高中数学《函数的奇偶性》教学设计
高中数学教学设计函数的奇偶性

高中数学教学设计函数的奇偶性教学目标:1.理解函数的奇偶性的概念;2.掌握函数奇偶性的判断方法;3.能够应用函数的奇偶性解决实际问题。
教学重点:1.函数奇偶性的定义和判断方法;2.函数奇偶性在数学问题中的应用。
教学难点:1.函数奇偶性与函数图像的对称关系的建立;2.函数奇偶性的应用。
教学过程:一、导入新知(10分钟)在复习上一节课所学内容的基础上,提问学生在函数图像中是否有些特殊的关系。
引导学生进入新课题,函数的奇偶性。
二、概念解释(5分钟)引导学生回顾函数的定义,给出函数奇偶性的定义。
函数f(x)是指定实数集D上的一个对应关系,对于定义域内的任意两个实数x1和x2,由f(x1)=y1和f(x2)=y2,只有当x1=x2时,才可能有y1=y2、函数f(x)是奇函数,如果对于定义域内的任意实数x,有f(-x)=-f(x);函数f(x)是偶函数,如果对于定义域内的任意实数x,有f(-x)=f(x)。
三、奇偶性判断方法(10分钟)1.奇数次幂与偶数次幂的关系:奇函数的定义表明,当x取正值和负值时,函数值的正负是相反的。
当函数中含有奇数次幂项时,函数为奇函数;当函数中只含有偶数次幂项时,函数为偶函数。
2.奇函数与偶函数的关系:奇函数和偶函数之间存在对称关系,即关于坐标轴对称。
若函数的图像相对于y轴对称,则该函数为偶函数;若函数的图像相对于原点对称,则该函数为奇函数。
四、练习与讨论(15分钟)1.通过给出一些具体函数的表达式,让学生判断其奇偶性;2.给学生一些简单的函数图像,让学生通过观察判断其奇偶性。
五、案例分析(15分钟)通过一些实际问题的案例,让学生应用奇偶性的概念解决问题。
六、拓展应用(15分钟)引导学生思考,在实际生活中是否存在奇函数和偶函数的应用情景。
引导学生探索相应的实际问题,并通过练习来应用所学知识解决问题。
七、课堂小结(5分钟)对本节课的学习进行总结和归纳,强调奇偶性在解决数学问题中的应用意义。
高中一年级上学期数学《函数的奇偶性》教学设计

1.3.2函数的奇偶性(1)
一、教学目标
1.知识技能:
(1)学会用数学语言描述偶函数和奇函数的概念,并能够理解其几何意义,进一步培养学生的观察能力和数形结合的数学思想意识;
(2)学会运用函数图象理解和研究函数的性质;
(3)通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力; (4)能够利用定义判断函数的奇偶性;
(5)能运用函数奇偶性的代数特征和几何意义解决一些简单的问题.
2.过程与方法:让学生体会从具体到抽象、从特殊到一般的数学思维过程,以及数形结合的重要数学思想和方法.
3.情感,态度,价值观:
(1)通过自主探索,体会数形结合的思想,感受数学的对称美;
(2)通过小组合作交流培养学生团结互助的精神.
二、教学重点和难点
重点:函数奇偶性的概念.
难点:函数的奇偶性的判定.
三.教学过程
探究2:(1) 从对称角度看,以下两个函数图象有什么共同特征吗?
(2) 当自变量x任取一对相反数时,相应的两个函数值有什么关系?反映在解析式上有什么关
教师活动。
函数奇偶性的教学设计

函数奇偶性的教学设计这是函数的奇偶教学设计一等奖,是老师和家长可以借鉴的优秀教学设计一等奖文章。
函数奇偶性的教学设计 1教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;(2)了解构成函数的要素;(3)会求一些简单函数的定义域和值域;(4)能够正确使用“区间”的符号表示某些函数的定义域;教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;教学过程:一、引入课题1.复习初中所学函数的概念,强调函数的模型化思想;2.阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)炮弹的射高与时间的变化关系问题;(2)南极臭氧空洞面积与时间的变化关系问题;(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题备用实例:我国xxxx年4月份非典疫情统计:日期新增确诊病例数3.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;4.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.二、新课教学(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数(function).记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).注意:○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素:定义域、对应关系和值域3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论(由学生完成,师生共同分析讲评)(二)典型例题1.求函数定义域课本P20例1解:(略)说明:○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式.巩固练习:课本P22第1题2.判断两个函数是否为同一函数课本P21例2解:(略)说明:○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
《3.1.3函数的奇偶性》教学设计教学反思-2023-2024学年高中数学人教B版19必修第一册

《3.1.3 函数的奇偶性》教学设计方案(第一课时)一、教学目标1. 理解奇偶性的概念,掌握判断函数奇偶性的方法。
2. 能够运用奇偶性性质,解决相关数学问题。
3. 提高学生对函数性质的理解和掌握,为后续函数学习打下基础。
二、教学重难点1. 教学重点:理解奇偶性的概念,掌握判断函数奇偶性的方法。
2. 教学难点:如何引导学生运用奇偶性性质解决实际问题。
三、教学准备1. 准备教学用具:黑板、白板、笔、函数图像等。
2. 制作PPT课件,包含概念引入、方法讲解、例题分析、练习题等环节。
3. 搜集相关数学问题,以便学生运用奇偶性性质进行解答。
4. 确定教学方法,采用讲授与讨论相结合,引导学生自主探究。
四、教学过程:1. 导入新课:教师展示一些函数图像(如:y=x^2, y=x^3, y=sinx等),引导学生观察图像特征。
随后,教师提出疑问:“对于这些函数,它们是否有某些共性?”以此引发学生对函数奇偶性的思考。
设计意图:通过直观的函数图像,引发学生对奇偶性的初步感知,为后续教学做好铺垫。
2. 探索奇偶性的定义:教师引导学生逐步推导奇偶性的定义,并解释其含义。
在此过程中,教师可借助具体函数进行说明,帮助学生理解。
例如,对于函数f(x),如果对于定义域内的任意x,都有f(-x)=-f(x),则称函数f(x)为奇函数;如果对于定义域内的任意x,都有f(-x)=f(x),则称函数f(x)为偶函数。
设计意图:通过逐步推导,帮助学生理解奇偶性的定义,并强调定义中的关键条件。
3. 实例分析:教师展示一些具体的奇偶函数图像,引导学生观察并分析它们的性质。
学生可尝试用自己的语言描述奇偶函数的特征,如单调性、对称性等。
设计意图:通过实例分析,帮助学生加深对奇偶性概念的理解,并锻炼其分析能力。
4. 探究奇偶性的应用:教师引导学生思考奇偶性在数学及其他领域中的应用,如代数问题、几何问题等。
学生可分组讨论,交流想法,最后由教师进行总结。
《函数的奇偶性》教学设计

《函数的奇偶性》教学设计一、教学目标课程标准对本节课的要求是:结合具体函数,了解奇偶性的含义.从认知层次的三个维度对课标进行了分解,具体如下:依据行为动词,我又从能力层次将课标进行了再分解,具体如下:由此确定的学习目标为:1.建立奇偶函数的概念:通过观察一些具体函数的对称性(关于y轴或原点对称)形成奇偶函数的直观认识。
然后通过代数运算,验证并发现数量特征对定义域中的“任意”值都成立,最后在此基础上建立奇(偶)函数的概念。
理解函数的奇偶性及其几何意义;学会运用函数图象理解和研究函数的性质;学会判断函数的奇偶性.2.函数奇偶性的研究历经了从直观到抽象,从图形语言到数学语言,理解函数奇偶性概念的形成过程,让学生自主探究。
培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想.3.通过函数的奇偶性教学,培养学生从特殊到一般的概括归纳问题的能力和认真钻研的数学品质。
二、教学重点与难点重点:函数奇偶性的概念和几何意义。
难点:奇偶性概念的数学化提炼过程。
三、教学过程本节课我采取“教学、评价、学习一致性”的教学设计,同时采用“点拨式自主学习与合作探究”的教学方法,借助五个环节实现本节课的学习目标.从学生熟悉的与入手,顺应了同学们的认知规律,从特殊到一般,培养学生的语言表达能力和抽象概括能力,形成偶函数的概念。
板书设计板书设计分为教师板书和学生板书两块内容,教师板书,我侧重将本节的四个主要内容展示在黑板上,便于学生理解和记忆.学生板书,我将留给学生展示课堂演板,便于对学生掌握的情况进行总结和评价.课后实践:1.课本P42练习2, P46102.设y=f(x)为R上的任一函数,判断下列函数的奇偶性:(1). F(x)=f(x)+f(- x) (2)F(x)=f(x)-f(-x)。
高中数学教案《函数的奇偶性

高中数学教案《函数的奇偶性》一、教学目标:1. 知识与技能:理解函数奇偶性的概念,能够判断函数的奇偶性;学会运用函数的奇偶性解决一些简单问题。
2. 过程与方法:通过观察、分析、归纳等方法,探索函数奇偶性的性质及其判断方法。
3. 情感态度价值观:培养学生的逻辑思维能力,提高学生对数学的兴趣。
二、教学内容:1. 函数奇偶性的定义2. 函数奇偶性的判断方法3. 函数奇偶性的性质三、教学重点与难点:1. 教学重点:函数奇偶性的定义及其判断方法。
2. 教学难点:函数奇偶性的性质及其应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究函数奇偶性的性质;2. 通过实例分析,让学生掌握函数奇偶性的判断方法;3. 利用小组讨论,培养学生的合作能力。
五、教学过程:1. 导入:回顾上一节课的内容,引导学生思考函数的奇偶性与什么有关。
2. 新课讲解:(1)介绍函数奇偶性的定义;(2)讲解函数奇偶性的判断方法;(3)分析函数奇偶性的性质。
3. 例题解析:选取典型例题,分析解题思路,引导学生运用函数奇偶性解决问题。
4. 课堂练习:布置练习题,让学生巩固所学内容。
5. 总结与拓展:总结本节课的主要内容,提出拓展问题,激发学生的学习兴趣。
6. 课后作业:布置适量作业,巩固所学知识。
注意:在教学过程中,要关注学生的学习反馈,及时调整教学方法和节奏,确保学生能够掌握函数奇偶性的相关知识。
六、教学评估:1. 课堂提问:通过提问了解学生对函数奇偶性的理解程度,及时发现并解决学生学习中存在的问题。
2. 练习题解答:检查学生完成练习题的情况,评估学生对函数奇偶性知识的掌握情况。
3. 课后作业:批改课后作业,了解学生对课堂所学知识的巩固程度。
七、教学反思:1. 反思教学内容:检查教学内容是否全面、深入,是否适合学生的认知水平。
2. 反思教学方法:根据学生的反馈,调整教学方法,提高教学效果。
3. 反思教学效果:总结本节课的教学成果,找出不足之处,为下一节课的教学做好准备。
1.4 函数的奇偶性》一等奖创新教学设计

1.4 函数的奇偶性》一等奖创新教学设计2.1.4《函数的奇偶性》教学设计一.教材分析:“函数的奇偶性”是普通高中课程标准试验教科书(必修)数学1的第二章第2.1.4节的内容。
函数的奇偶性是函数的一个重要性质,常伴随着函数的其他性质出现。
函数奇偶性揭示的是函数自变量与函数值之间的一种特殊的数量规律,直观反映的是函数图象的轴对称性和点对称性。
利用数形结合的数学思想来研究此类函数的问题常为我们展示一个新的思考视角。
函数的奇偶性也是学生今后研究三角函数、二次曲线等知识的重要铺垫,而且灵活地应用函数的奇偶性常使复杂的不等问题、方程问题、作图问题等变得简单明了。
二.学情分析:这节课是函数奇偶性质学习的第一课时,因此通过学生先对实物图的观察、分析、理解来获得函数的奇偶性再结合理论推导来理解函数的奇偶性就显得比较流畅。
这样一方面与学生的认知结构相吻合,另一方面也可以增强学生的阅读理解能力。
另外根据我班学生的情况,本教案在例题的选择及处理方式方面也可作适当调整。
三.教学目标1、知识与技能目标:使学生理解奇函数、偶函数的概念,学会用定义判断函数的奇偶性。
2、过程与方法目标:在奇偶性概念形成过程中,培养学生的观察,归纳能力同时渗透数形结合和特殊到一般的数学思想方法.3、情感、态度、价值观目标:在学生感受数学美的同时激发学习的兴趣,培养学生乐于求索的精神。
四.教学重点、难点教学重点:函数奇偶性概念。
教学难点:对函数奇偶性的概念的理解及判断。
五.教学方法本节课采用观察、探索、启发、讨论、归纳等多种教学手段和方法,采用媒体辅助教学,通过数形结合,增强直观性,通过函数奇偶性的图象对称性演示,使学生享受到数学的美感。
六.教学用具:多媒体。
七.教学过程:(一)导入新课设计:提出问题“我们生活在美的世界中,有过许多对美的感受,请大家观察下列事物给你的感觉体现了什么样的美感呢?”在屏幕上给出一组图片设计理由:联系生活实际,激发学生的学习兴趣,使学生对函数的奇偶性反应在图像上的特点有一个初步的认识。
《函数的奇偶性》教学设计

3、在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。在这个问题上我除了注意概念的讲解,还特意用几何画板、PPT图像演示来加强本节课重点问题的讲解。
深化对偶函数概念的理解,引导学生从“形”和“数”两方面再次认识定义。
(四)类比偶函数定义形成过程,自主得到奇函数的定义及相关分析
培养学生类比、归纳、抽象、概括的能力。
(五)做预习自测
通过习题,使学生在学习新知识的同时能加以应用。
设计亮点:
1、微课实录中充分展示了教法、学法中的互动模式,“问题”贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。并引导学生总结出本节课应积累的解题经验。
《函数的奇偶性》教学设计
作者信息
姓 名
联系电话
所教学科
数学
所教学段
高中
电子邮件
单位名称
微课程信息
主题名称
函数的奇偶性
选题意图
函数的奇偶性是函数的一个非常重要的性质,函数奇偶性的判断 是本节的重点,难点是函数奇偶性概念的理解。奇、偶函数的解析定义与图像性质的紧密结合是本节教学的主要特点,奇函数与中心对称、偶函数与轴对称密切相 关,采用数形结合的方法,可强化学生对奇、偶函数性质的理解,但是传统的教学方式很难达到预期的目标,所以选择微课来突破这个知识点,会起到事半功倍的效果。
制作方式(可多选)
√
√
□拍摄 □录屏 □演示文稿 □动画 □其他
预计时间
6分钟
微课程设计
教学过程
设计意图
(一)设疑导入、观图激趣
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:函数的奇偶性的教学设计(一)[任务分析]“函数的奇偶性”是函数的一个重要性质,常伴随着函数的其他性质出现。
函数奇偶性揭示的是函数自变量与函数值之间的一种特殊的数量规律,直观反映的是函数图象的对称性。
利用数形结合的数学思想来研究此类函数的问题常为我们展示一个新的思考视角。
函数的奇偶性也是今后研究三角函数、二次曲线等知识的重要铺垫,而且灵活地应用函数的奇偶性常使复杂的不等式问题、方程问题、作图问题等变得简单明了。
[方法简述]本节课有着丰富的内涵,是继函数单调性以后的又一个重要性质。
教法上本着“以教师为主导,学生为主体,问题解决为主线,能力发展为目标”的指导思想,结合我校学生实际,主要采用“问题导引,分析、比较,自主探究,讲练结合”的教学方法。
通过复习提问呈上其下的引入,通过观察图像,从具体到抽象的引入,通过与单调性研究方法的的类比的引入,使学生对函数的奇偶性先有了一定的感性认识;通过设置一条问题链,采用多角度的,启发式的,学生积极参与的,有思想交锋的方式,引导学生在自主学习与合作交流中经历知识的形成过程;通过层层深入的例题与习题的配置,引导学生积极思考,灵活掌握知识,使学生从“懂”到“会”到“悟”,提高思维品质,力求把传授知识与培养能力融为一体。
[目标定位]数学教学不仅仅是知识的教学、技能的训练,更应使学生的能力得到提高。
本节课应使学生掌握函数奇偶性的定义,会用定义判断简单函数的奇偶性。
在学生经历函数奇偶性的探究和应用过程中,体会数形结合、分类讨论等数学思想方法,进一步培养学生归纳、类比、迁移能力,增强学生的数学应用意识和创新意识。
注重培养学生积极参与、大胆探索的精神以及合作意识;通过让学生体验成功,培养学生学习数学的信心。
在教学中,重点应为理解函数奇偶性概念的本质特征;掌握函数奇偶性的判别方法。
对高一学生来说,由于初中代数主要是具体运算,因而代数推理能力较弱,许多学生甚至弄不清代数形式证明的意义和必要性。
因此教学难点是有关偶函数问题的证明,与培养驾驭知识、解决问题的能力。
突出重点、突破难点的关键是设计有一定思维含量的问题与实例,引导学生思考、分析讨论,加深学生对函数奇偶性的认识与应用。
结合直观的图形,充分发挥数形结合思想的功能,使学生的感性认识提高到理性认识。
[课堂设计]一、复习旧知、引入定义基于学生前面已经学习过函数的单调性,先从复习函数单调性入手。
问题1:回顾上一节课如何定义增函数、减函数?试举例说明。
由学生回答,学生应该容易得出定义,单调增、减函数(定义略)并能举出一些常见的单调函数,如一次函数,三次函数。
设计意图:从学生已学过的函数单调性复习引入,因为函数的单调性的定义是学生第一次接触用函数的对应关系的性质来刻画函数的性质,他不同于初中是通过图像看性质。
学生在复习中体验用代数手段刻画函数性质的方法,为后面用函数对应关系来刻画函数的奇偶性做好准备。
为突破难点奠定基础。
问题2:判断下列两函数在其定义域内单调性如何?反比例函数x x f 1)(=二次函数1)(2+=x x f设计意图:让学生注意函数的单调性要分区间讨论。
对于同一函数而言,不同的区间上可能会有不同的单调性,为后面研究函数的奇偶性要注意自变量的范围埋下伏笔。
图示学生举出的例子和以上两个例题,(1)x x f 2)(= (2)3)(x x f = (3)12)(+-=x x f(4)xx f 1)(=(5)1)(2+=x x f 引导学生观察图像。
思考:除了显示了函数的单调性,是否还有其他特征?引导学生发现初中就学过的优美的对称性——中心对称、轴对称。
问题3:能否用函数的对应关系来刻划其对称性?让学生先观察、思考、交流讨论,教师再引导。
启发:首先注意到自变量的对称性可以用x 与-x 来刻画,相应的考察f(x)与f(-x)的关系。
(请5个同学到黑板上板演计算f(x)与f(-x)的,并判断相应函数值的特点。
板书课题,引出定义)。
函数奇偶性定义:(1) 如果对于函数定义域内的任意一个x ,都有f(-x)=-f(x),那么函数f(x)叫奇函数。
(2) 如果对于函数定义域内的任意一个x ,都有f(-x)=f(x),那么函数f(x)叫偶函数。
设计意图:引导学生通过函数值的特征来描述函数对应关系的性质,实现由形到数的转化,同时为归纳引出定义以及判断函数奇偶性做好准备。
二、定义理解、揭示本质问题4:定义中那一句话对刻划函数的性质更实质?学生阅读定义,回答问题。
归纳:验证恒等式f(-x)=-f(x)或f(-x)=f(x)的重要性。
让学生根据定义判别以上5个函数的奇偶性,教师作出点评。
设计意图:让学生深刻理解定义,解释函数奇偶性的本质。
把探求新知的权利交给学生,为学生提供宽松、广阔的思维空间,让学生主动参与到问题的发现、讨论和解决等活动上来.而且在探究交流过程中学生对函数奇偶性的认识逐步由感性上升到理性。
问题5:判断函数122)(2++=x x x x f 的单调性如何? 引发学生思考讨论。
学生可能会有两种结论,一是奇函数,二不是奇函数,让学生辨别,引起学生思维的交锋,教师给与宏观的指导,看准火候,及时点拨。
引导学生注意定义中定义域的重要性,得出推论。
推论:奇偶函数的的定义域在轴上对应的点集关于原点对称。
设计意图:强调对定义域的考虑,既帮助学生准确理解定义,又对函数奇偶性的概念进行反面理解,同时使学生进一步熟悉判断奇偶性的方法,为引出推论做准备。
问题6:有没有既是奇函数又是偶函数的函数?引导学生共同探究,得到f(x)=0,且定义域关于原点对称。
共同归纳得到:函数按照奇偶性可分为四类:A.是奇函数而不是偶函数B.是偶函数而不是奇函数C.既是奇函数而又是偶函数D.既不是奇函数又不是偶函数设计意图:数学思维中最积极的的成分是问题,不断的提出问题,不断的解决问题,提出具有探究意义的问题,培养学生的探究意识,进一步完善函数奇偶性的概念。
三、手脑并用、概念应用问题7:能否归纳函数奇偶性的判别方法及步骤:(1) 求函数的定义域;(2) 计算f(-x)(3) 判断f(-x)与-f(x)或(x)是否相等;(4) 下结论,指明是四类中的哪一类。
在刚才归纳的基础上,学生练习例1:判断下列函数的奇偶性 (1)313)(-+=x x x f (2)2432)(x x x f += (3)12)(+=x x f (4)11)(22-+-=x x x f(5)a x f x f ==)()( 教师版书第一小题,学生口答第二小题,(3)、(4)(5)请三位学生板演。
教师规范、订正版演。
设计意图:在归纳中掌握方法,巩固新知及时反馈,为灵活应用方法打下基础.四、沟通联系、深化提高例2 已知函数)(x f 是奇函数,而且在),0(+∞上是增函数,)(x f 在)0,(-∞上是增函数还是减函数?并给出证明。
引导学生分析条件,探索思路,沟通已知与未知的联系,实现单调性的转化。
设计意图:沟通函数奇偶性与单调性的联系,揭示函数奇偶性对函数性质研究的作用。
使学生进一步加深对知识的掌握,并体验数学在解决问题中的作用。
五、归纳小结、练习反馈引导学生归纳小结(1)函数奇偶性的定义(2)判别函数奇偶性的方法(3)函数奇偶性的初步应用设计意图:学生自己从所学到的数学知识、数学思想方法两方面进行总结,提高学生的概括、归纳能力.同时,学生在回顾、总结、反思的过程中,将所学知识条理化、系统化,使自己的认知结构更趋合理.注重数学思想方法的提炼,可使学生逐渐把经验内化为能力,从而走向一个新的制高点。
反馈练习:课本P口答练习在整个练习过程中,教师做好及时小结,加强对学生的个别指导,设计意图:巩固所学知识,进一步促进认知结构的内化,并且可使学生对自己的学习进行自我评价.也让教师及时了解学生的掌握情况,以便进一步调整自己的教学.六、布置作业、引导复习1.书面作业:练习2,练习 1、2、3.2.研究与思考:(1) 若f(x)为奇函数,且x=0时与意义,则f(0)=?(2)判别函数的奇偶性(3) 在公共定义域上,函数的和、差、积、商的起偶性如何?第一层次要求所有学生都要完成,第二层次则只要求学有余力的同学完成.研究思考的(1)(2)(3)不仅开阔了学生的思路,而且提高学生的探究热情。
. 设计意图:分层次作业既巩固所学,又为学有余力的同学留出自由发展的空间,培养学生的创新意识和探索精神。
同时为下节课内容作好准备,将探究的空间由课堂延伸到课外.[教有所思]这节课本着“课程标准为依据,教师为主导,学生为主体”的原则进行设计与教学,高中学生的思维水平已发展到辩证思维的形成阶段,从能力上讲,他们能通过观察、比较、归纳等方式来认识新知识。
结合学生的特点及本节课的内容,在教学中采用了“问题导引,分析比较、自主探究、讲练结合”式的教学方法。
通过问题激发学生求知欲,从学生已知问题已知的函数图形入手,使学生对函数的奇偶性有了一定的感性认识,并且形成各自对函数奇偶性概念的了解,再引导学生抓住实质,抛开个性的东西,抽取共性的内容,在相互交流、启发、补充、争论中,概括出定义,经历了知识的形成过程。
使学生主动参与数学实践活动,在教师的有效指导下解决问题。
应当说在知识的习得、能力的培养二个方面有收获,基本上达到了预期的教学目的。
在概念-方法-应用当中,方法是本节课的重点。
通过对问题3至问题6的分析、反思、深化,使学生的思维步步深入,在自我发现、自我解决问题的过程中,深刻理解了函数奇偶性的定义的实质。
从本堂课的教学实践中我还深刻体会到。
数学教学不只是关心学生“知道了什么”,而应是更多地关注学生“怎么样知道的”。
因此,在教学中注意引导学生主动参与,自主探究问题,并加强合作交流。