计算机组成原理第四次实验报告
计算机组成原理实验报告

3)在增大合法码的码距时,所有码的码距应尽量均匀增大,以保证对所有码的检错能力平衡提高。
下面具体看一下对一个字节进行海明编码的实现过程。
只实现一位纠错两位检错,由前面的表可以看出,8位数据位需要5位校验位,可表示为H13H12…H2H1。
0
0
1
1
0
0
1
1
0
S1
0
0
1
0
1
0
1
0
1
0
1
0
1
由此可得校验后的数据位表达式为:
D1=D1 (S1•S2• • •S5)
D2=D2 (S1• •S3• •S5)
D3=D3 ( •S2•S3• •S5)
D4=D4 (S1•S2•S3• •S5)
D5=D5 (S1• • •S4•S5)
D6=D6 ( •S2• •S4•S5)
答:我们认为16位数据位的编码原理与8位数据位的hamming编码原理基本相同。即:,在k个数据位之外加上r个校验位,从而形成一个k+r位的新的码字,使新的码字的码距比较均匀地拉大。把数据的每一个二进制位分配在几个不同的偶校验位的组合中,当某一位出错后,就会引起相关的几个校验位的值发生变化,这不但可以发现出错,还能指出是哪一位出错,为进一步自动纠错提供了依据。
《计算机组成原理》
实验报告
实验室名称:S402
任课教师:邹洋
小组成员:王娜任芬
学号:2010212121 2010212119
实验一_Hamming码2
实验二_乘法器7
计算机组成原理实验报告

计算机组成原理实验报告实验目的,通过本次实验,深入了解计算机组成原理的相关知识,掌握计算机硬件的基本组成和工作原理。
实验一,逻辑门电路实验。
在本次实验中,我们学习了逻辑门电路的基本原理和实现方法。
逻辑门电路是计算机中最基本的组成部分,通过逻辑门电路可以实现各种逻辑运算,如与门、或门、非门等。
在实验中,我们通过搭建逻辑门电路并进行实际操作,深入理解了逻辑门的工作原理和逻辑运算的实现过程。
实验二,寄存器和计数器实验。
在本次实验中,我们学习了寄存器和计数器的原理和应用。
寄存器是计算机中用于存储数据的重要部件,而计数器则用于实现计数功能。
通过实验操作,我们深入了解了寄存器和计数器的内部结构和工作原理,掌握了它们在计算机中的应用方法。
实验三,存储器实验。
在实验三中,我们学习了存储器的原理和分类,了解了不同类型的存储器在计算机中的作用和应用。
通过实验操作,我们进一步加深了对存储器的认识,掌握了存储器的读写操作和数据传输原理。
实验四,指令系统实验。
在本次实验中,我们学习了计算机的指令系统,了解了指令的格式和执行过程。
通过实验操作,我们掌握了指令的编写和执行方法,加深了对指令系统的理解和应用。
实验五,CPU实验。
在实验五中,我们深入了解了计算机的中央处理器(CPU)的工作原理和结构。
通过实验操作,我们学习了CPU的各个部件的功能和相互之间的协作关系,掌握了CPU的工作过程和运行原理。
实验六,总线实验。
在本次实验中,我们学习了计算机的总线结构和工作原理。
通过实验操作,我们了解了总线的分类和各种总线的功能,掌握了总线的数据传输方式和时序控制方法。
结论:通过本次实验,我们深入了解了计算机组成原理的相关知识,掌握了计算机硬件的基本组成和工作原理。
通过实验操作,我们加深了对逻辑门电路、寄存器、计数器、存储器、指令系统、CPU和总线的理解,为进一步学习和研究计算机组成原理奠定了坚实的基础。
希望通过不断的实践和学习,能够更深入地理解和应用计算机组成原理的知识。
计算机组成原理实验报告4

上海大学计算机学院实验名称:指令系统实验一、实验目的1. 读出系统已有的指令,并理解其含义。
2. 设计并实现一条新指令。
二、实验原理微程序和机器指令,实验箱的机器指令系统,实验箱机器指令系统的布线,实验箱机器指令系统的工作原理,实验箱PC的打入原理,程序存储器模式下的操作。
三、实验内容1. 考察机器指令64的各微指令信号,确定该指令的功能。
(假设R0=77, A=11, 77单元存放56H数据,64指令的下一条指令为E8)2. 修改机器指令E8,使其完成“输出A+W的结果左移一位后的值到OUT”操作。
3*. 修改机器指令F0,使其完成“A+R2的结果右移一位的值到OUT”的操作四、实验步骤实验任务一:考察机器指令64的各微指令信号,确定该指令的功能。
实验步骤:1.初始化系统(Reset),进入μEM,在Adr字段送入64,按NX键,可查看其对应的微指令:64: FF 77 FF65: D7 BF EF66:FF FE 9267:CB FF FF2.分析其二进制代码,分析其控制功能64: 1111 1111 0111 0111 1111 1111从寄存器R?中取出地址打入地址寄存器MAR。
65: 1110 0111 1011 1111 1110 1111把地址寄存器MAR的存储器值EM打入寄存器W。
66:1111 1111 1111 1110 1001 0010把寄存器A和寄存器W中的数据进行或运算后打入寄存器A和标志位C,Z。
67:1100 1011 1111 1111 1111 1111读出下一条指令并立即执行。
四条指令功能:把寄存器A和寄存器R?中地址内存的数据进行或运算,结果保存在寄存器A中,然后执行下一条指令。
实验任务二:1.分解任务:修改机器指令E8,使其完成“输出A+W的结果左移一位后的值到OUT”操作的操作。
第一步完成A+W;并把“左移一位的值送OUT”;第二步完成取指令。
2.编制微指令:由“控制总线功能对应表”,可确定这四步基本操作的微指令码为:① FFDFD8 ②CBFFFF ③FFFFFF ④FFFFFF3.操作:程序存储器EM模式下,将E8指令送入A0单元,则在Adr下打入A0, DB下打入E8。
计算机组成原理实习报告

一、实习目的本次实习旨在通过实际操作,加深对计算机组成原理理论知识的理解,提高动手实践能力。
通过实习,使学生熟悉计算机系统的基本组成,了解计算机各部件的功能和相互关系,掌握计算机组成原理的基本实验方法和技能。
二、实习内容1. 计算机系统组成结构实验(1)实验目的:了解计算机系统的基本组成,熟悉各部件的功能和相互关系。
(2)实验内容:观察计算机硬件组成,包括主板、CPU、内存、硬盘、显卡等,了解各部件的功能和作用。
(3)实验步骤:1)观察计算机硬件组成,了解各部件的名称和功能。
2)了解主板、CPU、内存、硬盘、显卡等部件之间的连接关系。
3)分析计算机系统的工作原理。
2. 计算机组成原理实验(1)实验目的:加深对计算机组成原理理论知识的理解,提高动手实践能力。
(2)实验内容:1)静态随机存储器(RAM)实验:学习静态RAM的存储方式,并执行写数据和读数据的操作。
2)指令系统实验:掌握机器指令的编写与执行过程,了解算术运算指令、逻辑运算指令、标志位的作用等。
3)微程序控制器实验:了解微程序设计的方法,掌握微程序控制器的工作原理。
4)流水线CPU实验:理解流水CPU的工作原理,掌握流水线的基本概念和性能分析。
(3)实验步骤:1)按照实验指导书的要求,连接实验电路。
2)进行静态RAM的读写操作,观察实验结果。
3)编写汇编语言程序,执行算术运算、逻辑运算等指令,观察标志位的变化。
4)设计微程序控制器,实现简单指令的执行。
5)分析流水线CPU的时空图,计算吞吐率和加速比。
3. 计算机组成原理综合实验(1)实验目的:综合运用计算机组成原理知识,设计并实现一个简单的计算机系统。
(2)实验内容:1)设计一个简单的计算机系统,包括CPU、内存、输入输出设备等。
2)编写汇编语言程序,实现特定功能。
3)实现系统的输入输出操作。
(3)实验步骤:1)根据实验要求,设计计算机系统的硬件结构。
2)编写汇编语言程序,实现系统功能。
计算机组成原理实验报告(四个实验 图)

福建农林大学计算机与信息学院计算机类实验报告课程名称:计算机组成原理姓名:周孙彬系:计算机专业:计算机科学与技术年级:2012级学号:3126010050指导教师:张旭玲职称:讲师2014年06 月22日实验项目列表序号实验项目名称成绩指导教师1 算术逻辑运算单元实验张旭玲2 存储器和总线实验张旭玲3 微程序控制单元实验张旭玲4 指令部件模块实验张旭玲福建农林大学计算机与信息学院信息工程类实验报告系:计算机专业:计算机科学与技术年级: 2012级姓名:周孙彬学号: 3126010050 实验课程:实验室号:_______ 实验设备号:实验时间:指导教师签字:成绩:实验一算术逻辑运算单元实验实验目的1、掌握简单运算器的数据传输方式2、掌握74LS181的功能和应用实验要求完成不带进位位算术、逻辑运算实验。
按照实验步骤完成实验项目,了解算术逻辑运算单元的运行过程。
实验说明1、ALU单元实验构成(如图2-1-1)1、运算器由2片74LS181构成8位字长的ALU单元。
2、2片74LS374作为2个数据锁存器(DR1、DR2),8芯插座ALU-IN作为数据输入端,可通过短8芯扁平电缆,把数据输入端连接到数据总线上。
运算器的数据输出由一片74LS244(输出缓冲器)来控制,8芯插座ALU-OUT 作为数据输出端,可通过短8芯扁平电缆把数据输出端连接到数据总线上。
图2-1-1图2-1-22、ALU单元的工作原理(如图2-1-2)数据输入锁存器DR1的EDR1为低电平,并且D1CK有上升沿时,把来自数据总线的数据打入锁存器DR1。
同样使EDR2为低电平、D2CK有上升沿时把数据总线上的数据打入数据锁存器DR2。
算术逻辑运算单元的核心是由2片74LS181组成,它可以进行2个8位二进制数的算术逻辑运算,74LS181的各种工作方式可通过设置其控制信号来实现(S0、S1、S2、S3、M、CN)。
当实验者正确设置了74LS181的各个控制信号,74LS181会运算数据锁存器DR1、DR2内的数据。
计算机组成原理实验报告四

实验报告实验四数据通路组成实验一、实验目的1.将运算器模块于存储器模块联机2.进一步熟悉计算机的数据通路3.将存储器的两个存储单元的内容通过运算器相加并且将结果送回存储单元。
二、实验设备1.TDN-CM+计算机组成原理实验系统一套2.若干导线和排线三、实验电路四、实验数据并完成以下运算:( 01H )+( 02H ) →03H( 01H )⊕(02H )→04H五、实验结果分析与体会这次实验是这学期最后一次实验, 也是最为复杂的一次实验, 因为是将实验一中运算器的算术运算和实验三中的存储器结合到一起, 所以实验内容很多, 实验步骤很复杂。
然而颜老师在我们是眼前首先对实验的各环节作了详细的说明, 对我们可能在会哪些地方出错也做了明确的指导和提示, 特别是在T4和T3连接脉冲的连线上给我们做了很详细的说明。
虽然我们对实验电路图理解的很是模糊, 也基本上看不懂图的含义。
但是由于对以前两次实验的原理及步骤了解的都十分到位, 而且实验前颜老师又做了特别指点, 所以我们对本次实验的步骤大致知道了。
1、在明确步骤后我和刘佳兵开始了实验, 由于是将第一次和第三次的实验图连接到一块, 所以很多控制开关上出现了重复, 不能有效控制信号。
我们根据老师的提示将重复的开关重新定义。
具体实验步骤如下:2、按照实验一和实验三的电路图连接电路, 重新定义了线路WB、CB、LDAR的二进制控制开关(由PC-B控制WB, 由LDPC控制CB, 由LOAD控制LDAR)。
3、验证试验三写入存储器的实现。
4、将数据AAH、55H分别写入到RAM的01H和02H单元中。
(1)将数据01H作为地址置入AR中;(2)重新设置模拟开关位置, 把数据AAH置入RAM的01H;(3)将数据02H作为地址置入AR中;(4)把数据55H置入RAM的02H;5、从RAM的01H和02H单元中读出刚刚写入的数据。
(1)再一次将数据01H作为地址置入AR中;(2)把置入在RAM的01H数据的AAH读出;(3)将数据02H作为地址置入AR中;(4)把置入RAM的02H数据55H读出;6、讲读出的数据分别放入寄存器DR1和DR2中。
计算机组成原理实验报告精品9篇

计算机组成原理实验报告课程名称计算机组成原理实验学院计算机专业班级学号学生姓名指导教师20年月日实验一:基础汇编语言程序设计实验1实验目的●学习和了解TEC-XP+教学实验监控命令的用法;●学习和了解TEC-XP+教学实验系统的指令系统;●学习简单的TEC-XP+教学实验系统汇编程序设计。
2实验设备及器材●工作良好的PC机;●TEC-XP+教学实验系统和仿真终端软件PCEC。
3实验说明和原理实验原理在于汇编语言能够直接控制底层硬件的状态,通过简单的汇编指令查看、显示、修改寄存器、存储器等硬件内容。
实验箱正如一集成的开发板,而我们正是通过基础的汇编语言对开发板进行使用和学习,过程中我们不仅需要运用汇编语言的知识,还需要结合数字逻辑中所学的关于存储器、触发器等基本器件的原理,通过串口通讯,实现程序的烧录,实验箱与PC端的通讯。
4实验内容1)学习联机使用TEC-XP+教学实验系统和仿真终端软件PCEC;2)学习使用WINDOWS界面的串口通讯软件;3)使用监控程序的R命令显示/修改寄存器内容、D命令显示存储内容、E命令修改存储内容;4)使用A命令写一小段汇编程序,U命令反汇编输入的程序,用G命令连续运行该程序,用T、P命令单步运行并观察程序单步执行情况。
5实验步骤1)准备一台串口工作良好的PC机器;2)将TEC-XP+放在实验台上,打开实验箱的盖子,确定电源处于断开状态;3)将黑色的电源线一段接220V交流电源,另一端插在TEC-XP+实验箱的电源插座里;4)取出通讯线,将通讯线的9芯插头接在TEC-XP+实验箱上的串口"COM1"或"COM2"上,另一端接到PC机的串口上;5)将TEC-XP+实验系统左下方的六个黑色的控制机器运行状态的开关置于正确的位置,再找个实验中开关应置为001100(连续、内存读指令、组合逻辑、联机、16位、MACH),6)控制开关的功能在开关上、下方有标识;开关拨向上方表示"1",拨向下方表示"0","X"表示任意,其他实验相同;7)打开电源,船型开关盒5V电源指示灯亮;8)在PC机上运行PCEC16.EXE文件,根据连接的PC机的串口设置所用PC机的串口为"1"或"2",其他的设置一般不用改动,直接回车即可; (8)按一下"RESET"按键,再按一下"START"按键,主机上显示:6实验截图及思考题【例3】计算1到10的累加和。
计算机组成原理实验报告

1、根据实验方案框图,调用PC模块,选用适当元器件,画出实验电路逻辑图,并组装成电路。
2、在电路上实现下列手动单功能操作,(控制信息可用电平开关输出电平)。
→ 、
→RAM
RAM→Bus
→
设计提示:
1、利用实验箱中提供的总线接口搭接总线结构,各器件再分别挂到总线上。
2、用一片74LS273作为存贮器的地址寄存器。
一、实验目的
1、了解总线的工作原理
2、掌握总线的传送技术
3、熟悉建立总线的器件特性
二、实验内容
1、根据图2-2所示的实验方案,如果要通过“输出显示”观察到“RAM地址寄存器(AR)”中的数据,请选用适当元器件设计实现。画出实验电路逻辑图,并组装成电路。
2、在设计的电路上实现下列手动单功能操作,并写出操作步骤:
从图中可看出,地址信息及数据信息都是通过同一组数据开关经三态传输门挂上总线,再发送相应的部件的。要区分送入总线的信息是地址还是数据,可以通过对操作时序的控制来实现,本实验由于地址值及内容数据都是通过数据开关人工加载的,因此区分总线上的地址和数据信息也就是人为地操作总线上的某些芯片,打入或读出信息。
图2-2总线传送技术实验方案(例)
图3-2 1k×8位的M2114
五、实验步骤
按照实验内容设计并连接电路,
对单个存贮器地址的写操作如下:
1、 =1,CS=1
2、 =0
3、输入端D3D2D1D0输入地址(0H~15H),打入MAR
4、输入端D3D2D1D0输入数据
5、W/R=0
6、CS=1→0→1
7、返回3,写下一个数据
读操作如下:
1、 =1,CS=1
图1-6简单的节拍脉冲发生器一周期的波形
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告专业班级:姓 名:机器号:学 号: E-mail:指导教师:总成绩:分步成绩: 出勤:实验表现实验报告:实验五 模型机与机器指令执行实验一 实验目的 1 实验目的(1) 掌握控制器的工作原理(2) 掌握由控制器、运算器、存储器、组成的模型机的工作原理 (3) 通过运行各种简单程序,掌握机器指令和微指令的关系 2 实验要求(1) 做好实验预习和准备工作,掌握本次实验所用指令系统功能 (2) 将实验用汇编语言源文件编译成机器语言的目标文件 (3) 完成规定的实验内容 (4) 故障分析与排除(5) 实验结束时完成实验报告,并将报告提交服务器。
二 实验原理模型机的逻辑框图如图所示。
其指令系统和微指令系统可参看资料。
在本实验中,模型机作为一个整体工作。
所有微程序的控制信号由微程序存储器uM 输出。
而各寄存器,运算器的控制端口与uM 联接。
计算机组成原理机A W T D L RST R3R2R1R0MAR keyin portoutPC mem_a mem_dIR Control 24ALU DBUSABUSIAIBUS INT_CODE Display Input SRAMADD A,#106071C01不带进位加法C7FFEFFFFE90CBFFFF0708081C1D1EEM=01EM=CC,W=01EM=06,A=01RET08CC返回语句FEFF5FCBFFFF 0904CCCDEM=00EM=06JMP LOOP0405AC02无条件跳转语句C6FFFFCBFFFF0502ACADEM=02EM=BC四思考题1,简述IR寄存器的作用,IR0,IR1的作用。
IR2,IR3的作用。
答:IR寄存器用来存放从主存储器读出的一条指令。
IR0:用来存放后续指令地址。
IR1:保存当前正在执行的一条指令IR2:保存将被存储的下一个数据字节的地址。
IR3:保存当前CPU所访问的主存单元的地址。
2,简述跳转指令的执行过程。
答:首先从SRAM中取指令经IBUS存入IR寄存器,并且解析指令,然后将指令码存入μPC,根据μPC从μM中读出微指令,通过控制端口执行该组微指令,该组微指令有两条,所执行的操作为:以PC为地址从EM中读出数据并送到数据总线上,再将数据总线上的数据存入PC中。
该组微指令执行完毕后,从PC中将下一条指令的地址输出到MAR,再从MAR输入到SRAM,从SRAM中读取下一条指令,该条指令就是跳转到的标号位置的指令。
实验六指令/微指令设计实验一实验目的1 掌握计算机各种指令的设计和执行过程;2 掌握指令/微指令的设计方法。
二实验原理COP2000计算机组成原理实验仪,可以由用户自己设计指令/微指令系统,这样用户可以在现有的指令系统上进行扩充,加上一些较常用的指令,也可重新设计一套完全不同的指令/微指令系统。
做为原理,我们建立一个有如下指令的系统:指令助记符指令意义描述LD A,#II将立即数装入累加器AADD A,#II累加器A加立即数GOTO MM无条件跳转指令OUTA累加器A输出到端口因为硬件系统需要指令机器码的最低两位做为R0-R3寄存器寻址用,所以指令机器码要忽略掉这两位。
这四条指令的机器码分别为04H,08H,0CH,10H。
其它指令的设计相同。
指令系统设计1.打开COP2000组成原理实验软件,选择[文件|新建指令系统/微程序],观察软件下方的“指令系统”窗口,所有指令码都“未使用”。
2.选择第二行,即“机器码1”为0000 01XX行,在下方的“助记符”栏填入数据装载功能的指令助记符“LD”,在“操作数1”栏选择“A”,表示第一个操作数为累加器A。
在“操作数2”栏选择“#II”,表示第二个操作数为立即数。
按“修改”按钮确认。
3.选择第三行,即“机器码1”为0000 10XX行,在下方的“助记符”栏填入加法功能的指令助记符“ADD”,在“操作码1”栏选择“A”,表示第一操作数为累加器A,在“操作数2”栏选择“#II”,表示第二操作数为立即数。
按“修改”按钮确认。
4.选择第四行,即“机器码1”为0000 11XX行,在下方的“助记符”栏填入无条件跳转功能的指令助记符“GOTO”,在“操作码1”栏选择“MM”,表示跳转地址为MM,此指令无第二操作数,无需选择“操作数2”。
按“修改”按钮确认。
5.选择第五行,即“机器码1”为0001 00XX行,在下方的“助记符”栏填入输出数据功能的指令助记符“OUTA”,由于此指令隐含指定了将累加器A输出到输出商品寄存器,所以不用选择“操作码1”和“操作数2”,按“修改”按钮确认。
输入完成了四条指令如图,微指令系统设计将窗口切换到“uM微程序”窗口,现在此窗口中所有微指令值都是0FFFFFFH,也就是无任何操作,我们需要在此窗口输入每条指令的微程序来实现该指令的功能。
1.程序开始要执行的第一条微指令应是取指操作,因为程序复位后,PC和uPC的值都为0,所以微程序的0地址处就是程序执行的第一条取指的微指令。
根据此功能,首先选中“_FATCH_”指令的第一行,观察窗口下方的各控制信号,有“勾”表示信号为高,处于无效状态,去掉“勾”信号为低,为有效状态。
要从EM中读数,EMRD必需有效,去掉信号下面的“勾”使其有效;读EM的地址要从PC输出,所以PCOE要有效,允许PC输出,去掉PCOE下面的“勾”,PCOE有效同时还会使PC加1,准备读EM的下一地址;IREN是将EM读出的指令码存入uPC和IR,所以要去掉IREN的“勾”使其有效。
这样,取指操作的微指令就设计好了,取指操作的微指令的值为0CBFFFFH。
2.第一条指令是把立即数装入累加器A,首先要从EM中读出立即数,并送到数据总线DBUS,再从DBUS上将数据打入累加器A中,按照这个要求,从EM中读数据,EMRD应该有效,EM的地址由PC输出,PCOE必需有效,读出的数据送到DBUS,EMEN也应有效,要求将数据存入A中,AEN也要有效,选中“LD A,#II”指令的第一行,这条微指令的值为0C7FFF7H。
为了保证程序的连续执行,每条指令的最后必需是取指令,取出下条将要执行的指令。
所以微指令的值为0CBFFFFH。
3.第二条指令为立即数加法指令,立即数加可分两步,首先从EM中读出立即数,送到DBUS,并存入工作寄存器W中,从EM中读数,EMRD应有效,读EM的地址由PC输出,PCOE要有效,读出的数据要送到DBUS,EMEN 应有效,数据存入W中,WEN应有效,根据描述,这条微指令的值为0C7FFEFH。
第二步,执行加法操作,并将结果存入A中。
执行加法操作,S2S1S0的值应为000(二进制),结果无需移位直接输出到DBUS,X2X1X0的值就要为100(二进制),从DBUS将数据再存入A中,AEN应有效。
与此同时,ABUS和IBUS空闲,取指操作可以并行执行,也就是以PC为地址,从EM中读出下条将要执行指令的机器码,并打入IR和uPC中,根据取指操作的说明,EMRD、PCOE、IREN要有效,根据上面描述,选中该指令的第二行,将EMRD、PCOE、IREN、X2X1X0、AEN、S2S1S0都置成有效和相应的工作方式,此微指令的值为0CBFF90H。
4.“GOTO MM”为无条件跳转,所要执行的操作为从EM中读出目标地址,送到数据总线DBUS上,并存入PC 中,实现程序跳转。
从EM中读数,EMRD要有效,读EM的地址由PC输出,PCOE有效,数据送到DBUS,EMEN 要有效,将数据打入PC中,由两位决定,ELP有效,指令寄存器IR的第三位IR3应为1,由于本指令机器码为0CH,存入IR后,IR3为1。
选中“GOTO MM”指令的第一行,将上面的EMRD、PCOE、EMEN、ELP设成低,使其成为有效状态,结合指令的第三位,实现程序跳转,这条微指令的值为0C6FFFFH。
下条微指令应为取指操作,微指令的值为0CBFFFFH。
5.“OUTA”,将累加器的内容输出到输出端口。
其操作为累加器A不做运算,直通输出,ALU结果不移位输出到DBUS,DBUS上的数据存入输出端口OUT。
累加器A直通输出结果,S2S1S0值要为111(二进制),ALU结果不移位输出到数据总线DBUS,X2X1X0的值要等于100(二进制),DBUS数据要打入OUT,那么OUTEN应有效。
与此同时,ABUS和IBUS空闲,取指操作可以并行执行,也就是以PC为地址,从EM中读出下条将要执行指令的机器码,并打入IR和uPC中,根据取指操作的说明,EMRD、PCOE、IREN要有效,综上所述,选中此指令的第一行,将EMRD、PCOE、IREN、OUTEN、X2X1X0、S2S1S0置成有效状态和相应的工作方式,微指令的值为0CBDF9FH。
6.选择菜单[文件|保存指令系统/微程序]功能,将新建的指令系统/微程序保存下来,以便以后调用。
为不与已有的两个指令系统冲突,将新的指令系统/微程序保存为“”。
三实验内容1. 对新设计的指令系统的验证:(1)在源程序窗口输入下面程序LD A,#0LOOP:ADD A,#1OUTAGOTO LOOP(2)将程序另存为,将程序汇编成机器码,观察反汇编窗口,会显示出程序地址、机器码、反汇编指令。
(3)按快捷图标的F7,执行“单微指令运行”功能,观察执行每条微指令时,数据是否按照设计要求流动,寄存器的输入/输出状态是否符合设计要求,各控制信号的状态,PC及uPC如何工作是否正确。
(4) 运行过程写入下表:汇编指令程序地址机器码指令说明微程序PC uPC运行时寄存器或存储器的值LD A,#000010400将立即数装入累加器A C7FFF7CBFFFF01020405EM=08,A=00ADD A,#102030801累加器A加立即数C7FFEFCBFF9003040809EM=01EM=10,W=01(范文素材和资料部分来自网络,供参考。
可复制、编制,期待你的好评与关注)。