函数奇偶性的理解及应用
函数奇偶性的应用

三、利用奇偶性求函数解析式:
例3、若f(x)是定义在R上的奇函数,当x>0时, f(x)=x·(1-x),求函数f(x)的解析式. 【思路点拨】 由题目可获取以下主要信息: ①函数f(x)是R上的奇函数; ②x>0时f(x)的解析式已知. 解答本题可将x<0的解析式转化到x>0上求解.
【解析】 由 f(x)是偶函数得 f(-x)=f(x),即 f(|x|)=f(x) ∴f(1-m)=f(|1-m|) f(m)=f(|m|) ∴f(|1-m|)<f(|m|) 又∵f(x)在[0,1]上单调递减
∴- -11≤ ≤1m-≤m1≤1 |1-m|>|m|
解得 0≤m<12
【解析】 (1)当 x=0 时,由 f(-x)=-f(x) 得 f(0)=0;
(2)当 x<0 时,则-x>0 ∴f(-x)=(-x)·[1-(-x)] 又∵f(-x)=-f(x) ∴-f(x)=(-x)·(1+x) ∴f(x)=x·(1+x) ∴函数 f(x)的解析式为:
f(x)=x0·(1(-x=x)0)
单调性比较大小.
• 奇函数、偶函数的单调性的对称规律在不同区间内的自变量 对应的函数值比较大小中作用很大.对于偶函数,如果两个 自变量在关于原点对称的两个不同的单调区间上,即自变量 的正负不统一,应利用图象的对称性将自变量化归到同一个 单调区间,然后再根据单调性判断.
练习:已知函数f(x)在区间[-5,5]上是偶函数,f(x)在
(C)减函数,最小值为 6
(D)减函数,最大值为 6
函数奇偶性与最值之间的关系
若奇函数f(x)在[a,b]上是增函数,且有最大值M,则f(x)在
数学复习函数的奇偶性与单调性的判定与应用

数学复习函数的奇偶性与单调性的判定与应用数学复习:函数的奇偶性与单调性的判定与应用一、引言在数学中,函数是一种重要的概念,用于描述数值之间的关系。
函数的奇偶性与单调性是研究函数特性的重要方面。
本文将对函数的奇偶性与单调性的判定方法和应用进行复习和总结。
二、函数的奇偶性的判定与应用1. 奇函数与偶函数的定义奇函数指满足f(-x)=-f(x)的函数,即关于原点对称;偶函数指满足f(-x)=f(x)的函数,即关于y轴对称。
2. 函数奇偶性的判定方法(1)对于已知函数 f(x),可根据奇函数和偶函数的定义,通过验证f(-x)与f(x)的关系,来判定函数的奇偶性。
(2)特殊情况下,例如幂函数、正弦函数等具有明显的对称特点的函数,可以直接判断其奇偶性。
3. 奇偶函数的性质(1)奇函数与奇函数相加、相减仍为奇函数。
(2)偶函数与偶函数相加、相减仍为偶函数。
(3)奇函数与偶函数相乘为奇函数。
4. 奇偶函数的应用(1)对称轴:奇函数的图像关于原点对称,偶函数的图像关于y轴对称。
根据奇偶函数的性质,可以确定图像的对称轴位置。
(2)函数的简化:奇函数与偶函数的特殊性质,可用于简化复杂的函数表达式。
(3)函数的积分:在某些情况下,奇函数在对称区间上的积分为0,而偶函数在关于y轴对称的区间上的积分具有简化求解的特点。
三、函数的单调性的判定与应用1. 单调递增与单调递减的定义(1)单调递增指函数在定义域上的任意两点满足f(x1)<=f(x2),当x1<x2时。
(2)单调递减指函数在定义域上的任意两点满足f(x1)>=f(x2),当x1<x2时。
2. 函数单调性的判定方法(1)求导:对于已知函数 f(x),求其导函数 f'(x)。
若在定义域上f'(x)>=0,则函数在该区间上单调递增;若 f'(x)<=0,则函数在该区间上单调递减。
(2)二阶导数:当一阶导数无法确定函数的单调性时,可求二阶导数,通过二阶导数的正负来判定函数的单调性。
函数奇偶性的应用

函数奇偶性的应用函数奇偶性(FunctionParity)是指一个函数可以经过一个变换,使其符号发生对称的变化的性质。
这种性质可以用于解决许多数学问题,特别是那些涉及到计算积分的问题,例如,计算圆周积分、椭圆积分等。
函数的奇偶性本质上是一种对称性质,它不是某一个函数的具体性质,而是函数人因变换后所拥有的性质。
其定义是:如果函数f(x)对于任意x,都有f(-x) = -f(x),则称f(x)为奇函数,反之,如果f(-x)=f(x),则称函数f(x)为偶函数。
一般来说,函数的奇偶性与函数的变换关系密切相关,函数的变换可以表示为改变函数的变量x的值或者改变函数的结果y值。
例如,函数f(x)=ax2+bx+c (a≠0)有对称性,因为当x取任意值时,它的关系式f(-x)=a(-x)2+b(-x)+c=-ax2+bx+c=-f(x),所以函数f(x)是奇函数。
函数奇偶性具有许多应用,例如,利用它可以求解椭圆积分。
椭圆积分是由一个定义在椭圆上的函数与椭圆的面积累加求得的。
因为函数的奇偶性能满足对称性,所以可以利用这一性质,将椭圆分成两半来求解。
具体的操作是,首先用函数左半部分的面积累加求得积分值,然后再用函数右半部分的面积累加求得积分值,最后相加即可得到椭圆积分的结果。
函数奇偶性还可以用于求解圆周积分问题。
因为圆周积分一般是指求解圆周上函数的积分值,而利用函数奇偶性,可以把圆周分割成两部分,一部分是正玄轴到负玄轴的距离,另一部分是负玄轴到正玄轴的距离,从而将圆周积分转化为求解两个积分的和,从而更加容易求出解析解。
此外,函数奇偶性还可以用于对一些复杂的函数进行拆分,将多个复杂的函数拆分为若干个相对简单的函数,从而更容易求解。
例如,可以将多项式函数拆分为多个单项式函数,这样就可以更加方便地求解多项式函数。
最后,函数奇偶性也可以用于多元函数的研究。
对于多元函数,函数的奇偶性可以帮助我们更加清晰地理解函数的性质,从而更直观地求解多元函数的结果。
函数奇偶性的应用

函数奇偶性的应用函数的奇偶性是指函数在其定义域内是否满足奇偶性质。
在数学中,奇数代表整数除以2的余数为1,偶数代表整数除以2的余数为0。
而在函数中,奇函数代表函数满足f(-x)=-f(x),偶函数代表函数满足f(-x)=f(x)。
函数的奇偶性在数学中有着广泛的应用,如在对称性、曲线图像、解方程等方面都能够起到重要的作用。
下面将详细讨论函数奇偶性在不同应用领域的具体应用。
首先,在对称性方面,函数的奇偶性能够帮助我们判断函数关于y轴、x轴以及原点是否对称。
对于奇函数,它关于原点对称,即图像在原点处旋转180度后与原图像重合;对于偶函数,它关于y轴对称,即图像关于y轴对称;而对于一般的函数,如果既不是奇函数也不是偶函数,那么它不具备关于坐标轴的对称性。
其次,在曲线图像方面,函数的奇偶性能够帮助我们简化曲线图像的绘制和分析。
由于奇函数关于原点对称,所以当我们只需要绘制图像在原点右侧的部分,然后再将其关于原点对称得到的图像就是整个函数的图像;偶函数同样可以利用关于y轴的对称性简化图像的绘制。
这在许多实际问题中都起到了很大的帮助,特别是能够通过对图像的简化来更好地理解函数的性质。
再次,在解方程方面,我们可以利用函数的奇偶性来求解一些特定的问题。
例如,当我们需要求解一个方程f(x)=0时,如果函数是奇函数,即f(-x)=-f(x),那么我们只需要找到一组解x0,然后就能得到对称的另一组解-x0。
同样地,如果函数是偶函数,即f(-x)=f(x),我们只需要求解非负解,然后就能得到关于y轴对称的另一组解。
这对于简化解方程的过程非常有帮助。
此外,在积分计算方面,函数的奇偶性同样提供了一种简化计算的方法。
对于奇函数而言,它的在一个对称区间内的积分等于0,因为函数在区间的正负区域对称;而对于偶函数而言,它在一个对称区间内的积分可以化简为两倍的非负积分,因为函数在区间内的曲线图像关于y轴对称。
这种简化计算的方法在数学中经常被运用,能够提高计算的效率。
函数奇偶性总结

函数奇偶性总结一、函数的奇偶性概念在数学中,我们经常研究函数的性质,其中一个重要的性质就是奇偶性。
函数的奇偶性描述了函数的对称性质。
一个函数$f(x)$被称为奇函数,如果对于任意实数$x$,有$f(-x)=-f(x)$成立。
换句话说,奇函数在原点处对称,图像关于坐标原点对称。
一个函数$f(x)$被称为偶函数,如果对于任意实数$x$,有$f(-x)=f(x)$成立。
换句话说,偶函数在原点处对称,图像关于$y$轴对称。
二、判断函数的奇偶性判断函数的奇偶性有以下几种方法:1. 使用函数表达式对于多项式函数或已知函数表达式,可以通过观察函数表达式中的各项系数来快速判断函数的奇偶性。
- 对于多项式函数,如果函数的各项次数都是偶数,则函数是偶函数;如果函数的各项次数都是奇数,则函数是奇函数。
- 对于已知函数表达式,如果函数表达式中只包含偶数次幂或只包含奇数次幂的项,则函数是奇函数或偶函数。
2. 使用图像对称性通过观察函数的图像可以判断函数的奇偶性。
- 如果函数图像关于$y$轴对称,则函数是偶函数。
- 如果函数图像关于原点对称,则函数是奇函数。
3. 使用微积分方法利用微积分的性质可以判断函数的奇偶性。
- 奇函数的导函数是偶函数。
- 偶函数的导函数是奇函数。
通过求导函数,可以判断函数的奇偶性。
三、函数奇偶性的应用函数的奇偶性在数学和物理中具有广泛的应用。
- 在函数的图像对称性的研究中,奇函数和偶函数是常见的对象。
- 在积分计算中,奇函数在对称区间上的积分为零,只需要计算一个半区间的积分即可。
- 在物理学中,奇函数和偶函数经常用于描述对称性问题,如电荷分布的对称性等。
四、总结函数的奇偶性是函数的重要性质,可以通过函数表达式、图像对称性和微积分方法等多种方法来判断函数的奇偶性。
了解函数的奇偶性对于解决数学问题和物理问题都具有重要的意义。
函数的奇偶性

函数的奇偶性【学习目标】1.理解函数的奇偶性定义;2.会利用图象和定义判断函数的奇偶性;3.掌握利用函数性质在解决有关综合问题方面的应用. 【要点梳理】要点一、函数的奇偶性概念及判断步骤 1.函数奇偶性的概念偶函数:假设对于定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)称为偶函数. 奇函数:假设对于定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)称为奇函数. 要点诠释:〔1〕奇偶性是整体性质; 〔2〕x 在定义域中,那么-x 在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的; 〔3〕f(-x)=f(x)的等价形式为:()()()0,1(()0)()f x f x f x f x f x ---==≠, f(-x)=-f(x)的等价形式为:()()()01(()0)()f x f x f x f x f x -+-==-≠,; 〔4〕由定义不难得出假设一个函数是奇函数且在原点有定义,那么必有f(0)=0; 〔5〕假设f(x)既是奇函数又是偶函数,那么必有f(x)=0. 2.奇偶函数的图象与性质〔1〕如果一个函数是奇函数,那么这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,那么这个函数是奇函数.〔2〕如果一个函数为偶函数,那么它的图象关于y 轴对称;反之,如果一个函数的图像关于y 轴对称,那么这个函数是偶函数.3.用定义判断函数奇偶性的步骤〔1〕求函数()f x 的定义域,判断函数的定义域是否关于原点对称,假设不关于原点对称,那么该函数既不是奇函数,也不是偶函数,假设关于原点对称,那么进行下一步;〔2〕结合函数()f x 的定义域,化简函数()f x 的解析式;〔3〕求()f x -,可根据()f x -与()f x 之间的关系,判断函数()f x 的奇偶性.假设()f x -=-()f x ,那么()f x 是奇函数; 假设()f x -=()f x ,那么()f x 是偶函数;假设()f x -()f x ≠±,那么()f x 既不是奇函数,也不是偶函数;假设()f x -()f x =且()f x -=-()f x ,那么()f x 既是奇函数,又是偶函数要点二、判断函数奇偶性的常用方法〔1〕定义法:假设函数的定义域不是关于原点对称,那么立即可判断该函数既不是奇函数也不是偶函数;假设函数的定义域是关于原点对称的,再判断()f x -与()f x ±之一是否相等.〔2〕验证法:在判断()f x -与()f x 的关系时,只需验证()f x -()f x ±=0及()1()f x f x -=±是否成立即可.〔3〕图象法:奇〔偶〕函数等价于它的图象关于原点〔y 轴〕对称.〔4〕性质法:两个奇函数的和仍为奇函数;两个偶函数的和仍为偶函数;两个奇函数的积是偶函数;两个偶函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数.〔5〕分段函数奇偶性的判断判断分段函数的奇偶性时,通常利用定义法判断.在函数定义域内,对自变量x 的不同取值范围,有着不同的对应关系,这样的函数叫做分段函数.分段函数不是几个函数,而是一个函数.因此其判断方法也是先考查函数的定义域是否关于原点对称,然后判断()f x -与()f x 的关系.首先要特别注意x 与x -的范围,然后将它代入相应段的函数表达式中,()f x 与()f x -对应不同的表达式,而它们的结果按奇偶函数的定义进行比较.要点三、关于函数奇偶性的常见结论奇函数在其对称区间[a,b]和[-b ,-a]上具有相同的单调性,即()f x 是奇函数,它在区间[a,b]上是增函数〔减函数〕,那么()f x 在区间[-b ,-a]上也是增函数〔减函数〕;偶函数在其对称区间[a,b]和[-b ,-a]上具有相反的单调性,即()f x 是偶函数且在区间[a,b]上是增函数〔减函数〕,那么()f x 在区间[-b ,-a]上也是减函数〔增函数〕.【典型例题】类型一、判断函数的奇偶性 例1. 判断以下函数的奇偶性:(1)()(f x x =+ (2)f(x)=x 2-4|x|+3 ;(3)f(x)=|x+3|-|x-3|; (4)()f x =(5)22-(0)()(0)x x x f x x x x ⎧+≥⎪=⎨+<⎪⎩; (6)1()[()-()]()2f x g x g x x R =-∈【思路点拨】利用函数奇偶性的定义进行判断.【答案】〔1〕非奇非偶函数;〔2〕偶函数;〔3〕奇函数;〔4〕奇函数;〔5〕奇函数;〔6〕奇函数. 【解析】(1)∵f(x)的定义域为(]-1,1,不关于原点对称,因此f(x)为非奇非偶函数; (2)对任意x ∈R ,都有-x ∈R ,且f(-x)=x 2-4|x|+3=f(x),那么f(x)=x 2-4|x|+3为偶函数 ; (3)∵x ∈R ,f(-x)=|-x+3|-|-x-3|=|x-3|-|x+3|=-f(x),∴f(x)为奇函数;(4)[)(]2-1x 11-x 0 x -1,00,1x 0x -4x+22≤≤⎧≥⎧∴∴∈⋃⎨⎨≠≠≠±⎩⎩且()(2)-2f x x x∴==+(-)-()f x f x x∴===,∴f(x)为奇函数;(5)∵x ∈R ,f(x)=-x|x|+x ∴f(-x)=-(-x)|-x|+(-x)=x|x|-x=-f(x),∴f(x)为奇函数; (6)11(-){(-)-[-(-)]}[(-)-()]-()22f xg x g x g x g x f x ===,∴f(x)为奇函数.【总结升华】判定函数奇偶性容易失误是由于没有考虑到函数的定义域.函数的定义域关于原点对称是函数具有奇偶性的前提条件,因此研究函数的奇偶性必须“坚持定义域优先〞的原那么,即优先研究函数的定义域,否那么就会做无用功.如在本例〔4〕中假设不研究定义域,在去掉|2|x +的绝对值符号时就十分麻烦.举一反三:【变式1】判断以下函数的奇偶性:(1)23()3xf x x =+;(2)()|1||1|f x x x =++-;(3)222()1x xf x x +=+;(4)22x 2x 1(x 0)f (x)0(x 0)x 2x 1(x 0)⎧+-<⎪==⎨⎪-++>⎩. 【答案】〔1〕奇函数;〔2〕偶函数;〔3〕非奇非偶函数;〔4〕奇函数. 【解析】(1)()f x 的定义域是R ,又223()3()()()33x xf x f x x x --==-=--++,()f x ∴是奇函数.〔2〕()f x 的定义域是R ,又()|1||1||1||1|()f x x x x x f x -=-++--=-++=,()f x ∴是偶函数. 〔3〕22()()()11f x x x x x -=-+-+=-+()()()()f x f x f x f x ∴-≠--≠且,∴()f x 为非奇非偶函数.〔4〕任取x>0那么-x<0,∴f(-x)=(-x)2+2(-x)-1=x 2-2x-1=-(-x 2+2x+1)=-f(x)任取x<0,那么-x>0 f(-x)=-(-x)2+2(-x)+1=-x 2-2x+1=-(x 2+2x-1)=-f(x) x=0时,f(0)=-f(0) ∴x ∈R 时,f(-x)=-f(x) ∴f(x)为奇函数. 【高清课堂:函数的奇偶性356732例2〔1〕】【变式2】f(x),g(x)均为奇函数,且定义域相同,求证:f(x)+g(x)为奇函数,f(x)·g(x)为偶函数. 证明:设F(x)=f(x)+g(x),G(x)=f(x)·g(x)那么 F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-[f(x)+g(x)]=-F(x) G(-x)=f(-x)·g(-x)=-f(x)·[-g(x)]=f(x)·g(x)=G(x) ∴f(x)+g(x)为奇函数,f(x)·g(x)为偶函数. 【高清课堂:函数的奇偶性356732例2〔2〕】 【变式3】设函数()f x 和g(x )分别是R 上的偶函数和奇函数,那么以下结论 恒成立的是 〔 〕.A .()f x +|g(x)|是偶函数B .()f x -|g(x)|是奇函数C .|()f x | +g(x)是偶函数D .|()f x |- g(x)是奇函数 【答案】A例2.函数(),f x x R ∈,假设对于任意实数,a b 都有()()()f a b f a f b +=+,判断()f x 的奇偶性. 【答案】奇函数【解析】因为对于任何实数,a b ,都有()()()f a b f a f b +=+,可以令,a b 为某些特殊值,得出()()f x f x -=-.设0,a =那么()(0)()f b f f b =+,∴(0)0f =. 又设,a x b x =-=,那么(0)()()f f x f x =-+,()()f x f x ∴-=-,()f x ∴是奇函数.【总结升华】判断抽象函数的单调性,可用特殊值赋值法来求解.在这里,由于需要判断()f x -与()f x 之间的关系,因此需要先求出(0)f 的值才行.举一反三:【变式1】 函数(),f x x R ∈,假设对于任意实数12,x x ,都有121212()()2()()f x x f x x f x f x ++-=⋅,判断函数()f x 的奇偶性.【答案】偶函数 【解析】令120,,x x x ==得()()2(0)()f x f x f f x +-=,令210,,x x x ==得()()2(0)()f x f x f f x +=由上两式得:()()()()f x f x f x f x +-=+,即()()f x f x -=∴()f x 是偶函数.类型二、函数奇偶性的应用(求值,求解析式,与单调性结合)例3. f(x),g(x)均为奇函数,()()()2H x af x bg x =++在()0,+∞上的最大值为5,那么()H x 在〔-,2∞〕上的最小值为 .【答案】 -1【解析】考虑到(),()f x g x 均为奇函数,联想到奇函数的定义,不妨寻求()H x 与()H x -的关系.()H x +()H x -=()()2()()2af x bg x af x bg x +++-+-+()(),()()f x f x g x g x -=--=-,()()4H x H x ∴+-=.当0x <时,()4()H x H x =--, 而0x ->,()5H x ∴-≤,()1H x ∴≥- ∴()H x 在(,0)-∞上的最小值为-1.【总结升华】本例很好地利用了奇函数的定义,其实如果仔细观察还可以发现()()af x bg x +也是奇函数,从这个思路出发,也可以很好地解决此题.过程如下:0x >时,()H x 的最大值为5,0x ∴>时()()af x bg x +的最大值为3,0x ∴<时()()af x bg x +的最小值为-3,0x ∴<时,()H x 的最小值为-3+2=-1.举一反三:【变式1】f(x)=x 5+ax 3-bx-8,且f(-2)=10,求f(2). 【答案】-26【解析】法一:∵f(-2)=(-2)5+(-2)3a-(-2)b-8=-32-8a+2b-8=-40-8a+2b=10∴8a-2b=-50 ∴f(2)=25+23a-2b-8=8a-2b+24=-50+24=-26 法二:令g(x)=f(x)+8易证g(x)为奇函数 ∴g(-2)=-g(2) ∴f(-2)+8=-f(2)-8 ∴f(2)=-f(-2)-16=-10-16=-26.【总结升华】此题要会对式进行变形,得出f(x)+8= x 5+ax 3-bx 为奇函数,这是此题的关键之处,从而问题(2)g 便能迎刃而解.例4. ()f x 是定义在R 上的奇函数,当0x >时,2()31f x x x =+-,求()f x 的解析式.【答案】2231,0,()0,0,31,0.x x x f x x x x x ⎧+->⎪==⎨⎪-++<⎩【解析】()f x 是定义在R 上的奇函数,()()f x f x ∴-=-,当0x <时,0x ->,2()()()3()1f x f x x x ⎡⎤∴=--=--+--⎣⎦=231x x -++又奇函数()f x 在原点有定义,(0)0f ∴=.2231,0,()0,0,31,0.x x x f x x x x x ⎧+->⎪∴==⎨⎪-++<⎩【总结升华】假设奇函数()f x 在0x =处有意义,那么必有(0)0f =,即它的图象必过原点〔0,0〕. 举一反三:【高清课堂:函数的奇偶性 356732 例3】 【变式1】〔1〕偶函数()f x 的定义域是R ,当0x ≤时2()31f x x x =--,求()f x 的解析式.〔2〕奇函数()g x 的定义域是R ,当0x >时2()21g x x x =+-,求()g x 的解析式.【答案】〔1〕2231(0)()31(0)x x x f x x x x ⎧+->⎪=⎨--≤⎪⎩;〔2〕2221(0)()0021(0)x x x g x x x x x ⎧+->⎪==⎨⎪-++<⎩ ()例5. 定义域在区间[-2,2]上的偶函数()g x ,当x ≥0时,()g x 是单调递减的,假设(1)()g m g m -<成立,求m 的取值范围.【思路点拨】根据定义域知1-m ,m ∈[―1,2],但是1―m ,m 在[―2,0],[0,2]的哪个区间内尚不明确,假设展开讨论,将十分复杂,假设注意到偶函数()f x 的性质:()()(||)f x f x f x -==,可防止讨论.【答案】1[1,)2-. 【解析】由于()g x 为偶函数,所以(1)(1)g m g m -=-,()(||)g m g m =.因为x ≥0时,()g x 是单调递减的,故|1|||(1)()(|1|)(||)|1|2||2m m g m g m g m g m m m ->⎧⎪-<⇔-<⇔-≤⎨⎪≤⎩,所以222121222m m m m m ⎧-+>⎪-≤-≤⎨⎪-≤≤⎩,解得112m -≤<.故m 的取值范围是1[1,)2-.【总结升华】在解题过程中抓住偶函数的性质,将1―m ,m 转化到同一单调区间上,防止了对由于单调性不同导致1―m 与m 大小不明确的讨论,从而使解题过程得以优化.另外,需注意的是不要忘记定义域.类型三、函数奇偶性的综合问题例6. ()y f x =是偶函数,且在[0,+∞〕上是减函数,求函数2(1)f x -的单调递增区间.【思路点拨】此题考查复合函数单调性的求法。
了解函数的基本奇偶性

了解函数的基本奇偶性函数的奇偶性是数学中一个非常重要的概念,它与函数的图像、方程和性质密切相关。
了解函数的基本奇偶性对于理解和解决许多数学问题至关重要。
本文将介绍函数的奇偶性及其应用。
一、函数的奇偶性定义在数学中,任何一个函数都可以判断其奇偶性。
对于定义在实数域上的函数f(x),如果对于任意实数x,有f(-x)=f(x),则函数f(x)是偶函数;如果对于任意实数x,有f(-x)=-f(x),则函数f(x)是奇函数;如果函数既不满足偶性也不满足奇性,则称其为一般函数或无奇偶性函数。
二、奇偶性函数的性质1. 偶函数的性质(1)奇次幂的多项式函数是奇函数;偶次幂的多项式函数是偶函数。
(2)偶函数关于y轴对称,即其图像与y轴关于原点对称。
(3)偶函数在原点处有对称轴,即原点是其对称轴的一部分。
(4)偶函数乘以偶函数还是偶函数,偶函数乘以奇函数还是奇函数。
2. 奇函数的性质(1)奇次幂的多项式函数是奇函数;偶次幂的多项式函数是偶函数。
(2)奇函数关于原点对称,即其图像与原点关于原点对称。
(3)奇函数在原点处有旋转对称性。
(4)奇函数乘以奇函数还是偶函数,奇函数乘以偶函数还是奇函数。
三、奇偶性函数的应用1. 确定函数的奇偶性可以简化一些数学计算,特别是在求导、积分和解方程等问题中。
对于奇函数,若其在原点处取值为零,则其他与原点对称的点也为零;对于偶函数,若其在原点处取值为零,则关于原点对称的点也为零。
2. 函数的奇偶性可以帮助我们确定函数的对称性,以及函数图像在平面上的分布情况。
3. 偶函数的性质常用于解决对称性相关的问题,如求曲线的对称轴等;奇函数的性质常用于解决旋转对称性相关的问题,如求曲线的旋转中心等。
4. 在解方程中,可以利用奇偶性来帮助我们简化问题,特别是当方程中包含奇偶函数时。
四、总结了解函数的基本奇偶性对于数学的学习和问题求解至关重要。
通过分析函数的奇偶性可以简化计算,确定图像的对称性,解决对称性相关问题,并提供更多的数学思路和方法。
函数的奇偶性及其应用(答案版)

一、关于函数的奇偶性的定义:定义说明:对于函数)(x f 的定义域内任意一个x :(1))()(x f x f =- ⇔)(x f 是偶函数;(2))()(x f x f -=-⇔)(x f 奇函数;(3)判断函数的奇偶性有时可以用定义的等价形式: ()()0f x f x ±-=,()1()f x f x =±- 二、函数的奇偶性的几个性质:(1)具有奇偶性的函数,其定义域关于原点对称(2)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称.(3)若奇函数的定义域包含数0,则f (0)=0.(4)奇函数对称区间上的单调性相同,偶函数对称区间上的单调性相反(5)奇函数+奇函数=奇函数 偶函数+偶函数=偶函数奇函数*奇函数=偶函数 偶函数*偶函数=偶函数 奇函数*偶函数=奇函数三、函数的奇偶性的判断利用奇、偶函数的定义,主要考查)(x f 是否与)(x f -、)(x f 相等,步骤如下:(1) 首先确定函数的定义域,并判其定义域是否关于原点对称;(2)确定f(-x)与f(x)的关系;(3)作出相应结论:1、判断下列函数的奇偶性(1)()(f x x =- (2)22(0)()(0)x x x f x x x x ⎧+<⎪=⎨-+>⎪⎩(3)()f x =1122-⋅-x x (4)()f x = (5)f(x)=2-x +x -2 解:(1)由101x x+≥-,得定义域为[1,1)-,关于原点不对称,∴()f x 为非奇非偶函数 (2)当0x <时,0x ->,则22()()()()f x x x x x f x -=---=-+=-,当0x >时,0x -<,则22()()()()f x x x x x f x -=--=--+=-,综上所述,对任意的(,)x ∈-∞+∞,都有()()f x f x -=-,∴()f x 为奇函数(3)∴f(x)是偶函数.事实上函数的定义域为{-1,1},将=)(x f 1122-⋅-x x化简得f(x)=0.∴f(x)既是偶函数,又是奇函数.(4)奇函数 (5)此函数定义域为{2},故f(x)是非奇非偶函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙源期刊网
函数奇偶性的理解及应用
作者:王明飞
来源:《新高考·高一数学》2012年第09期
文艺复兴以后,数学进入了分析时代,引入了极限的概念,第二次数学危机也就应运而生,焦点仍然是无穷小问题。
直到19世纪,阿贝尔、柯西、魏尔斯特拉斯终于进一步将无穷小理论归结为极限理论加以严格化,然后戴德金又建立了更基本的实数理论,说清了无理数问题(康托尔本人也在两件工作中留下了自己的印记)。
两次危机遗留的问题似乎被彻底解决了。
然而,数学界风平浪静没多久,第三次数学危机就爆发了。
其导火索是集合论研究中产生的罗素悖论。
康托尔是顺着魏尔斯特拉斯和戴德金的思路开创集合论的。
尽管如此,集合论仍体现了旁人无法企及的丰富想象力和高度的原创精神。
集合论这些概念的价值不仅仅在于它们本身非常合适地成为数学各分支的基础,而且集合论的深层次问题在于无穷集,而不是有限集。
1873年,康托尔在给戴德金的一封信中提出了一个奇怪的问题。
他认为有理数与自然数
一样多!。