函数奇偶性的应用
函数奇偶性的应用

般借助定义进行证明.
[解]
(1)当x=y=0时,有f(0)+f(0)=f(0),
∴f(0)=0. 令y=-x,有f(x)+f(-x)=f(0)=0, ∴f(-x)=-f(x).∴f(x)为奇函数. (2)在(-1,1)上任取x1,x2,令x1>x2,则 f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2) ∵x1>x2,∴x1-x2>0,∴f(x1-x2)<0. ∴f(x1)-f(x2)<0即f(x1)<f(x2). ∴f(x)在(-1,1)上单调递减.
答案:<
5.已知f(x)是定义在R上的偶函数,当x≥0时,f(x)= 2 ,试求f(x)的解析式. x+1
解:当x<0时,-x>0, 2 此时f(x)=f(-x)= , -x+1 2 ,x≥0, x+1 ∴f(x)= 2 ,x<0. -x+1 2 即f(x)= . |x|+1
2
变式训练1 已知f(x)是R上的奇函数,且当x∈(0,+ ∞)时,f(x)=x(1+ 式. 3 x ),求当x∈(-∞,0)时, f(x)的解析
解:设 x∈(-∞,0),则-x∈(0,+∞). 由已知得 f(-x)=-x(1+ -x)=-x(1- x). ∵f(x)是 R 上的奇函数, 3 ∴f(-x)=-f(x),∴f(x)=-f(-x)=x(1- x). 即 f(x)=x(1- x), 3 3 3 3
是增函数.故选B.
类型三 函数奇偶性与单调性的综合应用 [例3] 已知函数y=f(x)的定义域为(-1,1),并且对一
切x,y∈(-1,1)恒有f(x)+f(y)=f(x+y);且当x>0时, f(x)<0; (1)判断该函数的奇偶性; (2)判断并证明该函数的单调性; (3)若f(1-m)+f(1-m2)>0,求实数m的取值范围. [分析] 与单调性、奇偶性有关的抽象函数问题,一
函数奇偶性的应用

() 的解析式.
1. 函数 () 在 上为奇函数,且当 > 0 时, () = + 1 ,则当 < 0 时
, () = ___________.
−1
[解析] ∵ () 为奇函数,当 > 0 时, () = + 1 ,∴ 当 < 0 时, − > 0
【解析】由题意知,当 x<0 时,f(x)=-eax,则当 x>0 时,-x<0,f(-x)=-e-ax.
又因为 f(x)是奇函数,则当 x>0,f(x)=-f(-x)=e-ax.
又因为 f(ln 2)=8,则 f(ln 2)=e-aln 2=2-a=8,解得 a=-3.
4. 若函数 f(x)=
A.-3
函数奇偶性的应用
1. 求解析式中的参数值:在定义域关于原点对称的前提下,利用 () 为
奇函数 ⇔ (−) = −(), () 为偶函数 ⇔ () = (−) ,列式求解,也
可利用特殊值法求解.对于在 = 0 处有定义的奇函数 () ,可考虑列等式
(0) = 0 求解.
2. [2020年江苏卷]已知 = () 是奇函数,当 ≥ 0 时, () =
,
2
3
则 (−8) 的值是_________.
−4
2
3
[解析] (8) = 8 = 4 ,因为 () 为奇函数,所以 (−8) = −(8) = −4 .
3. 已知 f(x)是奇函数,且当 x<0 时,f(x)=-eax.若 f(ln 2)=8,则 a=
∵M=f(x)max=2+g(x)max,m=f(x)min=2+g(x)min,
函数奇偶性的性质应用

函数奇偶性的应用一、利用函数的奇偶性判断函数的单调性1 奇函数在关于原点对称的两个区间上的单调性一致,偶函数在关于原点对称的两个区间上的单调性相反.2 奇函数、偶函数的单调性的对称规律在不同区间内的自变量对应的函数值比较大小中作用很大.对于偶函数,如果两个自变量在关于原点对称的两个不同的单调区间上,即自变量的正负不统一,应利用图象的对称性将自变量化归到同一个单调区间,然后再根据单调性判断.例.若奇函数f(x)在[a,b]上是增函数,且有最大值M,则f(x)在[-b,-a]上是增函数,且有最小值-M.例.若偶函数f(x)在(-∞,0)上是减函数,则f(x)在(0,+∞)上是增函数.例如果f(x)是R上的奇函数,且在[3,6]上有最大值4,最小值2,那么函数f(x)在[-6,-3]上的最大值和最小值各是多少?提示:奇函数的图象关于原点对称,联想图象可知函数f(x)在[-6,-3]上的最大值为-2,最小值为-4.例.若函数y=f(x)(x∈R)是奇函数,且f(1)<f(2),则必有()A.f(-1)<f(-2) B.f(-1)>f(-2)C.f(-1)=f(1) D.f(-2)=f(1)解析:∵f(1)<f(2),∴-f(1)>-f(2).又已知f(x)是奇函数,∴f(-1)>f(-2).答案:B例函数y=f(x)(x∈R)是奇函数,图象必过点A.(a, -f(a)) B.(-a, -f(a))C.(a, f(-a)) D.(-a, -f(a))例.设f(x)是R上的偶函数,且在[0,+∞)上单调递增,则f(-2),f(-π),f(3)的大小顺序是________.解析:∵f(x)是R上的偶函数,∴f(-2)=f(2),f(-π)=f(π),又f(x)在[0,+∞)上递增,而2<3<π,∴f(π)>f(3)>f(2),即f(-π)>f(3)>f(-2).答案:f(-π)>f(3)>f(-2)例.函数f(x)是R上的偶函数,且在[0,+∞)上单调递增,则下列各式成立的是()A.f(-2)>f(0)>f(1)B.f(-2)>f(1)>f(0)C.f(1)>f(0)>f(-2)D.f(1)>f(-2)>f(0)解析:∵f(x)是R上的偶函数,∴f(-2)=f(2),又∵f(x)在[0,+∞)上递增,∴f (-2)>f (1)>f (0). 答案:B例.已知函数f (x )在区间[-5,5]上是奇函数,在区间[0,5]上是单调函数,且f (3)<f (1),则( ) A .f (-1)<f (-3) B .f (0)>f (-1) C .f (-1)<f (1) D .f (-3)>f (-5)思路分析:要比较各函数值的大小,需判断函数在区间[-5,5]上的单调性,根据题意,应首先判断函数在区间[0,5]上的单调性.解析:函数f (x )在区间[0,5]上是单调函数,又3>1,且f (3)<f (1),故此函数在区间[0,5]上是减函数. 由已知条件及奇函数性质,知函数f (x )在区间[-5,5]上是减函数. 选项A 中,-3<-1,故f (-3)>f (-1). 选项B 中,0>-1,故f (0)<f (-1).同理选项C 中f (-1)>f (1),选项D 中f (-3)<f (-5). 答案:A例.设f (x )是定义在R 上单调递减的奇函数.若x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则( ) A .f (x 1)+f (x 2)+f (x 3)>0 B .f (x 1)+f (x 2)+f (x 3)<0 C .f (x 1)+f (x 2)+f (x 3)=0 D .f (x 1)+f (x 2)>f (x 3)解析:利用减函数和奇函数的性质判断. ∵x 1+x 2>0,∴x 1>-x 2.又∵f (x )是定义在R 上单调递减的奇函数, ∴f (x 1)<-f (x 2).∴f (x 1)+f (x 2)<0.同理,可得f (x 2)+f (x 3)<0,f (x 1)+f (x 2)<0.∴2f (x 1)+2f (x 2)+2f (x 3)<0. ∴f (x 1)+f (x 2)+f (x 3)<0. 答案:B例 (2009年陕西文科卷)定义在R 上的偶函数()f x 满足:对任意的1212,[0,)()x x x x ∈+∞≠,有2121()()0f x f x x x -<-.则 ( )A .(3)(2)(1)f f f <-< B.(1)(2)(3)f f f <-< C.(2)(1)(3)f f f -<< D.(3)(1)(2)f f f <<-答案:A例 定义在R 上的偶函数f (x )满足:对任意的x 1,x 2∈(-∞,0](x 1≠x 2),有(x 2-x 1)·[f (x 2)-f (x 1)]>0.则当n ∈N +时,有( )A .f (-n )<f (n -1)<f (n +1)B .f (n -1)<f (-n )<f (n +1)C .f (n +1)<f (-n )<f (n -1)D .f (n +1)<f (n -1)<f (-n )思路分析:先判断出函数f (x )的单调性,再转化为同一单调区间内判断函数值的大小关系. 解析:由(x 2-x 1)[f (x 2)-f (x 1)]>0得f (x )在x ∈(-∞,0]为增函数. 又f (x )为偶函数,所以f (x )在x ∈[0,+∞)为减函数. 又f (-n )=f (n )且0≤n -1<n <n +1,∴f (n +1)<f (n )<f (n -1),即f (n +1)<f (-n )<f (n -1). 答案:C例.若y =(a -1)x 2-2ax +3为偶函数,则在(-∞,3]内函数的单调区间为________. 解析:a =0,y =-x 2+3结合二次函数的单调性知. 答案:增区间(-∞,0),减区间[0,3]例 定义在区间(-∞,+∞)上的奇函数)(x f 为增函数,偶函数)(x g 在区间[0,+∞)上的图象与)(x f 的图象重合,设a >b >0,给出下列不等式:(1)f (b )-f (-a )>g (a )-g (-b ); (2)f (b )-f (-a )<g (a )-g (-b ); (3)f (a )-f (-b )>g (b )-g (-a ); (4)f (a )-f (-b )<g (b )-g (-a ). 其中成立的是( )A . (1)与(4)B . (2)与(3)C . (1)与(3)D . (2)与(4) 解析:根据函数)(x f 、)(x g 的奇偶性将四个不等式化简,得: (1)f (b )+f (a )>g (a )-g (b ); (2)f (b )+f (a )<g (a )-g (b ); (3)f (a )+f (b )>g (b )-g (a ); (4)f (a )+f (b )<g (b )-g (a ).再由题义,有 )(a f =)(a g >)(b f =)(b g >0)0()0(==g f .显然(1)、(3)正确,故选C .【技巧提示】 具有奇偶性的函数可以根据某个区间的单调性判定其对称的区间内的单调性,因而往往与不等式联系紧密.二. 求函数的函数值和函数解析式此类问题的一般解法是:(1)“求谁则设谁”,即在哪个区间求解析式,x 就设在哪个区间内. (2)要利用已知区间的解析式进行代入.(3)利用f (x )的奇偶性写出-f (x )或f (-x ),从而解出f (x )例 已知函数y =f (x )是偶函数,其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和是( ) A .4 B .2 C .1 D .0 思路分析:以偶函数的图象特征进行判断.解析:∵偶函数y =f (x )的图象关于y 轴对称,∴f (x )与x 轴的四个交点也关于y 轴对称.因此,若一根为x 1,则它关于y 轴对称的根为-x 1;若一根为x 2,则它关于y 轴对称的根为-x 2,故f (x )=0的四根之和为x 1+(-x 1)+x 2+(-x 2)=0.∴应选D.例.已知()2f x ax bx 3a b =+++是偶函数,且定义域为[],a 22a -,则____,____;a b ==例.已知函数1().21xf x a =-+,若()f x 为奇函数,则a =________。
谈谈函数奇偶性的应用

思路探寻函数奇偶性是函数的重要性质之一,是指对于函数f (x ),若定义域内任意的x ,都有f (-x )=-f (x ),则函数f (x )为奇函数;若都有f (-x )=f (x ),则该函数f (x )为偶函数.函数的奇偶性在高中数学解题中应用广泛,尤其在解不等式、求函数的值、求函数解析式时应用较多.对此,笔者就函数奇偶性在高中数学解题中的应用进行了探讨,以期对同学们解题有所助益.一、利用函数的奇偶性解不等式有些不等式问题较为复杂,很难快速找到解题的突破口,此时不妨仔细分析不等式左右两边式子的结构特征,构造恰当的函数,将不等式问题转化为函数问题,再利用函数的奇偶性去处理,这样便可使不等式问题顺利获解.例1.求证:x 1-2x <x 2(x ≠0).分析:此不等式若直接证明十分棘手,可结合不等式的特点构造出一个函数,利用偶函数的性质将不等式进行转化,则可以轻松证明结论.证明:设f (x )=x 1-2x -x 2(x ≠0),因为f (-x )=-x 1-2-x --x2=-x (1+12x -1)+x 2=x 1-2x -x 2=f (x ),所以f (x )为偶函数.当x >0时,1-x2<0,可知f (x )<0;当x <0时,-x >0,f (x )=f (-x )<0,综上所述,当x ≠0时,恒有f (x )<0,即x 1-2x <x 2(x ≠0).利用函数奇偶性解答不等式问题的关键在于,结合不等式的结构特征构造具有奇偶性的函数,以便利用函数的奇偶性将问题加以转化.二、利用函数的奇偶性求函数的值求函数的值问题是函数中的常见题目,常以选择题或填空题的形式出现.此类问题中常含有参数,为了快速求得函数的值,我们可以利用函数的奇偶性,将f (-x )用±f (x )来替换,将函数式作整体处理,进而求得函数的值.这样不仅可以避免逐步讨论、求解参数的值,还可以简化运算,有利于提升解题的效率.例2.若f (x )=a x -a -x2+b ·log c (x +x 2+1)+x 2(其中a ,b ,c 为常数),且f (-2)=5,试求f (2)的值.分析:本题直接求函数f (2)的值较为困难,可结合f (x )表达式的特点,将含x 的一部分构造成具有奇偶性的函数,利用函数的奇偶性进行处理,则不难求出函数f (2)的值.解:设g (x )=a x -a -x 2+b ·log c (x +x 2+1),则g (-x )=a -x -a x2+b ·log c (-x +(-x )2+1)=-g (x ),易知g (x )为奇函数,故有g (-2)=-g (2),又因为f (x )=g (x )+x 2,则{f (-2)=g (-2)+4,f (2)=-g (2)+4,将两式相加可得f (-2)+f (2)=8,因为f (-2)=5,所以f (2)=3.三、利用函数的奇偶性求函数的解析式求解函数的解析式问题的方法较多,利用函数奇偶性是常用的方法.在求函数的解析式时,要首先根据函数奇偶性的定义判断函数的奇偶性,然后将f (-x )用±f (x )来替换,这样便能快速求得函数的解析式.例3.已知f (x )与g (x )的定义域是{x |x ∈R 且x ≠±1},若f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=1x -1.试求f (x )与g (x )的解析式.解:因为f (x )是偶函数,所以f (-x )=f (x ),因为g (x )是奇函数,所以g (-x )=-g (x ),因为f (-x )+g (-x )=1-x -1,所以f (x )-g (x )=1-x -1①.由已知可得f (x )+g (x )=1x -1②.由①+②可得2f (x )=2x 2-1(x ≠±1),所以f (x )=1x 2-1(x ≠±1),所以g (x )=1x -1-1x 2-1=x x 2-1(x ≠±1).若已知函数是偶函数或奇偶数,则根据函数奇偶性的定义f (-x )=-f (x )或f (-x )=f (x )进行代换,便不难求出函数的解析式.在这一过程中,我们要注意把握奇函数或偶函数的定义域.总之,对于某些较为复杂的函数问题,同学们若能从函数的奇偶性入手,往往可以拓宽解题的思路.所以,在平时的学习中,同学们要熟练掌握函数的性质.(作者单位:江苏省江浦高级中学)谈谈函数奇偶性的应用邹大博48Copyright©博看网 . All Rights Reserved.。
函数奇偶性的应用

函数奇偶性的应用函数奇偶性(FunctionParity)是指一个函数可以经过一个变换,使其符号发生对称的变化的性质。
这种性质可以用于解决许多数学问题,特别是那些涉及到计算积分的问题,例如,计算圆周积分、椭圆积分等。
函数的奇偶性本质上是一种对称性质,它不是某一个函数的具体性质,而是函数人因变换后所拥有的性质。
其定义是:如果函数f(x)对于任意x,都有f(-x) = -f(x),则称f(x)为奇函数,反之,如果f(-x)=f(x),则称函数f(x)为偶函数。
一般来说,函数的奇偶性与函数的变换关系密切相关,函数的变换可以表示为改变函数的变量x的值或者改变函数的结果y值。
例如,函数f(x)=ax2+bx+c (a≠0)有对称性,因为当x取任意值时,它的关系式f(-x)=a(-x)2+b(-x)+c=-ax2+bx+c=-f(x),所以函数f(x)是奇函数。
函数奇偶性具有许多应用,例如,利用它可以求解椭圆积分。
椭圆积分是由一个定义在椭圆上的函数与椭圆的面积累加求得的。
因为函数的奇偶性能满足对称性,所以可以利用这一性质,将椭圆分成两半来求解。
具体的操作是,首先用函数左半部分的面积累加求得积分值,然后再用函数右半部分的面积累加求得积分值,最后相加即可得到椭圆积分的结果。
函数奇偶性还可以用于求解圆周积分问题。
因为圆周积分一般是指求解圆周上函数的积分值,而利用函数奇偶性,可以把圆周分割成两部分,一部分是正玄轴到负玄轴的距离,另一部分是负玄轴到正玄轴的距离,从而将圆周积分转化为求解两个积分的和,从而更加容易求出解析解。
此外,函数奇偶性还可以用于对一些复杂的函数进行拆分,将多个复杂的函数拆分为若干个相对简单的函数,从而更容易求解。
例如,可以将多项式函数拆分为多个单项式函数,这样就可以更加方便地求解多项式函数。
最后,函数奇偶性也可以用于多元函数的研究。
对于多元函数,函数的奇偶性可以帮助我们更加清晰地理解函数的性质,从而更直观地求解多元函数的结果。
函数奇偶性的应用

函数奇偶性的应用函数的奇偶性是指函数在其定义域内是否满足奇偶性质。
在数学中,奇数代表整数除以2的余数为1,偶数代表整数除以2的余数为0。
而在函数中,奇函数代表函数满足f(-x)=-f(x),偶函数代表函数满足f(-x)=f(x)。
函数的奇偶性在数学中有着广泛的应用,如在对称性、曲线图像、解方程等方面都能够起到重要的作用。
下面将详细讨论函数奇偶性在不同应用领域的具体应用。
首先,在对称性方面,函数的奇偶性能够帮助我们判断函数关于y轴、x轴以及原点是否对称。
对于奇函数,它关于原点对称,即图像在原点处旋转180度后与原图像重合;对于偶函数,它关于y轴对称,即图像关于y轴对称;而对于一般的函数,如果既不是奇函数也不是偶函数,那么它不具备关于坐标轴的对称性。
其次,在曲线图像方面,函数的奇偶性能够帮助我们简化曲线图像的绘制和分析。
由于奇函数关于原点对称,所以当我们只需要绘制图像在原点右侧的部分,然后再将其关于原点对称得到的图像就是整个函数的图像;偶函数同样可以利用关于y轴的对称性简化图像的绘制。
这在许多实际问题中都起到了很大的帮助,特别是能够通过对图像的简化来更好地理解函数的性质。
再次,在解方程方面,我们可以利用函数的奇偶性来求解一些特定的问题。
例如,当我们需要求解一个方程f(x)=0时,如果函数是奇函数,即f(-x)=-f(x),那么我们只需要找到一组解x0,然后就能得到对称的另一组解-x0。
同样地,如果函数是偶函数,即f(-x)=f(x),我们只需要求解非负解,然后就能得到关于y轴对称的另一组解。
这对于简化解方程的过程非常有帮助。
此外,在积分计算方面,函数的奇偶性同样提供了一种简化计算的方法。
对于奇函数而言,它的在一个对称区间内的积分等于0,因为函数在区间的正负区域对称;而对于偶函数而言,它在一个对称区间内的积分可以化简为两倍的非负积分,因为函数在区间内的曲线图像关于y轴对称。
这种简化计算的方法在数学中经常被运用,能够提高计算的效率。
函数的奇偶性及其应用

1/10/2015
三、应用
1、求函数值 2、求具有奇偶性的分段函数的解析式
例2、已知f(x)是定义在R上的奇函数,当x<0时,f(x)=x(2-x), 求函数f(x)的解析式
解 f ( x)是定义在R上的奇函数
f ( x) f ( x), f (0) 0
当x 0时, x 0, 则f ( x) x[2 ( x)] x(2 x)
函数的奇偶性
1/10/2015
一、判断函数的奇偶性 1、定义法
定义域是否关于原点对称 f ( x) (1) 验证 f ( x ) 是否和 f ( x ) 相等, (2) f ( x ) f ( x ) 是否为 0,(3 ) ( f ( x) 0)是否为 1 f ( x) 判断分段函数的奇偶性时,一段一段地判断
3、函数奇偶性与单调性的综合 4、确定参数的值
ax2 1 例1:设f ( x) 是奇函数(a, b, c Z )且f (1) 2, bx c f (2) 3, 求a, b, c的值.
解:由题知,f ( x) f ( x),即b( x) c bx c,
解:由f (1 a ) f (1 a 2 ) 0得f (1 a ) f (1 a 2 ) f ( x) f ( x), x (1 , 1 ) f (1 a ) f (a 2 1) 又 f ( x)在(1 , 1 )上是减函数, 1 1 a 1 1 1 a 2 1 ,解得 0 a 1. 1 a a 2 1 故实数a的取值范围为( 0, 1) .
1/10/2015
例 已知函数 f (x ),当 x ,y∈R 时,恒有 f (x +y)=f (x )+f (y). (1)求证:f (x )是奇函数; (2)若 x>0 时,总有 f(x)<0,求证:f(x)在 R 上是减函数; (3)解不等式 f(2x-1)+f(x+2)<0 1 (4)如果 x>0,f (x )<0,并且 f (1)=- ,试求 f (x )在区间[ -2,6] 上的最值. 2
函数奇偶性的应用

2 2a a 1 2a 2a 3, 即3a 2 0, 解之得a . 3
2 2
P16 2 P18 5 2
又 f x 是奇函数,则f(-x)=-f(x) -x3 x 1 f ( x), 即f ( x) x3 x 1 当x 0时,f ( x) x3 x 1.又f ( x)是奇函数,故f (0) 0.
x3 x 1, x 0, f ( x) 0, x 0, x3 x 1, x 0.
解析:本题已知当x 0时,f ( x) x3 x 1, 求f ( x)的解析式,只需要求出 x 0及x 0的表达式即可,已知f ( x)是奇函数,则f ( x) f ( x), 利用这一 条件将x 0, 则 x 0, 用 x替换f ( x) x 2 x 1中的x,得 f ( x) ( x)3 ( x) 1 x3 x 1.
函数奇偶性的应用
1、利用函数奇偶性求函数解析式
例:已知函数f ( x)是定义在(, )上的偶函 数,当x (-,0)时,f(x)=x-x4 ; 当x 0, 时,f ( x)
解:当x (0, )时, x (, 0), 则f ( x) x ( x) 4 x x 4 .又 函数为偶函数, f ( x) f ( x), x (0, ) 从而在区间(0, )上的函数的表达式为f ( x) x x 4
2、求参数
且有f (2a a 1) f (2a 2a 3), 求a的取值范围.
2 2
例、设f ( x)在R上是偶函数,在区间(-,0)上递增,
解: f ( x)在R上是偶函数,在区间(, 0)上递增, f ( x)在(0, +)上递增. 1 2 7 1 2 5 2 2a a 1 2(a ) 0, 2a 2a 3 2(a ) 0, 4 8 2 2 且f (2a 2 a 1) f (2a 2 2a 3),
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例3: 奇函数,求常数 m, n 的值
xm 若 f ( x) x 2 nx 1为定义在(-1,1)上的
1、函数f ( x) ( x a)(bx 2a)(a, b R)是偶函数, 且它的值域为(-,2],求函数f ( x)的解析式 .
ax 2 1 2、设函数f ( x) 是奇函数(a, b, c Z ) bx c 且f (1)=2,f (2) 3.求a, b, c的值。
已知函数f ( x)满足f (- x)=f ( x),当a, b (,0] f (a) f (b) 时总有 0(a b).若f ( 2m 1) f (2m), a b 求m的取值范围.
邻水实验学校
魏正兵
学习目标
1.解函数奇偶性与图像对称性之间的 关系; 2.掌握函数奇偶性与其它性质的综合运 用; 3. 进一步感悟数形结合思想的运用。
自主学习: 一、对照学习目标,完成以下几个问题。 1、若f(x)是偶(奇)函数,且在[a,b]上递增,试 判断函数f(x)在[-b,-a]的单调性 . (奇相同偶相反) f ( x) 2、由f(-x)=f(x),可得f(-x)-f(x)= 0 或 f ( x) = 1 . (f(x)≠0); f ( x) 由f(-x)=-f(x),可得f(-x)+f(x)= 0 或 f ( x) = -1 . (f(x)≠0). 3、如果一个奇函数f(x)在原点处有定义,即f(0)有 意义,那么一定有f(0) = 0 . 4、如果函数f(x)是偶函数,那么f(x)=f(-x) = f ( x ) .
考点一、利用函数的奇偶性求解析式 思考:利用函数的奇偶性求解析式时应注意什么?
例1:若f(x)是定义在R上的偶函数,当x 0 时,f(x)=x(1-x),求当x 0时,函数f(x)的解析式.
1、函数f ( x)是定义在 R 上的奇函数,当x 0时, f ( x)=-x 1, 则当x 0时f ( x)的解析式为( B ) A.f ( x) x 1 B.f ( x) x 1 C.f ( x) x 1 D.f ( x) x 1
考点三、函数单调性与奇偶性的综合运用
例4、已知奇函数f ( x)在(0, +)上是增函数, 且f (1)=0,求不等式x[ f ( x) f ( x)] 0的解集。
例5、已知函数f ( x)是偶函数,且在[0,+)上单调递减. 若f (m) f (2), 求实数m的取值.
已知函数f ( x)是偶函数,且在(-,0] 上单调递增.若f (m 1) f (2 m), 求 实数m的取值.
2、已知函数f ( x)是定义在(-, +)上的偶函数, 当x (, 0)时,f ( x)=x x 4 , 求当x (0, )时f ( x) 4 ( f ( x ) x x ) 的解析式.
考点二、利用函数的奇偶性求参数值
例2:若f ( x) ax2 bx 3a b 是偶函数,且定义域 为a 1,2a 则 a= . b = .