15铁磁物质的磁性能

合集下载

铁磁材料的磁滞回线和基本磁化曲线

铁磁材料的磁滞回线和基本磁化曲线

-1- 铁磁材料的磁滞回线和基本磁化曲线在各类磁介质中应用最广泛的是铁磁物质。

在20世纪初期铁磁材料主要用在电机制造业和通讯器件中如发电机、变压器和电表磁头而自20世纪50年代以来随着电子计算机和信息科学的发展应用铁磁材料进行信息的存储和纪录例如现以成为家喻户晓的磁带、磁盘不仅可存储数字信息也可以存储随时间变化的信息不仅可用作计算机的存储器而且可用于录音和录像已发展成为引人注目的系列新技术预计新的应用还将不断得到发展。

因此对铁磁材料性能的研究无论在理论上或实用上都有很重要的意义。

磁滞回线和基本磁化曲线反映了铁磁材料磁特性的主要特征。

本实验仪用交流电对铁磁材料样品进行磁化测绘的B-H曲线称为动态磁滞回线。

测量铁磁材料动态磁滞回线的方法很多用示波器测绘动态磁滞回线具有直观、方便、迅速及能在不同磁化状态下交变磁化及脉冲磁化等进行观察和测绘的独特优点。

一、实验目的1认识铁磁物质的磁化规律比较两种典型的铁磁物质的动态磁化特性。

2掌握铁磁材料磁滞回线的概念。

3掌握测绘动态磁滞回线的原理和方法。

4测定样品的基本磁化曲线作μH曲线。

5测定样品的HC、Br、Hm和Bm等参数。

6测绘样品的磁滞回线估算其磁滞损耗。

二、实验原理1铁磁材料的磁滞特性铁磁物质是一种性能特异用途广泛的材料。

铁、钴、镍及其众多合金以及含铁的氧化物铁氧体均属铁磁物质。

其特性之一是在外磁场作用下能被强烈磁化故磁导率μB/H很高。

另一特征是磁滞铁磁材料的磁滞现象是反复磁化过程中磁场强度H与磁感应强度B之间关系的特性。

即磁场作用停止后铁磁物质仍保留磁化状态图1为铁磁物质的磁感应强度B与磁场强度H之间的关系曲线。

将一块未被磁化的铁磁材料放在磁场中进行磁化图中的原点O表示磁化之前铁磁物质处于磁中性状态即BHO当磁场强度H从零开始增加时磁感应强度B随之从零缓慢上升如曲线oa 所示继之B随H迅速增长如曲线ab所示其后B的增长又趋缓慢并当H增至HS时B达到饱和值BS这个过程的oabS曲线称为起始磁化曲线。

电工考试简答题

电工考试简答题

初级1 电压、电位及电动势有何异同?答:电压是电场(或电路)中两点之间的电位差。

它是单位正电荷在电场内这两点间移动时所做的功,是表示电场力做功的本领。

电压是由高电位指向低电位,即电位降的方向。

电位是电场力把单位正电荷从电场中某点移到参考点所做的功,功愈多则表明该点的电位愈高。

电位具有相对性。

电动势是表示非电场力(外力)做功的本领,是由低电位指向高电位,即电位升的方向。

电动势仅存在于电源内部,而电压不仅存在于电源两端,还存在于电源外部。

它们的单位是伏特。

2 电源内部电子移动和电源外部(外电路)电子移动是怎么样形成的?答:电源内部电子移动是:外力把单位正电荷由电源的负极经电源内部移动到正极;电源外部电子移动是:当外加电场中导体两端具有电位差时,电子受到电场力的作用而形成有规则的定向移动。

3 在图1-15中,导体各截面上的电流强度与电流密度是否一样?答:各截面上的电流强度一样,但电流密度不一样。

根据公式p=I/S,在电流强度I不变时,横截面积S越大,电流密度p越小。

因此,横截面S1处电流密度最小;横截面S2处电流密度最大。

4 电路主要由哪几部分组成?它们在电路中各起什么作用?答:电路主要由电源、负载和连接导线三部分组成。

电源是电路能量的提供者,它把其他形式的能量转换成电能,负载把电能转换为其他形式的能量;连接导线则把电源和负载连接成闭合回路,组成一个完整的电路,起传输和分配电能的作用。

5 额定电压相同、额定功率不同的两个灯泡能否串联使用?为什么?答:额定电压相同、额定功率不同的两个灯泡不能串联使用。

本剧In=Pn/Un可知,两个灯泡的核定电流不等。

如果串联使用,通过的是相同的电流。

在满足一个灯泡的额定电流正常工作时,另一个灯泡通过的电流就会小于额定电流不能正常发光或大于额定电流而使灯泡易过热损坏。

6 什么叫短路和短路故障?怎样防止短路故障的危害?平时所讲负载增加,通常是指负载电流增加还是负载电压增加?答:短路是指电路中某两点由一阻值可以忽略不计的导体直接通过的工作状态。

2019-铁磁性材料的自发磁化理论和磁畴结构-文档资料

2019-铁磁性材料的自发磁化理论和磁畴结构-文档资料
铁磁性材料的自发磁化理论及磁 畴结构
2014年4月25日
汇报内容
●物理学基础 ●自发磁化理论 ●磁畴结构
2
1.物理学基础
1.1基本磁学量
磁矩μm 微观量,矢量,μm=iS,磁偶极子磁性的强弱和方向。
磁化强度M 宏观量,矢量,M=Σμm/ΔV。
磁场强度H 描述空间内任意一点的磁场参量。
磁感应强度B 与介质有关,B=μ0(H+M) 磁化率χ χ=M/H,表征材料磁化难易程度。
1.物理学基础
1.3磁性起源
●原子的总角动量和总磁矩:
是电子的轨道角动量(磁矩)和自旋角动量(磁矩)以矢量叠加方式 合成的。
μl
?
L-S耦合 Z<=32
μs PL=Σpli PS=Σpsi
μJ PJ=PL+PS
铁磁物质大多采用 此种方式!
Z>=82 j-j耦合
pj=pl+ps
PJ=Σpj
8
2.自发磁化理论
χ<0
抗磁性
χ>0
顺磁性
(无磁矩 )
弱磁性
χ>0 反铁磁性
χ》1
铁磁性
χ》1 亚铁磁性
(有磁矩 )
Tn Tc 强磁性
4
1.物理学基础
1.3磁性起源
物质的磁性来源于原子的磁性;
原子的磁性来源于原子中电子及原子核的磁矩;
原子核磁矩很小,在我们所考虑的问题中可以忽
略。 电子轨道运动产
生电子轨道磁矩
原子的
A i*rijriirj * jrj e ri2j e ri2e r2 j d1 d2
rij:电子i与j间的距离; ri(rj):i(j)电子与自己核间的距离。

《磁性材料》基本要求12

《磁性材料》基本要求12

《磁性材料》基本要求一、熟练掌握基本概念:(1) 磁矩:磁偶极子等效的平面回路的电流和回路面积的乘积,μm =iS ,方向由右手定则确定,单位Am 2。

(2) 磁化强度(M ):定义单位体积磁性材料内磁矩的矢量和称为磁化强度,用M 表示,SI 单位为A/m 。

CGS 单位:emu/cm 3。

换算关系:1 ×103 A/m = emu/cm 3。

(3) 磁极化强度 (J m ): 定义为单位体积内磁偶极矩矢量和。

其单位是:Wb ﹒m -2 (和磁感应强度 B 单位 T 一致)(4) 磁场强度(H ):单位强度的磁场对应于1Wb 强度的磁极受到1牛顿的力。

SI 单位是A ·m -1。

CGS 单位是奥斯特(Oe)。

换算关系:1 A/m =4π/ 103 Oe 。

(5) 磁化曲线:磁体从退磁状态开始到磁化饱和的过程中,磁感应强度B 、磁化强度M 与磁场强度H 之间的非线性关系曲线。

(6) 退磁曲线:磁滞回线在第二象限的部分称为退磁曲线。

(7) 退磁场:当一个有限大小的样品被外磁场磁化时,在它两端出现的自由磁极将产生一个与磁化强度方向相反的磁场。

该磁场被称为退磁场。

退磁场的强度与磁体的形状及磁极的强度有关存在:Hd=-NM 。

(8) 饱和磁感应强度Bs(饱和磁通密度) :磁性体被磁化到饱和状态时的磁感应强度。

SI 单位是特斯拉[T]或[Wb·m -2];CGS 单位是高斯(Gauss)。

换算关系:1 T = 104 G 。

(9) 磁导率:定义为磁感应强度与磁场强度之比μ=B/H,表示磁性材料传导和通过磁力线的能力.单位为亨利/米(H·m -1).(10) 起始磁导率:磁性体在磁中性状态下磁导率的极限值。

H B H i 00lim 1→=μμ (11) 磁化率定义为磁化强度与磁场强度之比:χ= M /H(12) 居里温度:即铁磁性材料(或亚磁性材料)由铁磁状态(或亚铁磁状态)转变为顺磁状态的临界温度,在此温度上,自发磁化强度为零。

铁磁性

铁磁性

自发磁化
组织结构不敏感参数
技术磁化
组织结构敏感参数
1、温度的影响 2、应力和变形的影响 3、晶粒细化的影响 4、杂质的影响 5、合金的成分和组织的影响
本征参量 非本征参量
退火产生的感生磁各向异性
A:纵向磁场冷却 B:冷却时无磁场 C:在垂直或圆磁场中冷却
轧制产生的感生磁各向异性
21.5%Fe-Ni合金磁化曲线
平行于轧制方向的磁化完全通过磁畴转动来实现,为线性 磁化曲线。
2、形状各向异性及退磁能
为何会有形状 各向异性?
沿长片状试样不同方向测得的磁化曲线
铁磁体的形状对磁性有重要影响 形状各向异性
磁体在磁场中具有的能量
静磁能
铁磁体与外磁场的相互作用能 铁磁体在自身退磁场中的能量
H
M
M
S
铁磁体
N
Hd M
H
退磁能
当铁磁体出现磁极后, 除在铁磁体周围空间产生磁 场外,在铁磁体的内部也产 生磁场Hd。这一磁场与铁磁 体的磁化强度方向相反,起 到退磁的作用,因此称为退 磁场。
退磁场的表达式为:
(CGS高斯单位制) 退磁因子
磁体总能量增加,自发 磁化一致取向不稳定。
磁畴形成过程图示
a)中,自发磁化单一取向,出现表面磁极,磁场能很大;
b)中,为降低表面退磁场能,自发磁化分成两个反平行的磁 畴,降低了表面退磁能;
c)中,分成4个反向平行的磁畴,退磁能进一步降低,总能量 减小。
影响磁畴结构的因素
磁畴结构:磁畴的形状、尺寸、畴壁的类型与厚度。
1、磁晶各向异性
➢ 在测量单晶铁磁性样品时发现 沿不同晶向的磁化曲线不同。 ➢ 其中有一个方向的磁化曲线最 高,即最容易磁化。

铁磁性物质的磁化曲线

铁磁性物质的磁化曲线

三 磁阻与磁导
◆ 磁阻(Rm)
设均匀磁路中某一段材料:
A
磁导率:μ
l
横截面:A
长度:l
磁通:
则该段磁阻为
Rm
def
l
A
SI单位:为 H-1
18
第九章 磁路和铁心线圈电路
◆ 推导过程:
HB B A
Um
Hl
B l
A
l
Rm
Rm
l
A
◆ 磁导(Λ)
1 A
Rm l
SI单位:为 H
磁路 欧姆定律
空气的磁导率为常数,故气隙的磁阻是常量。 铁磁性物质的磁导率不是常数,故铁磁性物质的磁阻
B
Bm
b Hm Br
O
Hc b
a
a
Hm H
剩余磁感应强度(剩磁):由于磁滞,铁磁性物质在磁场 强度减小到零时保留的磁感应强度( Br )。
矫顽磁场强度(矫顽力):如要消去剩磁,需将铁磁性物 质反向磁化的磁场强度( Hc )。
当H 继续反向增加时,铁磁性物质开始反向磁化。到-Hm 时,即饱和点a’。然后沿a’b’a 变化而完成一个循环。
4
第九章 磁路和铁心线圈电路
如果是均匀磁场,且各点磁感应强度与面积 S 垂直,则该 面积上的磁通为
BA 或 B
A
又称磁感应强 度为磁通密度
◆ 磁感应Leabharlann :为使磁场的分布状况形象化,用磁感应线 描述磁场。
规定:磁感应线上的每一点的切线方向就是这一点的磁场方 向;在磁感应强度大的地方磁感应线密,小的地方疏。
磁路:约束在限定铁心范围内的磁场。
I
气隙
铁心
线圈
主磁通

铁磁性物质的磁化

铁磁性物质的磁化

8.3 交流铁心线圈
3.交流铁心线圈中的铁心损耗 在交变磁通作用下,铁心中有能量损耗,称为铁损。铁损主要由两部 分组成: (1)涡流损耗 铁心中的交变磁通Φ (t),在铁心中感应出电压,由于 铁心也是导体,便产生一圈圈的电流,称之为涡流。涡流在铁心内流动时, 在所经回路的导体电阻上产生的能量损耗,称为涡流损耗。 减少涡流损耗的途径有两种:一是减小铁片厚度;二是提高铁心材料 的电阻率。 (2)磁滞损耗 铁磁性物质在反复磁化时,磁畴反复变化,磁滞损耗 是在克服各种阻滞作用而消耗的那部分能量。磁滞损耗的能量转换为热能 而使铁磁材料发热。 减少磁滞损耗有两条途径:一是提高材料的起始磁导率;二是减小剩 磁Bb。
8.4.1 电磁铁
电磁铁的结构形式很多,如图8.13所示。按磁路系统形式可分为拍 合式、盘式、E形和螺管式。按衔铁运动方式可分为转动式如图8.13 (a)所示和直动式如图8.13(b)、(c)、(d)所示。
电磁铁的基本工作原理: 当线圈通电后,铁心和衔铁被磁化,成为极性相反的两块磁铁,它们 之间产生电磁吸力。当吸力大于弹簧的反作用力时,衔铁开始向着铁心 方向运动。当线圈中的电流小于某一定值或中断供电时,电磁吸力小于弹 簧的反作用力,衔铁将在反作用力的作用下返回原来的释放位置。
NI l1 H1 l 2 H 2 l n H n
U m lH

NI lH U m (8.5)
8.1 磁路及磁路基本定律
图8.4所示磁路可分为三段,根据全电流定律有
NI l1 H1 l2 H 2+l3 H 3
推广到任意磁路中有
NI lH
由于励磁电流是线圈产生磁通的来源,故称NI为磁路的磁通势F,单位 为安(A)。式(8.7)表示磁路中沿任意闭合曲线磁位差的代数和等于沿该曲 线磁通势的代数和,此称基尔霍夫磁位差定律。

铁磁性的原理与应用

铁磁性的原理与应用

铁磁性的原理与应用一、背景介绍铁磁性是物质在外磁场作用下表现出来的一种特性,其中铁磁性最为显著。

铁磁性是指物质在外磁场作用下可以产生自发磁化的现象,即通过调整自身内部的磁矩方向来与外磁场相互作用,从而形成一个新的磁性样貌。

铁磁性的原理和应用十分广泛,本文将从原理和应用两个方面进行介绍。

二、铁磁性的原理铁磁性的原理主要涉及到以下几个方面:1.原子磁矩:铁磁性物质由许多微小的磁性原子组成,每个原子都有一个自旋和轨道磁矩。

这些磁矩相互作用形成自发磁化。

2.磁畴:铁磁性物质内部的磁性原子聚集在一起形成磁畴,每个磁畴都有一个统一的磁矩方向。

在无外磁场作用下,磁畴的磁矩方向是随机的,呈无序状态。

而在外磁场作用下,磁畴的磁矩方向趋于统一,形成有序的磁性样貌。

3.居里温度:铁磁性物质中的自旋和轨道磁矩在一定温度下可以被热引起的热运动破坏,从而磁矩的方向变得随机。

这个临界温度称为居里温度,超过居里温度后,铁磁性物质不再呈现铁磁性。

三、铁磁性的应用铁磁性在许多领域有广泛的应用,下面列举了几个主要的应用领域:1.磁存储器:铁磁性材料的磁畴结构可以被外磁场重新调整,这使得它们在信息存储领域起到了重要的作用。

铁磁性材料被广泛应用于硬盘驱动器、磁带、闪存等存储设备。

2.电动机和发电机:铁磁性材料可以产生强大的磁场,因此在电动机和发电机的制造过程中广泛使用。

铁磁性材料的磁场可以与电流相互作用,从而产生转矩和电能转换。

3.传感器:铁磁性材料的磁性特性使其在传感器领域有重要的应用。

例如,磁传感器可以基于铁磁性材料的磁场变化来检测位置、速度和方向等参数。

4.磁制冷:铁磁性材料在外磁场作用下可以通过磁热效应实现制冷。

这种磁制冷技术被广泛应用于低温制冷、航空航天等领域。

5.磁力催化剂:铁磁性材料在有机合成反应中可以作为磁力分离催化剂使用。

通过磁力分离可以简化分离和回收的过程,提高反应效率。

四、总结铁磁性作为一种特殊的磁性现象,其原理和应用都具有重要的意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、沿闭合曲线一周所有长度元上磁压的代数和,即沿闭合曲线的总磁压∮
lHcos dl=ΣI,式中为闭合曲线所包围的所有电流的代数和,称为全电流。 3、全电流定律:磁场中沿任意闭合曲线的总磁压等于闭合曲线所包围的全电流。
课 后 作 业
教 学 后 记
恩施职业技术学院课堂教学实施方案附页
思考题: 1、铁磁性物质为什么会有高的导磁性能? 2、制造电喇叭时要用到永久磁铁,制造变压器时要用到铁心,试说明它们在铁 磁性材料时有何不同? 3、什么是基本磁化曲线?什么是起始磁化曲线? 4、铁磁性材料的μ不是常数, μ的最大值处在起始磁化曲线的哪个部位?

使磁畴的方向与外磁场趋于一致,形成与外磁场方向相同的附加磁场,从而使
铁磁物质内部的磁场显著增强。这就是铁磁物质的磁化。

3、非铁磁物质内部没有磁畴结构。
程 二、磁化曲线 磁化曲线是铁磁物质在外磁场中被磁化时,其磁感应强度 B 随外磁场强度 H 的变
化而变化的曲线,即 B-H 曲线。
1、起始磁化曲线
未经磁化过的铁磁材料的磁化曲线,称为起始磁化曲线。
2、磁滞回线
铁磁材料在反复磁化过程中的 B-H 曲线称为磁滞回线。
3、基本磁化曲线
选择不同的 H 值对铁磁材料进行交变磁人,可相应得到一系列大小不同的磁滞回
线。将这些不同的磁滞回线的顶点连接起来得到的曲线,称为基本磁化曲线。
三、铁磁材料的分类
1、硬磁性材料
一、载流长直导线的磁场
B= I
2r
式中:μ为介质的磁导率,单位为 H/m;
r 为某点与导线中心线的距离;

I 为导线中的电流。
则其磁场强度为 H= I
2r
则有 2 rH=I
上式说明,长直载流导线的磁场中某点的磁场强度与通过该点的磁力线长度的乘
积,等于磁力线所包围的电流。
程 二、全电流定律
1、磁压
1、定义:将铁磁物质置入通电的线圈中,会使磁场大为增强,这种现象称为铁磁
物质的磁化。
2、磁畴:铁磁物质是由许多微小的天然磁化区域组成的,这些天然磁化区域叫做
磁畴。磁畴内部所有的分子电流取向一致,因而,每个磁畴都相当于一块体积

极小但磁性很强的微型磁铁。没有外磁场作用时,由于各磁畴的排列杂乱无章,
它们的磁场互相抵消,因而对外不显示磁性。一旦有外磁场,则外磁场的作用
特点:磁滞回线较宽,撤去外磁场后剩磁大,磁性不易消失。常用来制作永久磁
教 铁。
有的硬磁材料磁滞回线的形状接近矩形,称为矩磁材料。
2、软磁性材料
特点:磁导率高,易于磁化,但撤去外磁场后,磁性基本消失。反映在磁滞回线
上是剩磁 B 和矫顽力都很小,磁滞回线形状狭长,与基本磁化曲线十分靠近。
学 §10-2 全电流定律
恩施职业技术学院课堂教学实施方案
授课班级: 111261
任课教师: 田璐
No.
课程名称
电工基础
日期
节次
3、4
课题
铁磁物质的磁性能 全电流定律
课堂类型
讲授
教 学 目
掌握铁磁性物质及其分类

了解全电流定律
与 要 求
重 点
与 重点:磁化曲线 难 难点:来自化曲线点教无

§10-1 铁磁物质的磁性能
一、铁磁物质的磁化
教 学 过 程
相关文档
最新文档