函数的奇偶性教学设计(教案)
函数的奇偶性教案

函数的奇偶性教案一、教学目标1. 知识与技能:(1)理解函数奇偶性的概念;(2)学会判断函数的奇偶性;(3)能够运用函数的奇偶性解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳,探索函数的奇偶性;(2)利用函数的奇偶性进行函数图像的变换。
3. 情感态度与价值观:(1)培养学生的逻辑思维能力;(2)激发学生对数学的兴趣,提高学习积极性。
二、教学重点与难点1. 教学重点:(1)函数奇偶性的概念及其判断方法;(2)函数奇偶性在实际问题中的应用。
2. 教学难点:(1)函数奇偶性的判断方法;(2)函数奇偶性在实际问题中的应用。
三、教学过程1. 导入新课:(1)复习已学过的函数性质,如单调性、周期性等;(2)提问:同学们,你们知道函数还有其他的性质吗?2. 探究新知:(1)介绍函数奇偶性的概念;(2)通过示例,让学生观察、分析、归纳函数的奇偶性;(3)引导学生掌握判断函数奇偶性的方法。
3. 典例分析:(1)分析函数f(x)=x^3的奇偶性;(2)分析函数f(x)=|x|的奇偶性;(3)分析函数f(x)=sinx的奇偶性。
4. 练习巩固:(2)运用函数的奇偶性解决实际问题。
四、课堂小结本节课,我们学习了函数的奇偶性,掌握了判断函数奇偶性的方法,并能够在实际问题中运用。
希望大家能够继续努力学习,不断提高自己的数学能力。
五、课后作业2. 运用函数的奇偶性解决实际问题:已知函数f(x)=x^2+1的图像关于y轴对称,求函数f(x)在x=-1时的值;3. 探究函数的奇偶性与单调性的关系。
六、教学活动设计1. 小组讨论:让学生分组讨论函数奇偶性的性质,以及如何判断一个函数的奇偶性。
2. 案例分析:通过具体的函数例子,让学生理解并掌握函数奇偶性的判断方法。
3. 互动提问:教师提出问题,引导学生思考并回答,以检查学生对函数奇偶性的理解和掌握程度。
七、教学评价1. 课堂问答:通过提问学生,检查他们对函数奇偶性的概念和判断方法的理解。
函数的奇偶性教案2篇

函数的奇偶性教案第一篇:函数的奇偶性教案目标:1. 了解函数的奇偶性的定义和性质。
2. 判断函数的奇偶性。
3. 通过练习题加深对函数的奇偶性的理解。
预计完成时间:1课时教学步骤:步骤一:引入话题(10分钟)教师可以用一个简单的问题引入话题,例如:你知道什么是函数的奇偶性吗?为什么需要关注函数的奇偶性?学生可以自由发言,激发学生们的兴趣。
步骤二:讲解奇偶性的概念(10分钟)教师简要讲解函数的奇偶性的概念,可以借助一些例子来说明。
奇函数和偶函数是对称的关系,奇函数关于y轴对称,而偶函数关于原点对称。
步骤三:奇偶性的判断方法(15分钟)教师讲解奇偶性的判断方法。
一般来说,对于一元函数,可以通过以下两种方法判断函数的奇偶性。
方法1:使用函数的定义式。
对于奇函数,f(-x)=-f(x)成立;对于偶函数,f(-x)=f(x)成立。
方法2:使用函数的图象。
对于奇函数,其图象关于原点对称;对于偶函数,其图象关于y轴对称。
步骤四:练习题(15分钟)教师提供一些练习题,让学生在纸上完成,然后进行讲解和讨论。
例如:1. 判断函数f(x)=x^3+3x^2-5x是否为奇函数。
2. 判断函数g(x)=2x^2-4是否为偶函数。
3. 利用函数的奇偶性,简化函数h(x)=5x^3-x^2+2x-1的图象。
步骤五:总结(10分钟)教师对本节课内容进行总结,并强调函数的奇偶性的重要性和应用。
第二篇:函数的奇偶性教案(续)目标:1. 掌握奇函数和偶函数的一些常见函数的性质。
2. 进一步加深对函数的奇偶性的理解。
3. 练习函数的奇偶性的判断和应用。
预计完成时间:1课时教学步骤:步骤一:引入话题(10分钟)教师可以复习上节课的内容,然后提问学生,你还记得什么是奇函数和偶函数吗?奇函数和偶函数有哪些性质?步骤二:常见函数的性质(15分钟)教师讲解一些常见函数的性质,例如:1. 幂函数:对于非负整数n,当n为奇数时,函数f(x)=x^n是奇函数;当n为偶数时,函数f(x)=x^n是偶函数。
函数的奇偶性教学设计

3.1.4函数的奇偶性【教学目标】1.理解奇函数㊁偶函数的定义及奇函数㊁偶函数的图象特征,初步掌握函数奇偶性的判断方法.2.能正确地使用符号语言刻画函数的奇偶性,提升数学表达和数学交流能力.3.经历由具体到抽象的思维过程,提升直观想象和逻辑推理的核心素养.【教学重点】奇函数㊁偶函数的定义与函数奇偶性的判断方法.【教学难点】奇函数和偶函数的定义.【教学方法】本节课主要采用类比教学法,先由两个具体的函数入手,引导学生发现函数f(x)在x与在-x处函数值之间的规律,由特殊到一般引出奇函数的定义,再由点的对称关系得出奇函数的图象特征,然后由学生自主探索,类比得出偶函数的定义.结合定义与例题总结出判断函数奇偶性的步骤,在解题过程中深化对函数奇偶性概念的理解.【教学过程】教学环节教学内容师生互动设计意图导入复习前面所学的求函数值的知识.师生共同回顾.为学生理解奇㊁偶函数的定义做好准备.新课已知函数f(x)=2x和g(x)=14x3.试求当x=ʃ3,x=ʃ2,x=ʃ1时的函数值,并观察相应函数值之间的关系.学生计算相应的函数值.教学环节教学内容师生互动设计意图新课一个函数是奇函数的充要条件是,它的图象是以坐标原点为对称中心的中心对称图形.例1判断下列函数是不是奇函数:(1)f(x)=1x;(2)f(x)=-x3;(3)f(x)=x+1;(4)f(x)=x+x3+x5+x7.解(1)因为函数f(x)=x的定义域A={x xʂ0},所以当xɪA时,-xɪA.因为f(-x)=1-x=-1x=-f(x),所以函数f(x)=1x是奇函数.(2)函数f(x)=-x3的定义域为R,所以当xɪR时,-xɪR.因为f(-x)=-(-x)3=-(-x3)=-f(x),所以函数f(x)=-x3是奇函数.(3)函数f(x)=x+1的定义域为R,当xɪR时,-xɪR.因为教师请学生尝试解答例1(1),对学生的回答进行补充㊁完善,师生共同总结判断方法:S1判断当xɪA时,是否有-xɪA,即函数的定义域是否关于坐标原点对称;S2 若S1成立,对任意一个xɪA,若f(-x)=-f(x),则函数y=f(x)是奇函数.教师板书详细的解题过程.规范解题步骤,提升学生思维的严谨性.f(-x)=-x+1,-f(x)=-(x+1)=-x-1,教学环节教学内容师生互动设计意图新课例2判断下列函数是不是偶函数:(1)f(x)=x2+x4;中提出的问题.教师以提问的方式检查学生的自学情况.(2)f(x)=x2+1;(3)f(x)=x2+x3;(4)f(x)=x2+1,xɪ[-1,3].解因为(1)(2)(3)的函数定义域都是实数集R,当xɪR时,有-xɪR,所以只要验证f(-x)=f(x)是否成立即可.(1)因为f(-x)=(-x)2+(-x)4=x2+x4=f(x),所以函数f(x)=x2+x4是偶函数;(2)因为f(-x)=(-x)2+1=x2+1=f(x),所以函数f(x)=x2+1是偶函数;(3)因为f(-x)=(-x)2+(-x)3=x2-x3,所以当xʂ0时,学生分析解题思路.请部分学生在黑板上解答(1)(2)(3).教师引导学生订正黑板上的答案,规范解题过程,梳理解题步骤.教师结合函数图象讲解(4).帮助学生加深对偶函数定义的理解.f(-x)ʂf(x),函数f(x)=x2+x3不是偶函数;(4)因为定义域[-1,3]不关于坐标原点对称,所以函数f(x)=x2+1,xɪ[-1,3]不是偶函数(也不是奇函数).教学环节教学内容师生互动设计意图新课3.对定义域的要求一个函数为奇函数或者偶函数的前提条件是这个函数的定义域关于原点对称.教师结合函数的图象强调定义域关于原点对称是判断函数奇偶性的前提.练习2判断下列函数是不是偶函数:(1)f(x)=(x+1)(x-1);(2)f(x)=x2+1,xɪ(-1,1];(3)f(x)=1x2-1.学生练习,师生共同订正.根据学生做题情况,了解学生对本节知识的掌握情况.小结1.函数的奇偶性.(1)奇函数:定义㊁图象特征.(2)偶函数:定义㊁图象特征.2.判断函数奇偶性的步骤.教师梳理本节重点内容,请学生对比理解㊁记忆.提升学生的类比能力,加强对函数奇偶性的理解.作业必做题:本节习题第5题.选做题:本节习题第6题.学生课后完成.巩固本节内容.。
函数的奇偶性教案

函数的奇偶性教案教案名称:函数的奇偶性教学目标:1. 理解函数的奇偶性的概念;2. 学会判断函数的奇偶性;3. 掌握奇偶函数的性质。
教学重点:1. 函数的奇偶性的定义;2. 判断函数的奇偶性的方法;3. 奇函数和偶函数的性质。
教学准备:1. 函数的定义和性质;2. 奇函数和偶函数的定义;3. 判断函数的奇偶性的方法。
教学过程:Step 1:引入概念(5分钟)教师可以通过举例引入函数的奇偶性的概念,比如y=x^2和y=sin(x)是两个常见的函数,其中前者是偶函数,后者是奇函数。
教师可以让学生观察并总结这两个函数的特点,引出函数的奇偶性的定义。
Step 2:讲解定义和判断方法(10分钟)教师讲解奇函数和偶函数的定义:对于任何实数x,如果函数f(x)满足f(-x)=-f(x),则称f(x)为奇函数;如果函数f(x)满足f(-x)=f(x),则称f(x)为偶函数。
教师可以通过几个具体的函数例子,如y=x^3和y=x^4,来说明奇函数和偶函数的区别。
教师讲解判断函数的奇偶性的方法:可以通过两种方法来判断一个函数的奇偶性。
第一种方法是对函数进行代入法,即将x换成-x,然后比较原函数和代入后的函数是否相等或相反;第二种方法是根据函数的图像特点进行判断,如对称性等。
Step 3:练习与探究(15分钟)教师设计一些练习题,让学生通过代入法或观察函数图像的特点来判断函数的奇偶性。
同时,教师可以引导学生思考,哪些函数既不是奇函数也不是偶函数。
Step 4:性质讲解(10分钟)教师讲解奇函数和偶函数的性质:奇函数的特点是:对称于原点,当自变量为正时,函数值为正;当自变量为负时,函数值为负。
偶函数的特点是:对称于y轴,自变量为正或负时,函数值相同。
教师可以通过具体的例子和图像来说明这些性质。
Step 5:练习与讨论(15分钟)教师设计一些练习题,让学生判断函数的奇偶性,并给出函数的图像。
学生可以在小组内讨论和比较答案,并互相纠正错误。
函数的奇偶性教案

函数的奇偶性教案函数的奇偶性教案函数是数学中一个非常重要的概念,它描述了变量之间的关系。
而函数的奇偶性则是函数的一个性质,它能够帮助我们更好地理解和分析函数的特点。
在本篇文章中,我们将介绍函数的奇偶性,并提供一份教案,帮助学生更好地掌握这一概念。
一、函数的奇偶性是什么?函数的奇偶性是指函数在定义域内的某个点上,函数值的正负关系。
如果函数在某个点上的函数值与该点关于原点对称,那么这个函数就是偶函数;如果函数在某个点上的函数值与该点关于原点对称并且函数值的符号相反,那么这个函数就是奇函数。
二、奇偶函数的性质1. 偶函数的性质:- 偶函数的定义域关于原点对称。
- 偶函数的图像关于y轴对称。
- 偶函数的奇数次幂项系数为0。
2. 奇函数的性质:- 奇函数的定义域关于原点对称。
- 奇函数的图像关于原点对称。
- 奇函数的偶数次幂项系数为0。
三、奇偶函数的判断方法1. 函数图像法:通过绘制函数的图像,观察图像的对称性来判断函数的奇偶性。
如果图像关于y轴对称,则函数为偶函数;如果图像关于原点对称,则函数为奇函数。
2. 代数法:通过代数运算来判断函数的奇偶性。
对于一个函数f(x),如果满足f(-x) = f(x),则函数为偶函数;如果满足f(-x) = -f(x),则函数为奇函数。
四、教案设计1. 教学目标:- 了解函数的奇偶性的概念和性质。
- 学会通过函数的图像和代数运算来判断函数的奇偶性。
- 能够应用奇偶性来解决实际问题。
2. 教学步骤:(1)引入:通过一个生活中的例子,如对称的花朵、对称的蝴蝶等,引导学生思考对称性的概念,并与函数的奇偶性进行关联。
(2)概念讲解:讲解函数的奇偶性的定义和性质,并通过一些简单的例子来说明。
(3)图像判断:给学生一些函数的图像,让他们观察图像的对称性,并判断函数的奇偶性。
(4)代数判断:给学生一些函数的表达式,让他们通过代数运算来判断函数的奇偶性。
(5)练习:让学生做一些奇偶性的练习题,加深对奇偶性的理解。
函数奇偶性的教学设计

函数奇偶性的教学设计这是函数的奇偶教学设计一等奖,是老师和家长可以借鉴的优秀教学设计一等奖文章。
函数奇偶性的教学设计 1教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;教学过程:一、引入课题1.复习初中所学函数的概念,强调函数的模型化思想;2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:我国xxxx年4月份非典疫情统计:日期新增确诊病例数3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.二、新课教学(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数(function).记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).注意:○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)(二)典型例题1.求函数定义域课本P20例1解:(略)说明:○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式.巩固练习:课本P22第1题2.判断两个函数是否为同一函数课本P21例2解:(略)说明:○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
《函数的奇偶性》教学设计

《函数的奇偶性》教学设计一、教学目标课程标准对本节课的要求是:结合具体函数,了解奇偶性的含义.从认知层次的三个维度对课标进行了分解,具体如下:依据行为动词,我又从能力层次将课标进行了再分解,具体如下:由此确定的学习目标为:1.建立奇偶函数的概念:通过观察一些具体函数的对称性(关于y轴或原点对称)形成奇偶函数的直观认识。
然后通过代数运算,验证并发现数量特征对定义域中的“任意”值都成立,最后在此基础上建立奇(偶)函数的概念。
理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性.2.函数奇偶性的研究历经了从直观到抽象,从图形语言到数学语言,理解函数奇偶性概念的形成过程,让学生自主探究。
培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想.3.通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力和认真钻研的数学品质。
二、教学重点与难点重点:函数奇偶性的概念和几何意义。
难点:奇偶性概念的数学化提炼过程。
三、教学过程本节课我采取“教学、评价、学习一致性”的教学设计,同时采用“点拨式自主学习与合作探究”的教学方法,借助五个环节实现本节课的学习目标.从学生熟悉的与入手,顺应了同学们的认知规律,从特殊到一般,培养学生的语言表达能力和抽象概括能力,形成偶函数的概念。
板书设计板书设计分为教师板书和学生板书两块内容,教师板书,我侧重将本节的四个主要内容展示在黑板上,便于学生理解和记忆.学生板书,我将留给学生展示课堂演板,便于对学生掌握的情况进行总结和评价.课后实践:1.课本P42练习2, P46102.设y=f(x)为R上的任一函数,判断下列函数的奇偶性:(1). F(x)=f(x)+f(- x) (2)F(x)=f(x)-f(-x)。
高中数学教案《函数的奇偶性

高中数学教案《函数的奇偶性》一、教学目标:1. 知识与技能:理解函数奇偶性的概念,能够判断函数的奇偶性;学会运用函数的奇偶性解决一些简单问题。
2. 过程与方法:通过观察、分析、归纳等方法,探索函数奇偶性的性质及其判断方法。
3. 情感态度价值观:培养学生的逻辑思维能力,提高学生对数学的兴趣。
二、教学内容:1. 函数奇偶性的定义2. 函数奇偶性的判断方法3. 函数奇偶性的性质三、教学重点与难点:1. 教学重点:函数奇偶性的定义及其判断方法。
2. 教学难点:函数奇偶性的性质及其应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究函数奇偶性的性质;2. 通过实例分析,让学生掌握函数奇偶性的判断方法;3. 利用小组讨论,培养学生的合作能力。
五、教学过程:1. 导入:回顾上一节课的内容,引导学生思考函数的奇偶性与什么有关。
2. 新课讲解:(1)介绍函数奇偶性的定义;(2)讲解函数奇偶性的判断方法;(3)分析函数奇偶性的性质。
3. 例题解析:选取典型例题,分析解题思路,引导学生运用函数奇偶性解决问题。
4. 课堂练习:布置练习题,让学生巩固所学内容。
5. 总结与拓展:总结本节课的主要内容,提出拓展问题,激发学生的学习兴趣。
6. 课后作业:布置适量作业,巩固所学知识。
注意:在教学过程中,要关注学生的学习反馈,及时调整教学方法和节奏,确保学生能够掌握函数奇偶性的相关知识。
六、教学评估:1. 课堂提问:通过提问了解学生对函数奇偶性的理解程度,及时发现并解决学生学习中存在的问题。
2. 练习题解答:检查学生完成练习题的情况,评估学生对函数奇偶性知识的掌握情况。
3. 课后作业:批改课后作业,了解学生对课堂所学知识的巩固程度。
七、教学反思:1. 反思教学内容:检查教学内容是否全面、深入,是否适合学生的认知水平。
2. 反思教学方法:根据学生的反馈,调整教学方法,提高教学效果。
3. 反思教学效果:总结本节课的教学成果,找出不足之处,为下一节课的教学做好准备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重文化渗透——结合剪纸艺术作品,让学生体会数学源于生活;数学美在生活中无处不在,提升学生文化素养。
本设计有以下创新点:1.创新的几何画板演示,有利于学生学会探究方法;2.丰富的动手实践活动,有利于培养发散思维;
教学过程
教 学
Hale Waihona Puke 环 节教师行为学生行为
设计说明
环节一
情景引入,欣赏图片
活动1 引入对称
教师给出剪纸图片,引导学生发现对称,感受对称
问题组
1.大家觉得美不美?
2.从数学角度分析它们到底美在哪里?
3.如何剪纸才能省时省力?
4.什么是轴对称和中心对称?
观察剪纸图案,发现对称的美,并回忆初中所学过的两种对称
从生活入手,让学生感受到数学美在生活中的体现,激发学生学习兴趣
教 学
方 法
教法:①发现法:通过情境引入、验证环节引导学生结合生活实际、几何图形概括奇偶函数的定义。②直观教学法:借助于几何直观进行探索。③讲授法:教师讲解奇偶函数定义,解析概念。
学法:以问题为中心,以探索问题为主线展开,让学生观察分析、归纳概括、动手操作、推理论证等学习活动。
教 学
手 段
多媒体:多媒体课件辅助教学,特别是利用动画演示,几何画板验证演示。
活动9 课后延伸
教师抛出问题,让学生思考
问题组
1.函数图像关于原点对称,又有怎样的奥秘和性质呢?
课后思考,想一想,
使学生了解本节课与下节课的联系,课后思考相关问题
设计理念
与思路
上述设计按照提出猜想——验证猜想——证明猜想——形成概念——理解运用,整个设计体现以下理念:
重过程——通过讲解、探究、观察、动手、推理等数学活动展现定义得出的来龙去脉,让学生经历猜想、验证、证明、理解等数学学习过程。
教 学
反 思
板书设计:
函数的奇偶性
一、偶函数的定义轴对称
中心对称
二、理解猜想:f(-x)=f(x)
1,任意性证明:f(-x)=f(x)
2,函数图像
3,定义域
教 学
目 标
1.能用三种语言刻画偶函数的概念,能初步判别偶函数
2.经历观察、分析、猜想、验证、证明、概括等数学活动,培养用数学语言刻画事物的能力,领悟特殊到一般以及数形结合的思想方法
3.感悟生活中的美,体会数学在生活中的运用价值
教 学重难 点
教学重点:奇偶函数概念的形成和初步运用
教学难点:奇偶函数概念的理解
2.如果是,我们应该如何验证?如何来刻画它的对称性呢?
说出某一点相关对称点的坐标,并回忆学过的函数以及它们的图像, 在坐标纸上画出,猜想出相应规律
从点的对称自然过渡到函数图像的对称,学生动手操作,体验发现知识的快乐
环节三
提出猜想,形成概念
活动4 提出猜想
教师引导学生发现规律,提出猜想
问题组
1.你能发现函数图像有什么特征?
2.在画图过程中你发现有什么规律?用数学语言如何描述?
活动5 验证猜想
教师利用几何画板带领学生验证猜想,并证明猜想
活动6 形成概念
教师引导学生运用从特殊到一般的数学转化思想,得出偶函数定义
问题组
1.你能否根据这个特殊的函数,从特殊到一般,给偶函数下个定义呢?
学生将自己的猜想用数学语言描述出来,跟随教师一起验证它的正确性,自己小结出规律,给偶函数下定义
函数的奇偶性教学设计
所用教材:人教版必修一
目 次:第一章第三节第2课时
教 材
分 析
本节内容属于函数领域的知识,是学生学过的函数概念的延续和拓展,又是后续研究其他具体函数的基础,是在高中数学起承上启下作用的核心知识之一.
学 情
分 析
在此之前,学生已经学习了图形的轴对称和中心对称,以及函数的单调性,这为过渡到本节的学习起着铺垫作用
环节二
回归旧知,感悟对称
活动2 感悟旧知
教师带领学生从几何上的对称过渡到代数上的对称,并作出某点的对称点
问题组
1.在代数上,我们又是如何体现这种对称性的呢?
2.回忆学过的函数,有没有也具有这种对称性的函数图像
活动3 画函数图
教师让学生准确画出函数图像,引导学生发现函数图像的规律,
问题组
1.你们所说的两个函数,它们的图像是真的对称吗?
进一步对知识的理解,突出本节课的重点
环节五
归纳小结,
深化理解
活动8 归纳小结
教师引导学生归纳本节知识以及本节课所运用的数学思想方法
问题组
1.本节课你学到了什么?
2.运用到了哪些数学思想方法?
反思性思考交流,总结本节课知识
引导学生反思,提升学生对知识、思想方法、数学文化的认识。
环节七
布置作业,课后延伸
几何画板清晰明了地验证出猜想的正确性,并继续用以代数法进一步证明,从特殊到一般仿照具体的函数给偶函数下定义,突破难点,体现划归的思想
环节四
初步应用,
理解加深
活动7 例题讲解
教师组织学生解答例题,并纠正相应错误,巩固重要的知识
问题组
1.你是如何判断它是否为偶函数的?
学生运用本节课所学知识,判断函数是否为偶函数,并说明理由