加工中心的刀具和刀具补偿
加工中心对刀与刀具补偿操作教程

加工中心对刀与刀具补偿操作教程时间:2012-05-30 作者:模具联盟网点击: 1479 评论:0 字体:T|T一、对刀对刀方法与具体操作同数控铣床。
二、刀具长度补偿设置加工中心上使用的刀具很多,每把刀具的长度和到 Z 坐标零点的距离都不相同,这些距离的差值就是刀具的长度补偿值,在加工时要分别进行设置,并记录在刀具明细表中,以供机床操作人员使用。
一般有两种方法:1、机内设置这种方法不用事先测量每把刀具的长度,而是将所有刀具放入刀库中后,采用 Z 向设定器依次确定每把刀具在机床坐标系中的位置,具体设定方法又分两种。
( 1 )第一种方法将其中的一把刀具作为标准刀具,找出其它刀具与标准刀具的差值,作为长度补偿值。
具体操作步骤如下:①将所有刀具放入刀库,利用 Z 向设定器确定每把刀具到工件坐标系 Z 向零点的距离,如图 5-2 所示的 A 、 B 、 C ,并记录下来;②选择其中一把最长(或最短)、与工件距离最小(或最大)的刀具作为基准刀,如图 5-2 中的 T03 (或 T01 ),将其对刀值 C (或 A )作为工件坐标系的 Z 值,此时 H03=0 ;③确定其它刀具相对基准刀的长度补偿值,即 H01= ±│ C-A │, H02= ±│ C-B │,正负号由程序中的 G43 或 G44 来确定。
④将获得的刀具长度补偿值对应刀具和刀具号输入到机床中。
( 2 )第二种方法将工件坐标系的 Z 值输为 0 ,调出刀库中的每把刀具,通过 Z 向设定器确定每把刀具到工件坐标系 Z 向零点的距离,直接将每把刀具到工件零点的距离值输到对应的长度补偿值代码中。
正负号由程序中的 G43 或 G44 来确定。
2、机外刀具预调结合机上对刀这种方法是先在机床外利用刀具预调仪精确测量每把在刀柄上装夹好的刀具的轴向和径向尺寸,确定每把刀具的长度补偿值,然后在机床上用其中最长或最短的一把刀具进行 Z 向对刀,确定工件坐标系。
数控铣床与加工中心刀具补偿讲解

数控铣床与加工中心刀具补偿和偏置功能刀具补偿可分为刀具长度补偿和刀具半径补偿,其内容和方法已在前面章节中作了详细说明,本章拟用另外一种指令格式对刀具长度补偿功能进行介绍,目的在于进一步强调不同的数控系统对同一编程功能可能采用不同的指令格式。
5.4.1 刀具半径补偿G41、G42、G40刀具半径补偿有两种补偿方式,分别称为B型刀补和C型刀补。
B型刀补在工件轮廓的拐角处用圆弧过渡,这样在外拐角处,由于补偿过程中刀具切削刃始终与工件尖角接触,使工件上尖角变钝,在内拐角处会则引起过切。
C型刀补采用了比较复杂的刀偏矢量计算的数学模型,彻底消除了B型刀补存在的不足。
下面仅讨论C型刀补。
(1).指令格式指令格式:G17/G18/G19 G00/G01 G41/G42G41:刀具半径左补偿G42:刀具半径右补偿半径补偿仅能在规定的坐标平面内进行,使用平面选择指令G17、G18或G19可分别选择XY、ZX或YZ平面为补偿平面。
半径补偿必须规定补偿号,由补偿号L存入刀具半径值,则在执行上述指令时,刀具可自动左偏(G41)或右偏(G42)一个刀具半径补偿值。
由于刀补的建立必须在包含运动的程序段中完成,因此以上格式中,也写入了GOO(或GO1)。
在程序结束前应取消补偿。
具体的判断方法见本书第二章。
(2).刀补过程刀具补偿包括刀补建立,刀补执行和刀补取消这样三个阶段,其中刀补建立与刀补取消均应在非切削状态下进行。
程序中含有G41或G42的程序段是建立刀补的程序段,含有G40的程序段是取消刀补的程序段,在执行刀补期间刀具始终处于偏置状态。
为了在建立刀补和取消刀补时,避免发生过切或撞刀,以及在刀补执行期间掌握刀具在运动段的拐角处的运动情况,有必要对刀补过程作一简要说明。
(3).刀具偏置矢量刀具偏置矢量是二维矢量,其大小等于D代码所规定的偏置量,矢量方向的计算是依照各轴刀具进给情况而于控制单元内自动完成的。
通过该偏置矢量计算出刀具中心偏离编程轨迹的实际轨迹。
浅谈加工中心刀具补偿功能的应用

步, 撤消刀具半径补偿 , 加工结束后取消刀具半径补 偿, 刀具 回到起始位置。 2 2 刀具 半 径补 偿 的应 用 分析 .
2 2 1 实现 零件 的轮 廓 加 工 , 高加 工精 度 .. 提
使用变量和给变量赋值 , 并能进行算术运算、 逻辑运
算和条 件转 移, 数 控程序编制 的高级 形式。 是 F N C系统 的变 量编程 , AU 可利用 G 0 1P 1 一 1L2 0 R 指 令 ;EME S82 系 统 的 变量 编 程 , 利用 ¥T — S I N 0 D 可 C D 6 一一 =R 指令 , P [ ,] 一 再和系统变量按照某种规律 改变刀具半径补偿值 ; 在程序同一轨迹的控制下 , 可 实现对具有一定规律 的边缘 截面复杂曲面的加工 , 通用性强。如工件任意轮廓的倒圆、 倒角加工 , 或圆 孔/ 圆柱 的边缘 倒 圆 、 角加工 等 。 倒
第 二 步 , 行 刀 具 半 径 补 偿 , 行 切 削 工 作 。第 三 执 进
偿值 , 即可实现对等壁厚零件的内外轮廓的粗 、 精加 工。另一种情况 , 刀具半径补偿值在加工过程中需
要按一定 的规律改变 。变刀具半径补偿需要与变量 编程 结 合才 能发 挥作 用 。所 谓 变 量 编程 , 即程序 中
内的编程零点 , 因为刀具是 由主轴锥孔定位而不 改 变, 而对于 z坐标的零点就不一样 了, 每一把刀 的 长度都是不 同的, 此时如果设定刀具长度补偿 , 把不 同的刀具长度进行补偿 , 此时机床零点设定之后 , 即
度与标准刀具长度的差值作为该刀具的长度补偿数
值设置到其所使用的 H代码地址 内。试切 时在零 件或夹具上垂直于 z轴 ( 平行于 x Y轴 ) 、 的平面族 内选择一个 z 平面 , o 该平面是刀具长度补偿后编程 的Z 坐标零点。
数控机床刀具补偿功能的应用

刀具长度补偿是通过调整刀具在Z轴上 的位置来实现对工件表面的加工,而刀 具半径补偿则是通过调整刀具在X轴或 Y轴上的位置来实现对工件表面的加工
。
刀具补偿功能可以提高加工精度、减少 加工时间、降低加工成本。
刀具补偿的参数设置
01
刀具补偿参数主要包括刀具类型、刀具直径、刀具长
度、刀具角度等。
面形状和尺寸的高精度控制。
数控铣床应用
在数控铣床上,刀具补偿可应用于 三维空间加工,如曲面加工、五轴 加工等,以实现复杂零件的高效加 工。
加工中心应用
在加工中心上,刀具补偿可应用于 多轴联动加工,实现复杂零件的高 效加工。
02
CATALOGUE
刀具补偿的原理与实现
刀具补偿的原理
刀具补偿的基本原理是通过对刀具位置 的调整,以实现工件表面形状和尺寸的 精确控制。补偿分为刀具长度补偿和刀
03
提高生产效率
降低成本
通过快速调整刀具补偿参数,可 以减少换刀和调试时间,提高生 产效率。
正确使用刀具补偿功能可以减少 刀具磨损和报废,降低生产成本 。
数控机床刀具补偿功能的发展趋势与前景
智能化
随着人工智能技术的发展,未来刀具补偿功能将更加智能化,能够根据加工条件和刀具磨损情况自动调整补偿参数, 提高加工精度和效率。
04
CATALOGUE
数控机床刀具补偿功能的优化与改进
刀具补偿的误差分析
01
02
03
刀具几何误差
刀具的几何形状和尺寸对 加工精度产生直接影响。
刀具磨损误差
刀具在切削过程中会逐渐 磨损,导致加工精度下降 。
受热变形误差
切削过程中产生的热量会 导致刀具和工件变形,从 而影响加工精度。
关于加工中心刀具半径补偿判定方法

加工中心刀具补偿G41/G42判定方法
判定方法:
假定操作者面向刀具前进的方向站立,刀具前进的箭头指向自己,此时,如果被加工表面在自己的左手边,则为G41(左刀补);如果被加工表面在自己的右手边,则为G42(右刀补);
切记!!G41/G42与G02/G03没有严格的对应关系,具体什么时候该用G41、G42一定要学会自己判断。
特例:如果程序中某处使用的G41/G42与上面的判定方法“相反”,则在使用CAM编程时,刀具补偿选择了“两者反向”,此时所加刀补正负值正好与上面的相反。
举例说明:
正负值的判定:与上述“判定方法”相同时:如果要求图1内孔(内轮廓)尺寸变大、图2外轮廓变小,则在机床刀具补偿值处输入相应的负值(相对当前值);例如当前刀补值为0.05(-0.05)mm,要求孔变大(外轮廓变小)0.02mm 时,应该将刀补值改为0.04(-0.06)mm(半径补偿)。
与上述“判定方法”相反时:如果要求图1内孔(内轮廓)尺寸变大、图2外轮廓变小,则在机床刀具补偿值处输入相应的正值(相对当前值);例如当前刀补值为0.05(-0.05)mm,要求孔变大(外轮廓变小)0.02mm时,应该将刀补值改为0.06(-0.04)mm(半径补偿)。
欢迎您的下载,
资料仅供参考!
致力为企业和个人提供合同协议,策划案计划书,学习资料等等
打造全网一站式需求。
铣削加工中心对刀方案及刀具长度补偿措施

() 2将刀具初始参 考点位置设置在非机床参考 点合 度补 偿值 的方 法 ( 2 。 种方 法 图 )这
合适 位 置上 ( 1 , 然 是为 了降低 调 整 刀具 和工件 相 对 图 )显 位置 的难度 ,它 使 得程 序员 可 以将刀 具位 置 设在 机 床运 动范围内, 在保 证 安 全 的前 提 下 的任 何合 适 位置 , 并且将 该位置作为换刀位置 。 至于 G 2 9 指令 中 x Y z的坐标 值 的 、、 获取 与前 方法 基本相 同 , 常先 移 动测量 刀具 参 考点移至 通 专用夹具 固定 点( 工件 坐标 原点 )然后在 MD 运行 方式下 , , I
实际操作时 z向工件偏置和刀具长度补偿值有 以下
( ) 于机外 对 刀 的 Z向设置 1基
这种对刀方法选择 了机床参考点作为刀具参考点的 设 置方法 : 起始点 , 当执行 回参考点操作 , 刀具就 找到程序的起点 ,
同时 选 择 机 床 参 考 点 作 为 换 刀位 置 就 显 得 比较 合 适 方 便 , 批量 生产 中很 有效 的对刀 方法 。 是 问题 在 于 G 2 令 9指 中 x、 z的坐 标值 不 能 由程序 员 在 编程 时 直接 给 出 , Y、 而 是 由操 作 者在 对 刀操 作后 给 出 ,这要 求 加工 前程 序 员 和 操作 者进 行 良好 沟通 。
这 是 一 种 靠 手 动 的操 作 机床 , 刀 具参 考 基 准 位 于 机 从
从 以上可 以看 出 , 利用 位置 寄存 器指 令 ( 9 或 G 0 G2 5) 际对 刀 调整 过程 中显得 繁 琐 复杂 , 率 不高 , 效 是一 种 传统
的对 刀方 法 。
简述刀具补偿在数控加工中的作用

简述刀具补偿在数控加工中的作用
刀具补偿是一种在数控加工中常用的技术,旨在纠正加工过程中刀具的偏斜和长度不足等问题,保证加工质量和效率。
本文将简要介绍刀具补偿的基本原理和作用。
刀具补偿的基本原理是通过测量刀具的偏斜和长度不足,来调整数控加工中的刀具参数,使刀具沿着正确的轨迹运动,达到高质量的加工效果。
刀具补偿的主要工具是刀具补偿器,它可以通过改变刀具的偏斜和长度来补偿刀具的误差。
刀具补偿的作用包括:
1. 提高加工精度:刀具补偿可以帮助数控加工中心实现高精度加工,减少加工误差,提高产品的质量和一致性。
2. 降低加工成本:通过刀具补偿,可以实现刀具的精确定位,降低刀具的磨损和损坏,延长刀具的使用寿命,降低加工成本。
3. 改善加工过程的稳定性:刀具补偿可以帮助数控加工中心实现稳定的加工过程,降低加工过程中的噪声和震动,保证加工过程的一致性和稳定性。
刀具补偿在数控加工中的应用非常广泛,是实现高质量、高效率加工的重要技术之一。
随着数控加工技术的不断发展和进步,刀具补偿技术也在不断更新和改进,以适应不同的加工环境和需求。
加工中心刀具长度补偿课件

通过调整刀具长度补偿值,可以 确保工件坐标系与机床坐标系之 间的正确对齐,提高加工精度和 减小误差。
刀具长度补偿的重要性
在加工过程中,由于刀具磨损、更换 刀具等原因,实际使用的刀具长度可 能与编程时设定的长度存在差异。
刀具长度补偿能够自动调整刀具长度 ,确保工件坐标系的准确性,提高加 工质量和效率。
总结词
手动补偿方法是一种传统的刀具长度补偿方法,需要操作员根据测量结果手动 调整刀具长度。
详细描述
操作员使用测量工具测量刀具的实际长度,然后根据测量结果手动调整刀具长 度补偿值。这种方法简单易行,但精度不高,容易受到人为误差的影响。
自动补偿方法
总结词
自动补偿方法是一种现代化的刀具长度补偿方法,通过高精度的测量系统和自动控制系统实现刀具长度的自动测 量和补偿。
高精度补偿技术的需求
高精度加工要求
随着制造业对产品精度要 求的提高,需要更高精度 的刀具长度补偿技术来保 证加工质量。
纳米级补偿
研发纳米级补偿技术,实 现刀具长度的精确控制, 提高加工表面的光洁度和 平整度。
动态实时补偿
在加工过程中,根据实时 监测数据,动态调整补偿 值,减小误差和提高加工 稳定性。
详细描述
自动补偿方法使用高精度的测量系统,如激光干涉仪或电容传感器等,实时测量刀具的实际长度,并将测量结果 反馈给加工中心控制系统。控制系统根据反馈结果自动调整刀具长度补偿值,实现刀具长度的自动补偿。这种方 法精度高,能够显著提高加工精度和生产效率。
实时补偿方法
总结词
实时补偿方法是一种先进的刀具长度补偿方法,通过实时的刀具长度监测和补偿系统,实现刀具长度 的动态调整。
实时监测
在加工过程中,需要实时监测补偿值 的准确性,及时调整以确保加工质量 。