整式,分式,因式分解,二次根式解题技巧
二次根式常见题解法

二次根式的运算1.二次根式的乘除运算(1)运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。
(2)注意每一步运算的算理。
(3)乘法公式的推广:(4)注意乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式。
2.二次根式的加减运算需要先把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变。
3.二次根式的混合运算(1)明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里面的。
(2)整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。
(3)二次根式运算结果应化简。
另外,根式的分数必须写成假分数或真分数,不能写成带分数或小数。
4.简化二次根式的被开方数(1)因式内移时,若m<0,则负号留在根号外。
即:。
(2)因式外移时,若被开数中字母取值范围未指明时,则要进行讨论。
即:。
二次根式的常用解法1.乘法公式法【例1】计算:【分析】因为,所以中可以提取公因式。
2.因式分解法【例2】化简:【分析】该题的常规做法是先进行分母有理化,然后再计算,可惜运算量太大,不宜采取。
但我们发现和可以在实数范围内进行因式分解。
3.整体代换法【例3】化简【分析】该代数式的两个分式互为倒数,直接进行运算计算量相当的大。
不妨另辟蹊径,设,,则,。
4.巧构常值代入法【例4】已知x2-3x+1=0,求的值。
【分析】已知形如ax2+bx+a=0(x≠0)的条件,所求式子中含有的项,可先将ax2+bx+a=0化为,即先构造一个常数,再代入求值。
二次根式的化简技巧

二次根式的化简技巧
以下是 6 条关于二次根式的化简技巧:
1. 嘿,你知道吗?完全平方数真是个好帮手啊!比如遇到根号下 16,
不就一下能想到 4 的平方是 16 嘛,那这化简起来多轻松呀!直接就是 4 啦,像这种明显是完全平方数的,一定要第一时间利用起来呀!
2. 哇塞,同类二次根式就像好兄弟一样呀!看见它们在一起,那就可以合并呀!比如说根号 3 加上 3 倍根号 3,这不就是 4 倍根号 3 嘛,是不是很有
意思呀?
3. 哎呀呀,分母有理化可太重要啦!就像解方程的时候要消除分母一样。
比如根号 2 除以 2,分子分母同乘根号 2,就变成 2 分之根号 4,也就是 1 啦,是不是很神奇呢?
4. 嘿,因式分解在二次根式化简里也是大功臣呐!像根号下 12 呀,分解成根号下4 乘3,那不就能化简成2 倍根号3 了嘛,这可是很实用的一招呀!
5. 哇哦,被开方数里要是有小数可别慌!可以把小数变成分数呀,然后再化简。
比如根号下,变成 1/4,那结果就是 1/2 呀,这招很妙吧!
6. 哈哈,二次根式的化简技巧还有很多很多呢!就像一个个宝藏等着我们去挖掘,只要我们用心去学,肯定能把它们都掌握啦!
我的观点结论就是:这些二次根式化简技巧真的超有用,大家一定要好好掌握呀!。
中考数学《整式》《分式》考点分析及专题训练

中考数学《整式》《分式》考点分析及专题训练整式1、定义(1)单项式:用数或字母的乘积表示的式子叫做单项式。
单独的一个数或一个字母也是单项式。
单项式中的数字因数叫做这个单项式的系数。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
(2)多项式:几个单项式的和叫做多项式。
其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
多项式里,次数最高项的次数,叫做这个多项式的次数。
单项式与多项式统称整式。
(3)同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
(4)合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。
2、整式的运算(1)整式的加减:几个整式相加减,如有括号就先去括号,然后再合并同类项。
去括号法则:同号得正,异号得负。
即括号外的因数的符号决定了括号内的符号是否改变:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
(2)整式的乘除运算①同底数幂的乘法:a m·a n=a m+n。
同底数幂相乘,底数不变,指数相加。
②幂的乘方:(a m)n=a mn。
幂的乘方,底数不变,指数相乘。
③积的乘方:(ab)n=a n b n。
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
④单项式与单项式的乘法:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
⑤单项式与多项式的乘法:p(a+b+c)=pa+pb+pc。
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
⑥多项式与多项式的乘法:(a+b)(p+q)=ap+aq+bp+bq。
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
平方差公式:(a+b)(a-b)=a2-b2。
中考数学考前满分计划:整式、分式、二次根式、因式分解(含解析)

○热○点○考○点○解○读一、整式1.单项式与多项式单独的一个数或一个字母也是单项式.2.合并同类项合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变,例如:合并同类项3x 2y 和4x 2y 为3x 2y +4x 2y =(3+4)x 2y =7x 2y .3.整式的运算(1)整式的加减运算实际就是合并同类项.(2)整式的乘法:()()a b m n am an bm bn ++=+++.(3)整式的除法:单项式除以单项式时,把系数、相同字母的幂分别相除,作为商的因式,对于只在被除式中含有的字母,则照抄下来;多项式除以单项式时,用多项式的每一项分别除以单项式,再把所得的商相加.(4)乘法公式①平方差公式:22()()a b a b a b +-=-.②完全平方公式:222()2a b a ab b ±=±+.4.幂的运算性质(1)同底数幂相乘法则:m n m n a a a +⋅=(,m n 为整数,0a ≠)(2)幂的乘方法则:()m n mn a a =(,m n 为整数,0a ≠)(3)积的乘方法则:()n n n ab a b =(n 为整数,0ab ≠)整式、分式、二次根式、因式分解常识必背语言叙述:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.5.用十字相乘法分解因式利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )乘法法则.它的一般规律是:(1)对于二次项系数为1的二次三项式,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式(2)对于二次项系数不是1的二次三项式(a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数,使,,且,那么.一个式子是分式需满足的三个条件:q px x ++2))(()(2b x a x ab x b a x ++=+++c bx ax ++22121,,,c c a a a a a =⋅21c c c =⋅21b c a c a =+1221c bx ax ++2))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++=易错易混2.约分(1)分式约分时,要注意不注意符号导致的错误.(2)要注意约分不彻底导致的错误.(3)约分时需注意分式的分子、分母都是乘积形式时才能进行约分;分子、分母是多项式时,通常先将分子、分母分解因式,再约分.(4)约分的结果是整式或最简分式.(5)分式的约分是恒等变形,约分前后分式的值不变.3.分解因式要彻底.方法必知1.同类项(1)几个项是不是同类项,一看所含字母是否完全相同.二看相同字母的指数是否相同.“二同”缺一不可.(2)同类项与单项式的系数无关,与字母顺序无关,几个常数项也是同类项.(3)同类项不一定是两项,也可以是三项,四项……但至少为两项.2.合并同类项(1)合并同类项时,注意合并的只是系数,字母部分不变,不要漏掉.(2)合并同类项时,注意各项系数的符号,尤其系数为负数时,不要遗漏负号,同时不要丢项.(3)如果两个同类项的系数互为相反数,合并同类项的结果为0.3.整式的加减的最后结果的要求:(1)不能含有同类项,即要合并到不能再合并为止;(2)一般按照某一字母的降幂或升幂排列;(3)不能出现带分数,带分数必须要化为假分数.4.整式的化简求值(1)化简求值题一般先按整式的运算法则进行化简,然后再代入求值.(2)在求整式的值时,代入负数时应用括号括起来,作为底数的分数也应用括号括起来5.约分时需要注意的问题:(1)如果分子、分母中至少有一个是多顶式,就应先分解因式,然后找出分子、分母的公因式,再约分.(2)注意发现分式的分子和分母的一些隐含的公因式,如a﹣5与5﹣a表面虽不相同,但通过提取“﹣”可发现含有公因式(a﹣5).(3)当分式的分子或分母的系数是负数时,可利用分式的基本性质,把负号提到分式的前面.通分时确定了分母乘什么,分子也必须随之乘什么,要防止只对分母变形而忽略了分子,导致变形前后分式的值发生变化而出错.6.分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,在运算过程中要注意正确地运用运算法则,灵活地运用运算律,使运算尽量简便.7.因式分解(1)因式分解是针对多项式而言的,一个单项式本身就是数与字母的积,不需要再分解因式;(2)因式分解的结果是整式的积的形式,积中几个相同因式的积要写成幂的形式;(3)因式分解必须分解到每一个因式都不能再分解为止;(4)因式分解与整式乘法是方向相反的变形,二者不是互为逆运算.因式分解是一种恒等变形,而整式乘法是一种运算.8.提公因式法(1)多项式的公因式提取要彻底,当一个多项式提取公因式后,剩下的另一个因式中不能再有公因式.(2)提公因式后括号内的项数应与原多项式的项数一样.(3)若多项式首项系数为负数时,通常要提出负因数.9.十字相乘法这类式子在许多问题中经常出现,其特点是:(1)二次项系数是1;(2)常数项是两个数之积;(3)一次项系数是常数项的两个因数之和.◇以◇练◇带◇学1.(鞍山)下列运算正确的是( )A .222(4)8ab a b =B .22423a a a +=C .642a a a ÷=D .222()a b a b +=+2.(攀枝花)我们可以利用图形中的面积关系来解释很多代数恒等式.给出以下4组图形及相应的代数恒等式:其中,图形的面积关系能正确解释相应的代数恒等式的有( )A .1个B .2个C .3个D .4个3.(邵阳)下列计算正确的是( )A .623a a a =B .235()a a =C .22()()a ba ba b a b +=+++D .01()13-=4.(内蒙古)下列运算正确的是( )A+=B .236()a a -=C .11223a a a+=D .21133b ab a b÷=5.(成都)若23320ab b --=,则代数式2222(1)ab b a ba a b---÷的值为 .6.x 的取值范围是 .7.(扬州)分解因式:24xy x -= .8.(内蒙古)分解因式:34x x -= .9.(盐城)先化简,再求值:2(3)(3)(3)a b a b a b +++-,其中2a =,1b =-.10.(滨州)先化简,再求值:22421()244a a a a a a a a -+-÷---+,其中a 满足211(6cos6004a a --⋅+︒=.1.(官渡区校级模拟)按一定规律排列的式子:a ,32a ,54a ,78a ,916a ,⋯,则第2024个式子为( )A .202320252a B .20244047(21)a -C .202340472a D .202440492a 2.(济南一模)下列运算正确的是( )A .22a b ab+=B .2222a b a b a b-=C .238()a a =D .84222a a a ÷=3.(金山区二模)单项式22a b -的系数和次数分别是( )A .2-和2B .2-和3C .2和2D .2和34.(龙岗区模拟)下列计算正确的是( )A .236a a a ⋅=B .2323a a a +=C .2234(3)218ab ab a b -⋅=-D .326(2)3ab ab b ÷-=-5.(中山市校级一模)下列各式从左到右的变形,因式分解正确的是( )A .2()a a b a ab+=+B .23()3a ab a a b +-=+-C .22282(4)ab a a b -=-D .228(2)(4)a a a a --=+-6.(钱塘区一模)下列因式分解正确的是( )A .241(41)(41)a a a -=+-B .225(5)(5)a a a -+=+-C .22269(3)a ab b a b --=-D .22816(8)a a a -+=-7.(新乡一模)化简2422a a a ---的结果是( )A .2a +B .2a -C .12a +D .12a -8.(东莞市校级模拟)分式23x x --的值为0时,x 的值是( )A .0x =B .2x =C .3x =D .2x =或3x =9.(碑林区校级一模)先化简,再求值:2[(2)(2)(2)](4)a b b a b a a --+-÷,其中12a =,2b =.10.(龙湖区校级一模)先化简,再求值:2344(111x x x x -+-÷++,其中3x =.1.按一定规律排列的单项式:3x ,54x -,79x ,916x -,⋯,第n 个单项式是( )A .1221(1)n n n x ---B .1221(1)n n n x ++-C .1221(1)(1)n n n x ---+D .1221(1)(1)n n n x ++-+2.下列运算正确的是( )A .22(4)16x x -=-B .325x y xy +=C .432x x x ÷=D .2224()xy x y =3.下列语句正确的是( )A .5-不是单项式B .a 可以表示负数C .25a b -的系数是5,次数是2D .221a ab ++是四次三项式4.下列因式分解正确的一项是( )A .222()x y x y +=+B .24(2)(2)x x x -=+-C .2221(1)x x x --=-D .242(2)xy x xy x +=+5.要使分式11x x -+有意义,则x 应满足的条件是( )A .1x ≠-B .1x ≠C .1x <-D .1x >-6.下列二次根式中,属于最简二次根式的是( )AB C D7.计算:0|1tan 60|(2024-︒+.8.先化简,再求值:2344(111x x x x -+-÷++,其中3x =.9.先化简,再求值:2(2)(4)a a a -++,其中a =.10.先化简,再求值:(2)(2)4()a b a b a a b -+--,其中2a =-,1b =.1.【答案】C【分析】根据积的乘方,合并同类项,同底数幂的除法法则,完全平方公式进行计算,逐一判断即可解答.【解答】解:A 、222(4)16ab a b =,故A 不符合题意;B 、22223a a a +=,故B 不符合题意;C 、642a a a ÷=,故C 符合题意;D 、222()2a b a ab b +=++,故D 不符合题意;故选:C .2.【答案】D【分析】观察各个图形及相应的代数恒等式即可得到答案.【解答】解:图形的面积关系能正确解释相应的代数恒等式的有①②③④,故选:D .3.【答案】D【分析】分别根据分式的加减法则、幂的乘方与积的乘方法则、零指数幂的运算法则对各选项进行逐一计算即可.【解答】解:A 、633a a a=,原计算错误,不符合题意;B 、236()a a =,原计算错误,不符合题意;C 、221()()a b a b a b a b+=+++,原计算错误,不符合题意;D 、01()13-=,正确,符合题意.故选:D .4.【答案】D【分析】根据二次根式的加法、幂的乘法与积的乘方以及分式的运算的计算方法解题即可.【解答】解:A +=≠B .2366()a a a -=-≠,故该选项不正确,不符合题意;C .11123222223a a a a a a+=+=≠,故该选项不正确,不符合题意;21131.333b a D ab a ab b b ÷=⨯=,故该选项正确,符合题意;故选:D .5.【答案】23.【分析】先根据分式的减法法则进行计算,再根据分式的除法法则把除法变成乘法,算乘法,最后代入求出答案即可.【解答】解:2222(1ab b a b a a b---÷2222(2)a ab b a b a a b--=⋅-222()a b a b a a b-=⋅-()b a b =-2ab b =-,23320ab b --= ,2332ab b ∴-=,223ab b ∴-=,∴原式23=.故答案为:23.6.【答案】3x >.【分析】根据记二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:30x ->,解得:3x >,故答案为:3x >.7.【分析】原式提取x ,再利用平方差公式分解即可.【解答】解:原式2(4)(2)(2)x y x y y =-=+-,故答案为:(2)(2)x y y +-8.【分析】应先提取公因式x ,再对余下的多项式利用平方差公式继续分解.【解答】解:34x x -,2(4)x x =-,(2)(2)x x x =+-.故答案为:(2)(2)x x x +-.9.【分析】依据题意,利用平方差公式和完全平方公式将原式进行化简,再将a ,b 的值代入计算即可求解.【解答】解:2(3)(3)(3)a b a b a b +++-2222699a ab b a b =+++-226a ab =+.当2a =,1b =-时,原式22262(1)=⨯+⨯⨯-812=-4=-.10.【答案】244a a -+,1.【分析】将括号里面通分运算,再利用分式的混合运算法则计算,结合负整数指数幂的性质、特殊角的三角函数值化简,整体代入得出答案.【解答】解:原式2421[(2)(2)a a a a a a a -+-=÷---224(2)(2)(1)[](2)(2)a a a a a a a a a a -+--=÷---22244(2)a a a a a a a ---+=÷-24(2)4a a a a a --=⋅-2(2)a =-244a a =-+, 211()6cos6004a a --⋅+︒=,2430a a ∴-+=,243a a ∴-=-,∴原式341=-+=.1.【答案】C【分析】由题目可得式子的一般性规律:第n 个式子为:1212n n a --⋅,当2024n =时,第2024个式子为:202340472a ⋅,即可得出答案.【解答】解:式子的系数为1,2,4,8,16, ,则第n 个式子的系数为:12n -;式子的指数为1,3,5,7,9, ,则第n 个式子的指数为:21n -,∴第n 个式子为:1212n n a --⋅,当2024n =时,第2024个式子为:202340472a ⋅,故选:C .2.【答案】B【分析】根据合并同类项法则、幂的乘方法则、单项式除以单项式法则分别判断即可.【解答】解:A 、2a 与b 不是同类项,不能合并,故此选项不符合题意;B 、2222a b a b a b -=,故此选项符合题意;C 、236()a a =,故此选项不符合题意;D 、84422a a a ÷=,故此选项不符合题意;故选:B.3.【答案】B【分析】数字与字母的积叫做单项式,其中数字因数叫做单项式的系数,所有字母的指数之和叫做单项式的次数;由此计算即可.【解答】解:单项式22a b -的系数和次数分别是2-和3,故选:B .4.【答案】D【分析】根据整式相关运算法则逐项判断即可.【解答】解:235a a a ⋅=,故A 错误,不符合题意;a 与22a 不能合并,故B 错误,不符合题意;2234(3)218ab ab a b -⋅=,故C 错误,不符合题意;326(2)3ab ab b ÷-=-,故D 正确,符合题意;故选:D .5.【答案】D【分析】根据因式分解的定义逐个判断即可.【解答】解:A .从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .从左到右的变形不属于因式分解,故本选项不符合题意;C .22282(4)2(2)(2)ab a a b a b b -=-=+-,分解不彻底,从左到右的变形不属于因式分解,故本选项不符合题意;D .从左到右的变形属于因式分解,故本选项符合题意.故选:D .6.【答案】B【分析】根据平方差公式和完全平方公式逐个判断即可.【解答】解:A .241(21)(21)a a a -=+-,故本选项不符合题意;B .225(5)(5)a a a -+=+-,故本选项符合题意;C .22269(3)a ab b a b -+=-,故本选项不符合题意;D .22816(4)a a a -+=-,故本选项不符合题意;故选:B .7.【答案】A【分析】根据分式的加减法运算法则计算即可.【解答】解:2244(2)(2)22222a a a a a a a a a --+-===+----,故选:A .8.【分析】分式的值为零时:分子等于零且分母不为零.据此求得x 的值.【解答】解:依题意得:20x -=,解得2x =.经检验当2x =时,分母30x -≠,符合题意.故选:B .9.【答案】2a b -,1-.【分析】先利用平方差公式和完全平方公式进行计算,再根据多项式除以单项式的法则进行计算,最后把12a =,2b =代入计算即可.【解答】解:原式2222[44(4)](4)a ab b b a a =-+--÷2222(444)(4)a ab b b a a =-+-+÷2(84)(4)a ab a =-÷2a b =-,当12a =,2b =时,原式12212=⨯-=-.10.【答案】12x -,1.【分析】先算小括号里面的,然后算括号外面的,最后代入求值.【解答】解:原式213(2)()111x x x x x +-=-÷+++2211(2)x x x x -+=⋅+-12x =-,当3x =时,原式1132==-.1.【答案】B【分析】根据单项式的数字系数的符号,数字系数和指数的变化规律即可得出结果.【解答】解:在上述单项式中,可以发现:奇数项的数字系数的符号为正,偶数项的数字系数的符号为负,∴可得:第n 个单项式的数字系数的符号为:1(1)n --或1(1)n +-,单项式的数字系数为:1,4,9,16, ,∴第n 个单项式的数字系数为:2n ,单项式的指数为:3,5,7,9, ,∴第n 个单项式的指数为:21n +,∴第n 个单项式是1221(1)n n n x ++-,故选:B .2.【答案】D【分析】根据整式的运算法则逐项分析判断即可.【解答】解:A 、22(4)816x x x -=-+,原计算错误,不符合题意;B 、3x 与2y 不是同类项,不能合并,故原计算错误,不符合题意;C 、43x x x ÷=,原计算错误不符合题意;D 、2224()xy x y =,正确,符合题意;故选:D .3.【答案】B【分析】根据单项式的定义可判断A ,根据字母表示数的意义可判断B ,根据单项式系数和次数的定义可判断C ,根据多项式的项和次数的定义可判断D ,进而可得答案.【解答】解:A 、5-是单项式,故本选项错误,不符合题意;B 、a可以表示负数,故本选项正确,符合题意;C 、25a b -的系数是5-,次数是3,故本选项错误,不符合题意;D 、221a ab ++是二次三项式,故本选项错误,不符合题意;故选:B .4.【答案】B【分析】根据因式分解的定义进行判断即可.【解答】解:A 、222()x y x y +≠+不符合因式分解的定义,故本选项不符合题意;B 、24(2)(2)x x x -=+-符合因式分解的定义,且因式分解正确,故本选项符合题意;C 、2221(1)x x x --≠-,不符合因式分解的定义,故本选项不符合题意;D 、242(2)xy x x y +=+,原因式分解错误,故本选项不符合题意;故选:B .5.【分析】先根据分式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【解答】解:由题意,得10x +≠,解得1x ≠-,故选:A .6.【分析】直接利用最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式,进而得出答案.【解答】解:A =,不是最简二次根式,故此选项错误;B ,是最简二次根式,故此选项正确;C 2=,不是最简二次根式,故此选项错误;D =故选:B .7..【分析】根据二次根式的混合运算法则和零指数幂与特殊的三角函数值等知识点计算即可.【解答】解:原式11=---+11=-+=.8.【答案】12x -,1.【分析】先算小括号里面的,然后算括号外面的,最后代入求值.【解答】解:原式213(2)()111x x x x x +-=-÷+++2211(2)x x x x -+=⋅+-12x =-,当3x =时,原式1132==-.9.【答案】224a +,原式8=.【分析】先利用完全平方公式,单项式乘多项式的法则进行计算,然后把a 的值代入化简后的式子进行计算,即可解答.【解答】解:2(2)(4)a a a -++22444a a a a=-+++224a =+,当a =224224448=⨯+=⨯+=+=.10.【答案】24ab b -,原式9=-.【分析】先利用平方差公式,单项式乘多项式的法则进行计算,然后把a ,b 的值代入化简后的式子进行计算,即可解答.【解答】解:(2)(2)4()a b a b a a b -+--222444a b a ab=--+24ab b =-,当2a =-,1b =时,原式24(2)11819=⨯-⨯-=--=-.。
根式及其运算

根式及其运算知识定位根式是初中数学的重要内容之一,也是近年各类初中数学竞赛中常常涉及到的知识点.解此类有关根式计算题的关键在于将无理式进行有理化.但是在很多竞赛题中我们遇到的计算式子却非常复杂和灵活,其中对根式的计算要求技巧性较强,因而计算的难度较大.在进行根式运算时,往往用到绝对值、整式、分式、因式分解,以及配方法、换元法、待定系数法等有关知识与解题方法,也就是说,根式的运算,可以培养同学们综合运用各种知识和方法的能力.知识梳理二次根式的概念:式子a (a ≥0)叫二次根式。
二次根式的性质: (1)()()02≥=a a a ;(2)⎪⎩⎪⎨⎧<-=>==00002a ,a a ,a ,a a a二次根式的运算法则:(1)c )b a (c b c a ±=± (0≥c ); (2)ab b a =⋅ (00≥≥b ,a );(3)baba =(00>≥b ,a ); (4)()()0≥=a a a m m若0>>b a ,则b a >。
设m ,d ,c ,b ,a 是有理数,且m 不是完全平方数,则当且仅当d b ,c a ==时,m d c m b a +=+ 。
形如b a x +=,b a y -=的这两个根式互称为共轭根式。
当两个含有二次根式的代数式相乘时,如果它们的积不含有二次根式,则这两个代数式互为有理化因式.例题精讲◆专题一:共轭因式法【试题来源】2006年第十七届“希望杯”数学竞赛第二试 【题目】设0>m ,m x x =--+13,则代数式13-++x x 的值是 (用m 表示).【答案】m4 【解析】观察此题中13--+x x 与13-++x x 恰是共轭因式,因此想到将两式相乘得:()()()()413131322=--+=-++•--+x x x x x x即()433=-++•x x m ,所以mx x 413=-++. 点评:我们把形如b a +、b a -的两个根式互称为共轭因式,共轭因式相乘就恰好将无理式化为有理式,从而此题轻松解决. 【知识点】根式及其运算 【适用场合】当堂例题 【难度系数】2◆专题二:有理化法【试题来源】2008年全国初中数学联赛第一试 【题目】已知实数x 、y 满足()()20082008200822=----y y x x ,则2007332322--+-y x y x 的值为( )【选项】(A)-2008 (B) 2008 (C)-1 (D)1 【答案】D 【解析】由已知()()20082008200822=----y y x x 可得:200820081200822--=--y y x x然后将等式左边分子有理化得:()()200820082008200820082222--=-+-+--y y x x x x x x()20082008200820082222--=-+--y y x x x x200820082008200822--=-+y y x x∴ 2008200822--=-+y y x x ①同理可得:2008200822-+=--y y x x ②由①、②得:x = y ∴ ()2008200822=--x x变形得: 20082008200822--=--x x x x将等式的左边分子有理化得:200820082008200822--=-+x x x x∴ 2008200822-+=--x x x x∴020082=-x ,即20082=x∴原式=120072008200720073323222=-=-=--+-x x x x x .故选D.点评:有理化法是解二次根式计算题的常用方法,就其形式来说可分为分母有理化和分子有理化两类.具体方法是在分式的分母(或分子)同时乘以原二次根式的有理化因式,从而达到化无理式为有理式的目的. 【知识点】根式及其运算 【适用场合】当堂例题 【难度系数】2◆专题三:因式分解法常用方法:利用配方法将被开方数配成完全平方式或者立方式 【试题来源】2006年第十七届“希望杯”数学竞赛第二试 【题目】计算-++++12862231286223+---,得 .【答案】2-【解析】此题分子、分母均含根式,如果按照通常的做法是先分母有理化,这样计算较繁.若观察到分母可进行因式分解,先将分母因式分解后,再化简.原式()()32432223++++=()()32432223-----()()423223+++=()()423223----421421-++=222222-++-=2-=点评:从此题我们可得到这样的启发:当分子分母均含有根式时,可用因式分解法先将式子化简,再进行计算,这样能起到化繁为简的作用. 【知识点】根式及其运算 【适用场合】当堂例题 【难度系数】2【试题来源】【题目】化简:2008200820082008100435715337++⎪⎭⎫⎝⎛,得到 . 【答案】1 【解析】解:原式.【知识点】根式及其运算 【适用场合】当堂练习题 【难度系数】3【试题来源】 【题目】化简:)23)(36(23346++++,最后得_________【答案】23+【解析】原式==+【知识点】根式及其运算 【适用场合】当堂练习题 【难度系数】3◆专题四:换元法【试题来源】2004年全国初中数学联赛 【题目】已知8a ≥1, 则333183131831-+-+-++a a a a a a 的值是( )【选项】 (A)1 (B) 23a (C)a 8 (D)不能确定【答案】A【解析】解析:设318-=a x ,则8132+=x a ,83312+=+x a原式()3228313x x x +++=()3228313xx x +-++ 3238133+++=x x x 3238133+-+-+x x x ()3381+=x ()3381x -+2121x x -++==1 选A.点评:此题若用常规方法根本无法入手进行解答,此处换元法的运用妙在能达到化无理式为有理式的目的,从而使问题迎刃而解. 【知识点】根式及其运算 【适用场合】当堂例题 【难度系数】2◆专题五:裂项法【试题来源】2003年第十四届“希望杯”全国数学竞赛第二试 【题目】对于正整数n,有111111+-=+++n nn n n )n (,若某个正整数k 满足32111433413223121121=+++++++++k k k )k (,则k=______. 【答案】8【解析】解析:由公式111111+-=+++n nn n n )n (,因此有()111433413223121121++++++++++k k k k11131212111+-++-+-=k k111+-=k32111=+-k 3111=+∴k 8=∴k点评:裂项法在很多有关分式和分数的计算题中经常用到,我们仔细观察会发现能应用此方法进行计算的式子都有着某种特殊的规律.常用的裂项形式主要有以下几种: (1)()11111+-=+n n n n .如:200820071431321211⨯++⨯+⨯+⨯ 200812007131212111-++-+-= 200811-= 20082007=(2)()⎪⎭⎫⎝⎛+-=+k n n k k n n 1111.如:2008200511071741411⨯++⨯+⨯+⨯ ⎪⎭⎫ ⎝⎛-++-+-⨯=2008120051714141131 ⎪⎭⎫ ⎝⎛-⨯=20081131 2008200731⨯=2008669=(3)111111+-=+++n n n n n )n (.如本题中()111433413223121121++++++++++k k k k11131212111+-++-+-=k k111+-=k .【知识点】根式及其运算 【适用场合】当堂例题 【难度系数】3【试题来源】 【题目】4947474917557153351331++++++++【答案】73 【解析】考虑一般情形==12==原式111113(()2217747=+++-=-=【知识点】根式及其运算 【适用场合】当堂练习题 【难度系数】3◆专题六:条件转化法【试题来源】2006年第十七届“希望杯”数学竞赛第一试【题目】已知x =22+1,则分式15119232----x x x x 的值等于__________.【答案】2【解析】由x =22+1得:221=-x 两边平方得:()()22221=-x ,即722+=x x所以原式()()1511729272--+--+=x x x x x 154222---=x x ()1547222--+-=x x12--==2点评:此题先通过乘方的方法将已知条件中的无理式x =22+1,转化为有理式722+=x x .再代入所求代数式中,通过逐步降次,从而求得代数式的值,因此这种方法称为条件转化法. 【知识点】根式及其运算 【适用场合】当堂例题 【难度系数】3【试题来源】 【题目】设215-=a ,则=-+---+aa a a a a a 3234522 . 【答案】-2 【解析】解:,,因此,本题正确答案是-2.【知识点】根式及其运算 【适用场合】当堂练习题 【难度系数】3◆专题七:配方及平方法【试题来源】2008年第十九届“希望杯”数学竞赛第二试 【题目】当2>x 时,化简代数式1212--+-+x x x x ,得 .【答案】12-x【解析】法一:解析:应用配方法可得:()112112+-+-=-+x x x x()2211121+•-+-=x x()211+-=x 同理可得:=--12x x ()211--x∴1212--+-+x x x x()()221111--++-=x x1111--++-=x x∵2>x∴原式12-=x .点评:配方法是化简多重根式的常用方法.其根本做法是把被开方式b a 2±配方成完全平方式()2y x ±的形式()0,0≥≥y x ,即是要设法找到两个正数x ,y(x >y),使x+y=a ,xy=b ,则()y x yx xy y x b a ±=±=±+=±222,其中(x >y).法二: 对于上面的例子还可以进行另一种思考:由于12-+x x 与12--x x 互为有理化因式(共轭因式),则有()()2222121212-=--=--•-+x x x x x x x ,因此原式平方后是一个有理式,所以上题还可以用平方法. 解析:设1212--+-+=x x x x y ,则y >0.将上式两边分别平方得:()()1212122122--+--•-++-+=x x x x x x x x y()221222--+=x x x44222+-+=x x x ()2222-+=x x222-+=x x∵2>x ,∴442-=x y ∴1244-=-=x x y点评:解答含根式的计算题,关键在于如何将无理式转化成有理式.如果原无理式直接平方后就能从无理式转化为有理式,那么我们不妨用平方法,这种方法的解题思路更加自然流畅,计算过程也更加简便易行.【知识点】根式及其运算 【适用场合】当堂例题 【难度系数】3【试题来源】武汉市选拔赛试题 【题目】化简22)1(111+++n n,所得的结果为( )A .1111+++n n B .1111++-n n C .1111+-+n n D .1111+--n n 【答案】C【解析】待选项不再含根号,从而可预见被开方数通过配方运算后必为完全平方式形式.原式111n n n +=-+选(C )【知识点】根式及其运算 【适用场合】当堂练习题 【难度系数】3◆专题八:巧用乘法公式解题【试题来源】2004年第十五届“希望杯”数学竞赛第二试 【题目】对于任意的自然数n ,有f(n)=323232121121+-+-+++n n n n n , 则f(1)+f(3)+f(5)+…+f(999)= . 【答案】5【解析】注意到f(n)表达式的分母可整理成:()()2333231111-+-•+++n n n n ,形如22b ab a ++的形式,类似于立方差公式的一部份,因此考虑用立方差公式. 由立方差公式:()()2233bab a b a b a ++-=-有()()333311--+n n()()()⎥⎦⎤⎢⎣⎡-+-•+++--+=23332333111111n n n n n n即()()()⎥⎦⎤⎢⎣⎡-+-•+++•--+=233323331111112n n n n n n∴1=()()()⎥⎦⎤⎢⎣⎡-+-•+++•--+2333233311111121n n n n n n将其代入f(n)表达式得:f(n )=()()()()()23332323332333111111111121-+-•+++⎥⎦⎤⎢⎣⎡-+-•+++•--+•n n n n n n n n n n=()331121--+•n n∴f(1)+f(3)+f(5)+…+f(999)()()()()33333333998100021462124210221-•++-•+-•+-•=()3333333310009989984422021+-++-+-+-= 1021⨯= 5=点评:此题用常规方法无法入手进行解答,已知条件中的表达式也比较复杂,这时我们从表达式的形式上进行分析,得到22b ab a ++的形式,自然联想到立方差公式,然后运用乘法公式将条件进行转化,从而找到解决问题的捷径. 【知识点】根式及其运算 【适用场合】当堂例题 【难度系数】3◆专题九:活用整数、根式的性质解题【试题来源】2006年第十七届“希望杯”数学竞赛第一试【题目】计算2200612008200720062005-+⨯⨯⨯的结果是__________. 【答案】2005【解析】:注意到此题中2005、2006、2007、2008是四个连续的正整数,而四个连续的正整数的积与1的和是一个完全平方数.因此本题有了如下的简便解法:原式()()()2200612200612006200612006-++⨯+⨯⨯-==()[]()()[]2200612200612006120062006-++⨯-⨯+⨯=()()2222006122006200620062006-+-+⨯+()()22222006120062006220062006-++-+=()2222006120062006--+=222006120062006--+==2005点评:正整数具有这样的性质“四个连续的正整数的积与1的和是一个完全平方数”,而本题恰是灵活运用了正整数的这一性质进行解答的.我们可以看到正整数的某些性质恰是解决有关正整数问题的金钥匙.【知识点】根式及其运算 【适用场合】当堂例题 【难度系数】3【试题来源】重庆市竞赛题【题目】已知254245222+-----=xx x x y ,则22y x += .【答案】6【解析】因一个等式中含两个未知量,初看似乎条件不足,不妨从二次根式的定义入手.二次根式有如下重要性质:(1)0≥a ,说明了a 与a 、na 2一样都是非负数;(2) a a =2)( (≥a 0),解二次根式问题的途径——通过平方,去掉根号有理化;(3) a a =2)(,揭示了与绝对值的内在一致性.著名数学教育家玻利亚曾说,“回到定义中去”,当我们面对条件较少的问题时,记住玻利亚的忠告,充分运用概念解题.提示:22222205420,262045x x x y x y x x⎧-≥⎪⎪-→-==→+=⎨-⎪≥⎪-⎩【知识点】根式及其运算【适用场合】当堂例题 【难度系数】3习题演练【试题来源】 【题目】计算:(1)1014152110141521+--+++;(2)3151026332185231--+-+++.【答案】(1)562- (2)233- 【解析】(1)原式=101415212(57)3(57)(23)(57)101415212(57)3(57)(23)(57)+--+-+-+==++++++++(23)(32)(526)265=--=--=-(2)315102633218(31510)(1826)(332)52315231--+-+-+-+-=++++5(332)23(332)(332)(332)(5231)33252315231-+-+--++===-++++【知识点】根式及其运算 【适用场合】随堂课后练习 【难度系数】3【试题来源】“希望杯”邀请赛试题 【题目】计算223810++ 【答案】24+【解析】原式222108122(2)108(12)108(12)=+++=++=++242(2)4=+==【知识点】根式及其运算【适用场合】随堂课后练习【难度系数】4【试题来源】湖北省孝感市“英才杯”竞赛题【题目】计算1212--+-+aaaa【答案】见解析【解析】通过配方可以简化一重根号,本题的关键是就a的取值情况讨论,解决含根号、绝对值符号的综合问题.原式=2112aa⎧≤≤≤⎪==⎨>⎪⎩ 1,即12时,即时 【知识点】根式及其运算【适用场合】随堂课后练习【难度系数】3【试题来源】山东省竞赛题【题目】已知521332412---=----+ccbaba,求cba++的值.【答案】20【解析】思路点拨已知条件是一个含三个未知量的等式,三个未知量,一个等式怎样才能确定未知量的值呢?考虑从配方的角度试一试.原式可化为:2222211]2212][(3)2339]2a c c-+--+=----+即22211)2)]3)02++=,因此有10=,得2a=;20=,得6b=30=,得12c=。
根式及其运算.

根式及其运算二次根式的概念、性质以及运算法则是根式运算的基础,在进行根式运算时,往往用到绝对值、整式、分式、因式分解,以及配方法、换元法、待定系数法等有关知识与解题方法,也就是说,根式的运算,可以培养同学们综合运用各种知识和方法的能力.下面先复习有关基础知识,然后进行例题分析.二次根式的性质:二次根式的运算法则:设a,b,c,d,m是有理数,且m不是完全平方数,则当且仅当两个含有二次根式的代数式相乘时,如果它们的积不含有二次根式,则这两个代数式互为有理化因式.例1 化简:法是配方去掉根号,所以因为x-2<0,1-x<0,所以原式=2-x+x-1=1.=a-b-a+b-a+b=b-a.说明若根式中的字母给出了取值范围,则应在这个范围内进行化简;若没有给出取值范围,则应在字母允许取值的范围内进行化简.例2 化简:分析两个题分母均含有根式,若按照通常的做法是先分母有理化,这样计算化简较繁.我们可以先将分母因式分解后,再化简.解法1 配方法.配方法是要设法找到两个正数x,y(x>y),使x+y=a,xy=b,则解法2 待定系数法.例4 化简:(2)这是多重复合二次根式,可从里往外逐步化简.分析被开方数中含有三个不同的根式,且系数都是2,可以看成解设两边平方得②×③×④得(xyz)2=5×7×35=352.因为x,y,z均非负,所以xyz≥0,所以xyz=35.⑤⑤÷②,有z=7.同理有x=5,y=1.所求x,y,z显然满足①,所以解设原式=x,则解法1 利用(a+b)3=a3+b3+3ab(a+b)来解.将方程左端因式分解有(x-4)(x2+4x+10)=0.因为x2+4x+10=(x+2)2+6>0,所以x-4=0,x=4.所以原式=4.解法2说明解法2看似简单,但对于三次根号下的拼凑是很难的,因此本题解法1是一般常用的解法.例8 化简:解(1)本小题也可用换元法来化简.解用换元法.解直接代入较繁,观察x,y的特征有所以3x2-5xy+3y2=3x2+6xy+3y2-11xy=3(x+y)2-11xy=3×102-11×1=289.例11 求分析本题的关键在于将根号里的乘积化简,不可一味蛮算.解设根号内的式子为A,注意到1=(2-1),及平方差公式(a+b)(a-b)=a2-b2,所以A=(2-1)(2+1)(22+1)(24+1)…(2256+1)+1=(22-1)(22+1)(24+1)(28+1)…(2256+1)+1=(24-1)(24+1)(28+1)(216+1)…(2256+1)+1=…=(2256-1)(2256+1)+1=22×256-1+1=22×256,的值.分析与解先计算几层,看一看有无规律可循.解用构造方程的方法来解.设原式为x,利用根号的层数是无限的特点,有两边平方得两边再平方得x4-4x2+4=2+x,所以x4-4x2-x+2=0.观察发现,当x=-1,2时,方程成立.因此,方程左端必有因式(x +1)(x-2),将方程左端因式分解,有(x+1)(x-2)(x2+x-1)=0.解因为练习1.化简:2.计算:3.计算:。
21种解题方法与技巧全汇总

21种解题方法与技巧全汇总,这对学生也太有用了!01 解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
02 因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法03 配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:04 换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元05 待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写06 复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0 两种情况为或型②配成平方型:(----)^2+(----)^2=0 两种情况为且型07 数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组08 化简二次根式基本思路是:把√m化成完全平方式。
即:09 观察法10 代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
11 解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论12 恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。
二次根式方程的解法

二次根式方程的解法二次根式方程是一种形式为ax^2 + bx + c = 0的二次方程,其中a、b、c为已知实数且a ≠ 0。
解二次根式方程的方法有多种,包括因式分解、配方法、求根公式等,下面将一一介绍这些解法。
1. 因式分解法当二次根式方程可以进行因式分解时,我们可以通过因式分解法求解。
例如,对于方程x^2 - 5x + 6 = 0,我们可以将其因式分解为(x - 2)(x - 3) = 0,然后令括号内的两个因式分别等于0,即可得到方程的解x = 2和x = 3。
2. 配方法当二次根式方程无法直接因式分解时,可以尝试使用配方法。
配方法的基本思想是通过将方程中的一项拆分为两个相同的项的和或差,从而使方程能够进行因式分解。
例如,对于方程x^2 + 6x + 8 = 0,我们可以将其配方为(x + 2)(x + 4) = 0,然后令括号内的两个因式分别等于0,即可得到方程的解x = -2和x = -4。
3. 求根公式求根公式是解二次根式方程最常用的方法之一,它可以直接求得方程的解。
二次根式方程的求根公式为x = (-b ± √(b^2 - 4ac)) / (2a),其中±表示两个解,√表示平方根。
通过代入方程的系数a、b、c,即可计算出方程的解。
需要注意的是,方程的解可能是实数或者复数,取决于判别式D = b^2 - 4ac的正负情况:如果D > 0,方程有两个不相等的实数解;如果D = 0,方程有两个相等的实数解;如果D < 0,方程有两个共轭复数解。
除了上述常用的解法,还有其他求解二次根式方程的方法,例如图像法、完全平方公式等。
这些方法在特定情况下可能更加简便有效。
但不管采用何种方法,解二次根式方程的关键是要找到方程的解,即找到使方程成立的x的值。
为了更好地理解和掌握解二次根式方程的方法,我们需要不断进行练习和实践。
在解题过程中,可以利用一些技巧,如观察方程的特征、化简方程等,以便更快地找到方程的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.整式用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫代数式.单独的一个数或一个字母也是代数式.只含有数与字母的积的代数式叫单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如:b a 2314-这种表示就是错误的,应写成:b a 2313-.一个单项式中,所有字母的指数的和叫做这个单项式的次数.如:c b a 235-是六次单项式.几个单项式的和叫多项式.其中每个单项式叫做这个多项式的项.多项式中不含字母的项叫做常数项.多项式里次数最高的项的次数,叫做这个多项式的次数.单项式和多项式统称整式.用数值代替代数式中的字母,按照代数式指明的运算,计算出的结果,叫代数式的值.注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入(2)求代数式的值,有时求不出其字母的值,需要利用技巧,利用“整体”代入.2.同类项所含字母相同,并且相同字母的指数也分别相同的项叫做同类项.几个常数项也是同类项.注意:(1)同类项与系数大小没有关系;(2)同类项与它们所含字母的顺序没有关系.把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.去括号法则1:括号前是“+” ,把括号和它前面的“+”号一起去掉,括号里各项都不变号.去括号法则2:括号前是“-” ,把括号和它前面的“-”号一起去掉,括号里各项都变号.整式的加减法运算的一般步骤:(1)去括号;(2)合并同类项.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.如:n m n m a a a +=⋅(n m ,都是正整数).幂的乘方法则:幂的乘方,底数不变,指数相乘.如:()mn n ma a =(n m ,都是正整数). 积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所有的幂相乘.如:()n n nb a ab =(n 为正整数). 单项式的乘法法则:单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.注意:单项式乘以单项式的结果仍然是单项式.单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.如:()mc mb ma c b a m ++=++(c b a m ,,,都是单项式).注意:①单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同.②计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.注意:多项式与多项式相乘的展开式中,有同类项的要合并同类项.①平方差公式:22))((b a b a b a -=-+;②完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-;③立方和公式:3322))((b a b ab a b a +=+-+④立方差公式:3322))((b a b ab a b a -=++-;⑤ac bc ab c b a c b a 222)(2222+++++=++.注意:公式中的字母可以表示数,也可以表示单项式或多项式.同底数幂的除法法则:同底数幂相除,底数不变,指数相减.如:n m n m a a a -=÷(n m ,为正整数,0≠a ).注意:10=a (0≠a );p a aa p p ,0(1≠=-为正整数).单项式的除法法则:单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里面含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的运算法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.注意:这个法则的适用范围必须是多项式除以单项式,反之,单项式除以多项式是不能这么计算的3.因式分解把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.注意:(1)因式分解专指多项式的恒等变形,即等式左边必须是多项式.例如:23248a ab b a ⨯=;()111+=+a aa a 等,都不是因式分解. (2)因式分解的结果必须是几个整式的积的形式.例如:()c b a c b a ++=++222,不是因式分解.(3)因式分解和整式乘法是互逆变形.(4)因式分解必须在指定的范围内分解到不能再分解为止.如:4425b a -在有理数范围内应分解为:()()222255b a b a -+;而在实数范围内则应分解为:()()()b a b a b a 55522-++.1、提公因式法:如果多项式的各项都含有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.提公因式法的关键在于准确的找到公因式,而公因式并不都是单项式;公因式的系数应取多项式整数系数的最大公约数;字母取多项式各项相同的字母;各字母指数取次数最低的.2、运用公式法:把乘法公式反过来,可以把符合公式特点的多项式分解因式,这种分解因式的方法叫做运用公式法.平方差公式:()()b a b a b a -+=-22.完全平方公式:()2222b a b ab a +=++;()2222b a b ab a -=+-. 立方和公式:()()2233b ab a b a b a +-+=+.立方差公式:()()2233b ab a b a b a ++-=-.注意:运用公式分解因式,首先要对所给的多项式的项数,次数,系数和符号进行观察,判断符合哪个公式的条件.公式中的字母可表示数,字母,单项式或多项式.3、分组分解法:利用分组来分解因式的方法叫做分组分解法.分组分解法的关键是合理的选择分组的方法,分组时要预先考虑到分组后是否能直接提公因式或直接运用公式.4、十字相乘法:()()()q x p x pq x q p x ++=+++2.5、求根法:当二次三项式c bx ax ++2不易或不能写成用公式法或十字相乘法分解因式时,可先用求根公式求出一元二次方程02=++c bx ax 的两个根21,x x ,然后写成:()()212x x x x a c bx ax --=++.运用求根法时,必须注意这个一元二次方程02=++c bx ax 要有两个实数根.因式分解的一般步骤是:(1)如果多项式的各项有公因式,那么先提取公因式;(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的次数:二项式可以尝试运用公式法分解因式;三项式可以尝试运用公式法、十字相乘法或求根法分解因式;四项式及四项式以上的可以尝试分组分解法分解因式;(3)分解因式必须分解到每一个因式都不能再分解为止.4. 分式一般的,用B A ,表示两个整式,B A ÷就可以表示成B A 的形式.如果B 中含有字母,式子BA 就叫做分式.其中,A 叫做分式的分子,B 叫做分式的分母.分式和整式通称为有理式.注意:(1)分母中含有字母是分式的一个重要标志,它是分式与分数、整式的根本区别;(2)分式的分母的值也不能等于零.若分母的值为零,则分式无意义;(3)当分子等于零而分母不等于零时,分式的值才是零.把一个分式的分子与分母的公因式约去,把分式化成最简分式,叫做分式的约分.一个分式约分的方法是:当分子、分母是单项式时,直接约分;当分子、分母是多项式时,把分式的分子和分母分解因式,然后约去分子与分母的公因式.一个分式的分子和分母没有公因式时,叫做最简分式,也叫既约分式. 把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母 分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:MB M A M B M A B A ÷÷=⨯⨯=(其中M 是不等于零的整式). 分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.如: BA B A B A B A --=--=--= 分式的系数化整问题,是利用分式的基本性质,将分子、分母都乘以一个适当的不等于零的数,使分子、分母中的系数全都化成整数.当分子、分母中的系数都是分数时,这个“适当的数”应该是分子和分母中各项系数的所有分母的最小公倍数;当分子、分母中各项系数是小数时,这个“适当的数”一般是n 10,其中n 等于分子、分母中各项系数的小数点后最多的位数. 例、不改变分式的值,把下列各分式分子与分母中各项的系数都化为整数,且使各项系数绝对值最小. (1)b a b a 41313121-+;(2)22226.0411034.0y x y x -+. 分析:第(1)题中的分子、分母的各项的系数都是分数,应先求出这些分数所有分母的最小公倍数,然后把原式的分子、分母都乘以这个最小公倍数,即可把系数化为整数;第(2)题的系数有分数,也有小数,应把它们统一成分数或小数,再确定这个适当的数,一般情况下优先考虑转化成分数. 解:(1)b a b a b a b a b a b a 344612413112312141313121-+=⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+=-+; (2)()()()2222222222222222125568560253040100)6.025.0(1003.04.06.0411034.0y x y x y x y x y x y x y x y x -+=-+=⨯-⨯+=-+ 222212568yx y x -+=. 1、分式的乘除法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示是:bd ac d c b a =⨯;bcad c d b a d c b a =⨯=÷. 2、分式的乘方法则:分式乘方是把分子、分母各自乘方.用式子表示是:n n nb a b a =⎪⎭⎫ ⎝⎛(n 为整数). 3、分式的加减法则:①同分母的分式相加减,分母不变,把分子相加减.用式子表示是:cb ac b c a ±=±; ②异分母的分式相加减,先通分,变为同分母的分式,然后再加减.用式子表示是:bd bc ad d c b a ±=±. 分式的混合运算关键是弄清运算顺序,分式的加、减、乘、除混合运算也是先进行乘、除运算,再进行加、减运算,遇到括号,先算括号内的.例、计算78563412+++++-++-++x x x x x x x x . 分析:对于这道题,一般采用直接通分后相加、减的方法,显然较繁,注意观察到此题的每个分式的分子都是一个二项式,并且每个分子都是分母与1的和,所以可以采取“裂项法” .解:原式7175********+++++++-+++-+++=x x x x x x x x ⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛++-++=711511311111x x x x ⎪⎭⎫ ⎝⎛+-+-+-+=71513111x x x x ()()()()752312++-++=x x x x ()()()()()()()()7531312752++++++-++=x x x x x x x x ()()()()75316416+++++=x x x x x . 点评:本题考查在分式运算中的技巧问题,要认真分析题目特点,找出简便的解题方法,此类型的题在解分式方程中也常见到.5.二次根式式子)0(≥a a 叫做二次根式,二次根式必须满足:①含有二次根号“” ;②被开方数a 必须是非负数.如5,2)(b a -,)3(3≥-a a 都是二次根式若二次根式满足:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式,这样的二次根式叫最简二次根式,如a 5,223y x +,22b a +是最简二次根式,而b a ,()2b a +,248ab ,x1就不是最简二次根式. 化二次根式为最简二次根式的方法和步骤:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化进行化简.②如果被开方数是整数或整式,先将它分解因数或因式,然后把能开得尽方的因数或因式开出来.几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫同类二次根式.注意:当几个二次根式的被开方数相同时,也可以直接看出它们是同类二次根式.如24和243一定是同类二次根式.合并同类二次根式就是把几个同类二次根式合并成一个二次根式.合并同类二次根式的方法和合并同类项类似,把根号外面的因式相加,根式指数和被开方数都不变.把分母中的根号化去,叫分母有理化.如=+131)13)(13(13-+-2131313-=--=. 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式互为有理化因式.如1313-+和;2323-+和;a 和a ;a b a a b a -+和都是互为有理化因式.注意:二次根式的除法,往往是先写成分子、分母的形式,然后利用分母有理化来运算.如22133)7(32133)73)(73()73(3733)73(322+=-+=+-+=-=-÷. (1))0()(2≥=a a a . (2)⎩⎨⎧<-≥==.,)0()0(2a a a a a a (3))0,0(≥≥⋅=b a b a ab . (4))0,0(>≥=b a ba b a 二次根式的加减法法则:(1)先把各个二次根式化成最简二次根式;(2)找出其中的同类二次根式;(3)再把同类二次根式分别合并.二次根式的乘法法则:两个二次根式相乘,被开方数相乘,根指数不变.即:ab b a =⋅(0,≥b a ).此法则可以推广到多个二次根式的情况.二次根式的除法法则:两个二次根式相除,被开方数相除,根指数不变,即:ba b a=(0,0>≥b a ).此法则可以推广到多个二次根式的情况. 二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去掉括号).例1、计算:6321263212--+++--.分析:此题一般的做法是先分母有理化,再计算,但由于6321+--分母有理化比较麻烦,我们应注意到6321+--()()1312--=;()()13126321-+-=--+,这样做起来就比较简便. 解:6321263212--+++--()()()()1312213122-+---= ()()()()2131********+--++= ()()131212++-+= ()132+= 232+=.例2、计算:()()()()751755337533225++++-+++-.分析:按一般的方法做起来比较麻烦,注意题目的结构特点,逆用分式加、减法的运算法则“aba b b a ±=±11”进行变换,进而运用“互为相反数的和为零”的性质来化简. 解:()233525+-+=- ;()355737+-+=-, ∴原式751751531531321+++-+++-+= 321+=23-=.例3、已知273-=x ,a 是x 的整数部分,b 是x 的小数部分,求ba b a +-的值. 分析:先将x 分母有理化,求出b a ,的值,再求代数式的值.解: 27273+=-=x ,又372<< ,54<<∴x .27427,4-=-+==∴b a . ()()()()()()272727762776274274-+--=+-=-+--=+-∴b a b a 31978-=.二次根式的化简技巧一、 巧用公式法例1计算b a ba b a ba b a +-+-+-2分析:本例初看似乎很复杂,其实只要你掌握好了公式,问题就简单了,因为a 与b 成立,且分式也成立,故有a >0,b >0,()0≠-b a 而同时公式:()b a -2=a 2-2ab +b 2,a 2-2b =()b a +()b a -,可以帮助我们将b ab a +-2和b a -变形,所以我们应掌握好公式可以使一些问题从复杂到简单。