,该公司于2012年被ASML收购)。
Gigaphoton的Toshihiro Oga认为,光源是一项专业性较强的领域,并需要大规模的投资去支撑该技术的发展,而光源又是一个相对小众的领域,尤其是用于光刻机的光源有别于用于其他领域的光源——其他领域所用光源多为低频低功率,而光刻机所用光源则为高频高功率,这也让许多企业对该领域望而却步。
2023年光刻机行业市场分析现状

2023年光刻机行业市场分析现状光刻机是半导体制造中最为关键的设备之一,用于将电路图案投射到半导体芯片上。
随着半导体技术的不断发展,光刻机行业市场也呈现出不断增长和创新的趋势。
目前,光刻机行业市场的主要市场细分包括DRAM(动态随机存储器)、NAND闪存、CMOS图像传感器等。
这些市场细分的需求不断增长,推动了光刻机行业的发展。
尤其是随着人们对智能手机、平板电脑等消费电子产品需求的逐渐增加,对存储器和图像传感器的需求也在增长,进一步促进了光刻机行业的发展。
另外,为了应对新一代半导体芯片制造的需求,光刻机行业也进行了技术创新。
例如,目前采用的最先进的光刻机技术是多重曝光技术(MUX),可以实现更高的分辨率和更小的电路尺寸。
此外,还有一些新兴的技术,例如极紫外(EUV)光刻技术,可以实现更高的分辨率和更快的生产速度。
这些先进的光刻技术不断推动光刻机行业的发展,并且有望进一步提升整个半导体制造行业的水平。
光刻机行业市场目前面临着一些挑战和机遇。
首先,随着半导体制造的进一步发展,要求更高的分辨率和更小的电路尺寸,这对光刻机的精度和性能提出了更高的要求。
其次,随着中国大陆半导体产业的快速发展,中国市场对光刻机的需求也在不断增长。
在中国,光刻机市场主要由三星、ASML、Nikon等国际光刻机厂商占据。
但是,随着中国半导体产业的发展,国内企业也在加快技术研发和生产能力建设,有望在光刻机领域实现更大的突破。
在市场竞争激烈的情况下,光刻机企业需要加强技术创新,提高产品性能和成本效益,以满足客户需求。
例如,一些光刻机企业正在研发更先进的光刻技术,例如EUV技术,以满足高分辨率和高速度的生产需求。
另外,还有一些企业正在努力提高设备的运行稳定性和可靠性,减少设备故障和停机时间,提高生产效率。
此外,光刻机企业还需要加强与客户的合作,了解客户需求,提供定制化的解决方案。
总体来说,光刻机行业市场仍然具有很大的发展潜力。
随着半导体制造技术的不断进步和市场需求的增长,光刻机行业有望保持稳定增长。
光刻机的发展趋势与前景展望

光刻机的发展趋势与前景展望随着半导体产业的快速发展,光刻技术作为半导体芯片制造的关键环节,其发展趋势和前景备受关注。
本文将探讨光刻机的发展趋势以及展望未来的前景。
一、光刻机技术的发展趋势1. 晶圆尺寸的增大:随着半导体行业对性能更高、功耗更低的芯片需求不断增加,晶圆的尺寸也在逐渐增大。
未来光刻机将面临更大尺寸晶圆的加工需求,需要实现更高的分辨率和更快的曝光速度。
2. 分辨率的提高:分辨率是衡量光刻机性能的重要指标,它决定了芯片制造中最小线宽的大小。
随着半导体工艺的不断进步,分辨率要求越来越高,光刻机需要不断提升分辨率,以满足芯片制造的需求。
3. 多层次曝光技术的应用:随着芯片设计复杂度的增加,单次曝光已经无法满足需求。
多层次曝光技术的应用可以提高曝光效率和成本效益,未来光刻机将更加智能化,实现多层次曝光的同时保持高质量。
4. 光刻胶的研发创新:光刻胶作为光刻技术的核心材料,其性能直接影响到芯片制造的质量和效率。
未来光刻胶的研发将注重提高释放性能、抗辐照性能以及光刻胶的可持续性,以满足更加苛刻的制造要求。
二、光刻机的前景展望1. 5G和物联网的推动:5G和物联网的快速发展将带动对芯片产能的需求增加。
光刻机作为芯片制造的必要设备,将受益于5G和物联网的快速推动,有望在市场上实现更广泛的应用。
2. 智能化和自动化的发展:随着人工智能和自动化技术的应用,光刻机制造将实现更高的智能化程度。
智能化和自动化的发展将提高生产效率,减少资源浪费,提高芯片制造的质量和稳定性。
3. 光刻机制造技术的创新:光刻机制造技术将不断创新,为芯片制造带来更多的机会和挑战。
例如,液态镜片技术、大数据分析和机器学习等技术的应用将提高光刻机的性能和稳定性,在未来的发展中具有巨大的潜力。
4. 绿色环保的需求:随着全球对环境保护和绿色能源的关注度增加,光刻机的绿色环保要求也会不断提高。
未来光刻机将更加注重节能减排,采用更环保的材料和技术,以适应可持续发展的要求。
半导体技术年度总结(3篇)

第1篇一、引言2023年,全球半导体行业经历了前所未有的挑战与机遇。
从技术突破到市场变革,从国际合作到竞争加剧,半导体技术领域呈现出多元化的发展趋势。
本文将对2023年半导体技术领域的重大事件、创新成果和市场动态进行总结,以期为广大读者提供一幅2023年半导体技术的全景图。
二、技术创新与突破1. 芯片制造工艺- 3nm工艺:台积电宣布成功生产3nm芯片,成为全球首个实现3nm工艺量产的半导体公司。
该工艺采用GAA(栅极全环绕)晶体管技术,大幅提升芯片性能和能效。
- 2nm工艺:三星宣布2025年量产2nm芯片,继续推动半导体工艺创新。
该工艺采用先进的后端供电网络技术和MBCFET架构,进一步提升性能和能效。
2. 芯片设计- Chiplet技术:Chiplet技术成为芯片设计领域的新宠,通过将芯片分割成多个小芯片(Chiplet),实现灵活的设计和快速迭代。
- AI芯片:随着人工智能技术的快速发展,AI芯片需求旺盛。
多家企业推出高性能AI芯片,如华为的昇腾系列、英伟达的A100等。
3. 新材料与器件- 第三代半导体:氮化镓(GaN)和碳化硅(SiC)等第三代半导体材料在功率器件、射频器件等领域得到广泛应用。
- 新型存储器:新型存储器如存储类内存(ReRAM)、铁电存储器(FeRAM)等逐渐走向市场,有望替代传统的闪存和DRAM。
三、市场动态1. 全球半导体市场:2023年,全球半导体市场规模达到5143亿美元,同比增长9.8%。
其中,中国市场占比达到32.2%,成为全球最大的半导体市场。
2. 中国半导体产业:中国政府加大对半导体产业的扶持力度,推动产业快速发展。
2023年,中国半导体产业增加值达到1.1万亿元,同比增长12.4%。
3. 并购与投资:全球半导体行业并购活动频繁,如英特尔收购Mobileye、英伟达收购Arm等。
同时,多家半导体企业获得巨额投资,如高通、台积电等。
四、国际合作与竞争1. 国际合作:全球半导体产业合作日益紧密,如台积电与三星、英特尔与Arm等企业之间的合作。
光刻机技术进展及未来发展方向

随着信息技术的迅猛发展和半导体产业的不断壮大,光刻机技术作为半导体制造工艺中极为重要的一环,也在不断进行创新与突破,实现了长足的发展。本文将对光刻机技术的进展进行探究,并展望其未来的发展方向。
一、光刻机技术的进展
1.微影技术的应用
光刻机技术作为微影技术的核心,能够在光敏胶片或光刻胶层上进行光照、显影、蚀刻等工序,使图案投射到硅片上,实现了微小化的电子元件和线路的制造。随着相干光刻技术、准直光刻技术等的应用,半导体芯片的制作精度和复杂度得以提升。
二、光刻机技术的未来发展方向
1.极紫外光刻技术(EUV技术)
极紫外光刻技术采用13.5nm波长的极紫外光进行曝光,制程尺寸进一步缩小,是当前光刻技术的研究热点。然而,由于光源、光刻胶和掩膜等相关技术仍处于发展阶段,EUV技术在商业化应用方面仍面临一定的挑战。未来,随着技术突破和商业化成本的降低,EUV技术有望成为下一代光刻技术的主流。
2.光刻机设备的集成与智能化
随着芯片制程的不断革新,光刻机设备将继续向着集成化和智能化方向发展。光刻机设备将逐渐实现多工艺模块集成,提高生产效率和设备利用率。同时,光刻机设备还将加强机器学习和人工智能技术的应用,通过数据分析和优化算法,提高设备的自动化程度和制程控制精度。
3.新材料与新工艺的应用
随着新材料的不断涌现,比如二维材料、有机半导体材料等,光刻机技术也需要与之相适应,探索新的制备工艺和工艺参数。未来,光刻机技术将与新材料和新工艺相结合,为电子器件带来更多的创新和突破。
2.紫外光刻技术的突破
紫外光刻技术采用了更短波长的光线,使得线宽更加精细,解决了传统光刻机技术面临的线宽限制难题。采用193nm波长的氟化氖激光器,使得制程尺寸进一步缩小,为微电子产业的发展提供了重要的支撑。
光学光刻技术现状及发展趋势

光学光刻技术现状及发展趋势光刻技术在半导体制造中起着非常重要的作用,其制造的集成电路的性能和功能直接决定了整个电子设备的性能。
当前,光刻技术主要应用于半导体工艺中的互连层和尺寸较大的图案制作。
光刻技术的主要设备是光刻机,它通过精密的光学投影系统将光源中的光通过掩模透射到光刻胶上,然后通过化学和物理的处理方式将图案转移到半导体材料上。
这种技术具有高分辨率、高精度和高效率的优点,已广泛应用于微电子制造领域。
在光刻技术的发展过程中,最主要的挑战就是以更高的分辨率和更小的尺寸来制造更复杂的微纳器件。
当前,光刻技术的分辨率已经达到了纳米级别,但随着芯片的尺寸越来越小,光刻技术面临着更大的挑战。
在光学光刻技术中,短波紫外(DUV)光刻技术是目前最常用的技术,其工作波长通常为193纳米或248纳米。
但是,这些波长已经接近物理极限,无法进一步提高分辨率。
因此,目前研究人员正在积极寻求新的光刻技术来突破这一限制。
发展趋势方面,一种为发展新一代光刻技术的方向是使用更短波长的光源,如极紫外(EUV)光刻技术。
EUV光刻技术利用波长为13.5纳米的极紫外光源进行曝光,具有更高的分辨率和更小的尺寸。
然而,EUV技术目前仍面临一系列挑战,包括光源功率不足、镜面反射率低和衍射效应等问题。
因此,目前EUV技术还没有得到广泛的商业应用。
但是,随着技术的不断发展,相信EUV技术将会逐渐成熟并取代DUV技术,成为下一代光刻技术的主流。
另一种发展趋势是多重光刻技术的应用。
多重光刻技术是指将两个或多个光刻步骤结合起来,以实现更高的分辨率和更复杂的图案制作。
这一技术可以通过在光刻胶层上涂覆多层光刻胶和反射层,然后进行多次曝光来实现。
多重光刻技术可以大大提高分辨率,同时也可以保持较高的生产效率。
目前,多重光刻技术已经得到了广泛的应用,并在下一代半导体工艺中发挥了重要作用。
总之,光刻技术作为半导体制造中的关键工艺技术,其现状和发展趋势对整个电子行业发展起着重要的影响。
光刻技术及其应用的状况和未来发展

光刻技术及其应用的状况和未来发展光刻技术及其应用的状况和未来发展1 引言光刻技术作为半导体及其相关产业发展和进步的关键技术之一,一方面在过去的几十年中发挥了重大作用;另一方面,随着光刻技术在应用中技术问题的增多、用户对应用本身需求的提高和光刻技术进步滞后于其他技术的进步凸显等等,寻找解决技术障碍的新方案、寻找COO更加低的技术和找到下一、两代可行的技术路径,去支持产业的进步也显得非常紧迫,备受人们的关注。
就像ITRS对未来技术路径的修订一样,上世纪基本上3~5年修正一次,而进入本世纪后,基本上每年都有修正和新的版本出现,这充分说明了光刻技术的重要性和对产业进步的影响。
如图1所示,是基于2005年ITRS对未来几种可能光刻技术方案的预测。
也正是基于这一点,新一轮技术和市场的竞争正在如火如荼的展开,大量的研发和开发资金投入到了这场竞赛中。
因此,正确把握光刻技术发展的主流十分重要,不仅可以节省时间和金钱,同时可以缩短和用户使用之间的周期、缩短开发投入的回报时间,因为光刻技术开发的投入比较庞大。
2 光刻技术的纷争及其应用状况众说周知,电子产业发展的主流和不可阻挡的趋势是"轻、薄、短、小",这给光刻技术提出的技术方向是不断提高其分辨率,即提高可以完成转印图形或者加工图形的最小间距或者宽度,以满足产业发展的需求;另一方面,光刻工艺在整个工艺过程中的多次性使得光刻技术的稳定性、可靠性和工艺成品率对产品的质量、良率和成本有着重要的影响,这也要求光刻技术在满足技术需求的前提下,具有较低的COO和COC。
因此,光刻技术的纷争主要是厂家可以提供给用户什么样分辨率和产能的设备及其相关的技术。
以Photons为光源的光刻技术2.1 以Photons为光源的光刻技术在光刻技术的研究和开发中,以光子为基础的光刻技术种类很多,但产业化前景较好的主要是紫外(UV)光刻技术、深紫外(DUV)光刻技术、极紫外(EUV)光刻技术和X射线(X-ray)光刻技术。
半导体技术的发展现状与趋势

半导体技术的发展现状与趋势一、发展现状1.1半导体技术的历史半导体技术是20世纪最重要的技术之一,它改变了人类社会的方方面面。
20世纪50年代晶体管技术的发明让半导体技术获得了飞速发展的契机,之后的半个世纪里,半导体技术经历了晶体管、集成电路、微处理器等多个阶段的发展,不断推动着信息产业的发展。
1.2主要应用领域半导体技术已经深入到各个领域,如电子通信、计算机、电子消费品、汽车、医疗设备等。
在电子通信领域,半导体芯片是移动通信网络的核心部件;在计算机领域,半导体技术推动了计算机的不断升级和发展;在电子消费品领域,半导体技术使得电子产品变得更加小巧、功能更加强大;在汽车领域,半导体技术实现了智能化驾驶和无人驾驶技术;在医疗设备领域,半导体技术改进了医疗设备的性能,提高了医疗水平。
1.3技术发展水平半导体技术的当前发展水平已经非常成熟,主要表现在以下几个方面:(1)集成度不断提高。
半导体技术的集成度从最初的几个晶体管到现在的数十亿甚至上百亿个晶体管,集成度的提高使得芯片的功能越来越强大。
(2)工艺精度持续提高。
半导体制造工艺的微观化、精细化和复杂化是半导体技术不断发展壮大的基础,如工艺已经进入纳米尺度,工艺的精度已经达到了几十个纳米。
(3)新材料不断涌现。
半导体技术的发展离不开各种新型材料的推动,如氮化镓、碳化硅等材料的应用正在推动半导体技术的发展。
1.4产业现状半导体产业已经成为国民经济的支柱产业,在全球范围内有着巨大的影响力。
当前,全球半导体产业呈现以下几个特点:(1)全球产业集中度逐步提高。
全球主要的半导体企业集中在美国、韩国、日本等国家,这些国家的半导体企业占据了全球市场的绝大部分份额。
(2)产业链日趋完善。
半导体产业链已经形成完整的生产体系,从设备制造到芯片设计、生产、封装测试等环节,各个环节的企业都在不断努力提高产品水平和降低成本。
1.5发展机遇与挑战半导体技术的发展面临着一系列的机遇和挑战:(1)人工智能、物联网等新兴领域的兴起为半导体技术带来了新的发展机遇,这些新的领域对于半导体芯片的要求更高,也为半导体技术提供了更广阔的应用场景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体光刻技术发展情况综述2007-04-27 21:52从第一个晶体管问世算起,半导体技术的发展已有多半个世纪了,现在它仍保持着强劲的发展态势,继续遵循Moore定律即芯片集成度18个月翻一番,每三年器件尺寸缩小0.7倍的速度发展。
现在片径已达300mm,DRAM半节距已达150nm,MPU栅长达100nm。
大尺寸、细线宽、高精度、高效率、低成本的IC生产,对半导体设备带来前所未有的挑战。
为此,世界上各半导体设备厂商,集中优势力量,加大研发投资,进行攻关,抢占制高点,同时又加强联合、兼并,做到优势互补,力争不失时机地为新一代技术提供大生产设备。
本文就当前最为关键的半导体设备做一介绍。
一、硅片直径300mm要适合多代技术的需求经济利益的驱动是硅片直径由200mm向300mm转移的主要因素,300mm 的出片率是200mm的2.5倍,单位生产成本降低30%左右。
300mm工厂投资为15到30亿美元,其中约75%用于设备投资,因此用户要求设备能向下延伸3至4代。
300mm片径是从180nm技术节点切入的,这就要求设备在150 nm、130nm,甚至100nm仍可使用。
300mm要适合多代技术的需求,它面临IC生产中的新工艺、新材料和新结构的挑战。
对逻辑IC来说,它涉及铜布线、低介电常数(k<3)和超低介电常数(k<2.6)介质,低电阻率接触材料,低电阻率栅材料,薄栅和高k介质,浅源/漏延伸区和抬高源/漏结构。
对DRAM来说,它涉及储存电容的新材料,如五氧化二钽(Ta2o5)、钡锶钛(BST)和铂锆钛(PZT)等,新的电极材料如铂、氮化钛等,垂直叠层和高深/宽比沟槽电容,高深/宽比(>10:1)接触等。
此外,还有大面积刻蚀中的CD控制和选择性,反应室中的微粒控制和金属沾污,CMP 的质量与成本,193nm曝光的精度、均匀性和效率,高精度、高效率的检测等。
为了推进300mm的大生产,设备厂商在几年前就着手解决这方面问题,如Canon于1995年着手300mm曝光机,推出了EX3L和i5L步进机,于1997-1998年提供日本半导体超前边缘技术(SELETE)集团使用,ASML公司的300mm 步进扫描曝光机使用193nm波长,型号为FPA-5000,也于1999年提供给SELETE 使用。
现在Canon的第三代300mm曝光机的混合匹配曝光能力已达到<110nm。
在刻蚀方面如英国Trikon公司采用的螺旋波等离子体(MORI)源,在电磁场作用下控制等离子体和改善均匀性,它能在300mm片内对氧化物介质均匀地刻25nm通孔,深/宽比达30:1。
目前300mm片径生产180nm、150nm、130nm的IC设备都已进入生产线,100nm的也开始提供。
300mm生产有约500道工序,以年产12.5万片计算,片子约有500万次交接,任何一次失效,将对工厂流水生产带来极大影响。
300mm片盒放25片重8公斤,价格15000美元,为减轻劳动、安全、无磨损、无沾污的传送,现在普遍采用正面打开的统一标准箱(FOUP),FOUP的传送采取计算机控制下的悬挂式空中传送(UMHS),它既节省了超净间面积,还可用于临时存放片子,具有可操作性和可变换性的特点。
西门子公司和Motorola公司于1998年率先在德国德勒斯登建立300mm引导线,使用180nm技术生产存储器,月产1500片。
根据美国“固态杂志”今年5月统计,已建成300mm的厂有四家;于今年开始建厂的有四家;2001年后开始建厂的有九家;另外已宣布建厂的有十一家。
国际半导体技术发展路线(ITRS)曾设定:从1998年下半年开始,片径将增加到300mm;到2001年或2002年300mm片径的生产量将达到最大值。
现在的发展正逼近这个目标。
300mm之后将是450mm,目前已处于研究阶段,2003年前后进入开发阶段,2009年进入生产阶段;片径675mm的研究预计在2006年开始研究。
二、光学曝光当前曝光的主流技术曝光是芯片制造中最关键的制造工艺,由于光学曝光技术的不断创新,它一再突破人们预期的光学曝光极限,使之成为当前曝光的主流技术。
1997年美国GCA公司推出了第一台分步重复投影曝光机,被视为曝光技术的一大里程碑,1991年美国SVG公司又推出了步进扫描曝光机,它集分步投影曝光机的高分辨率和扫描投影曝光机的大视场、高效率于一身,更适合<0.25μm线条的大生产曝光。
为了提高分辨率,光学曝光机的波长不断缩小,从436mm、365mm的近紫外(NUV)进入到246 mm、193mm的深紫外(DUV)。
246nm的KrF准分子激光,首先用于0.25μm的曝光,后来Nikon公司推出NSR-S204B,用KrF,使用变形照明(MBI)可做到0.15μm的曝光。
ASML公司也推出PAS.5500/750E,用KrF,使用该公司的AERILALⅡ照明,可解决0.13μm曝光。
但1999 ITRS建议,0.13μm曝光方案是用193nm或248nm+分辨率提高技术(RET);0.10μm 曝光方案是用157nm、193nm+RET、接近式X光曝光(PXL)或离子束投影曝光(IPL)。
所谓RET是指采用移相掩模(PSM)、光学邻近效应修正(OPC)等措施,进一步提高分辨率。
值得指出的是:现代曝光技术不仅要求高的分辨率,而且要有工艺宽容度和经济性,如在RET中采用交替型移相掩模(alt PSM)时,就要考虑到它的复杂、价格昂贵、制造困难、检查、修正不易等因素。
人们出于对后光学技术可能难以胜任2008年的70nm,2011年的50nm担心,正大力研发下一代(NGL)非光学曝光,并把157nmF2准分子激光曝光作为填补后光学曝光和下一代非光学曝光间的间隙。
三、F(2)准分子激光曝光改善了折反射光学系统的性能波长为157nm的F2准分子激光器的特点是带宽很窄,Cymer公司的产品,其带宽为0.6~0.7 pm,窄带宽改善了折反射光学系统的性能。
折反射光学系统的关键是分束器立方体,它使用CaF2材料,能有效地减少束程和系统的体积,大尺寸易碎的CaF2一直是157nm曝光的制约因素,现在SVGL已展出了12~15英寸的CaF2单晶锭,这为制造大数值孔径的折反射分束器设计扫清了道路。
同时对单层抗蚀剂和在辐照下透明、持久、可靠的掩模保护膜进行了研究,SEMATECH在加州召开的157nm曝光研讨会上,宣布这方面已取得了重大进展,现在美国的SVGL、ltratech和英国的Exilech公司都在研制整机,SVGL公司准备今年底出样机,明年底出生产型设备。
首台售价约1300万美元。
比利时的微电子研究中心(IMEC)与ASML公司合作建立了157nm基地,这个基地于已经开始工作,在2003年生产,它要求各种相关工艺配套,为70nm CMOS 流片创造条件。
此外,日本SELETE也在加紧工作。
SEMATECH则购买Exitech 公司的曝光机开展针对掩模光胶、胶的处理工艺、匀胶显影轨道系统、胶的刻蚀性能和相关测量技术等方面的研究。
四、极紫外曝光欧洲和日本诸公司正在研究1997年由Intel、AMD、Micron、Motorola、SVGL、USAL、ASML组成极紫外有限公司(EUVLLC)和在加州的三个国家实验室参加,共同研发波长为13nm 的极紫外(EUV)光刻机样机,在加州Livermore的Sandia国家实验室推出的样机被视为光刻的一个重要里程碑。
据国际半导体杂志Aaron Hand介绍,光源是几个研究单位联合研制的;13nm的波长太短,几乎所有材料都能吸收它,研制捕获这种光的装置十分困难;反射镜光学表面为非球面,表面形貌及粗糙度小于一个原子;所有光学元件表面涂有达40层的多层反射层,每层厚约λ/4,控制在0.1埃精度;EUV光刻采取新的环境控制,来抑制沾污;短波长,无缺陷掩模制作难度极大;样机采用nm级精度无摩擦的磁悬浮工作台。
据EUVLLC项目经理Chuck Gwyn介绍,样机是第一步,下一步要研制生产机型为今后几年的生产做准备。
现在更多用户表示要采用,并希望参与其中。
在欧洲,蔡司、ASML和牛津公司在共同研究;在日本,Nikon、Canon 和MC在共同研究。
五、限角散射电子束投影曝光被众多厂家看好限角散射电子束投影曝光(SCALPEL)是高亮度电子源,经磁透镜聚焦产生电子束对掩模进行均匀照明,掩模是在低原子序数材料膜上覆盖高原子序数材料层组成,图形制作在高原子序数材料上。
掩模是4倍放大,用格栅支撑。
低原子序数的膜,电子散射弱,散射角度小,高原子序数的图形层,电子散射强,散射角度大,在投影光学装置的背焦面上有光阑,小散射角度电子通过光阑,在片子上形成缩小4倍的图像,再经过工作台步进实现大面积曝光。
SCALPEL的优点是:分辨率高、焦深长、不需要邻近效应校正,生产率高,它没有EUV系统中昂贵的光学系统,也不需要X光的高成本光源,而且掩模成本比其它方法要低,故被众多厂家看好,Lucent、Motorola、Samsung、TI、eLith、ASAT、ASML等公司都参与其中共同开发,在2002年推出<100nm大生产设备。
六、变轴浸没透镜缩小投影曝光准备在2002年前后推出生产型设备由IBM的Hans Pfeiffer领导的电子束研究已有30年历史,开发了变轴浸没透镜缩小投影曝光(PREV AIL)技术,Nikon公司看好这项技术,与IBM合作,准备用这项技术研制高分辨率与高生产率统一的电子束步进机。
在PREV AIL样机上,电子轰击钽单晶形成电子束,在中间掩模上形成1mm2子场,经电子透镜产生4∶1缩小图像;在片子上形成250μm2图形,电子束经曲线可变轴电子透镜(CV AL)在掩模平面上可偏移±10mm,在片子上则为±2.5mm,而掩模和片子同时连续移动,形成整个电路图形的曝光。
在PREV AIL样机上用75KV加速电压,用700nm厚的光胶,做80nm间隔线条,束偏移±2.5mm,曝光结果证实:偏移束和不偏移束形成的图像很少有差异,进一步证明了这种原理的可行性。
Nikon的Kazuya Okamoto指出:现在光胶和掩模已不是主要问题,当前在致力于大的发射源、均匀的掩模照明和具有大子场、大偏移、对掩模热负荷小的低畸变透镜,这种电子束步进机将用于100nm曝光,并可延伸到50nm,产量>20片/时(300mm片),在2002年或2003年推出生产型设备。
七、电子束直写在SOC的开发中,更具灵活性电子束(EB)具有波长短、分辨率高、焦深长、易于控制和修改灵活的特点,广泛应用于光学和非光学曝光的掩模制造。