2019-2020年高中数学必修二第一章《立体几何初步》学案
2019_2020学年高中数学第一章立体几何初步1.2.3空间中的垂直关系第1课时直线与平面垂直学案新人教B版必修2

第1课时直线与平面垂直1.理解线线垂直、线面垂直的概念.2.掌握直线与平面垂直的判定定理及性质.3.能应用性质定理证明空间位置关系.1.直线与直线的垂直两条直线垂直的定义:如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直.2.直线与平面垂直(1)直线与平面垂直的定义:如果一条直线和一个平面相交于点O,并且和这个平面内过交点O的任何直线都垂直,则称这条直线和这个平面互相垂直.这条直线叫做平面的垂线,这个平面叫做直线的垂面,交点叫做垂足,垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段,垂线段的长度叫做这个点到平面的距离.(2)直线和平面垂直的判定定理:如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线就垂直于这个平面. (简而言之:线线垂直,则线面垂直)(3)推论:如果在两条平行直线中,有一条垂直于平面,那么另一条也垂直于这个平面.3.直线与平面垂直的性质(1)由直线和平面垂直的定义知,直线与平面内的所有直线都垂直,除此以外还有性质定理.(2)垂直于同一个平面的两条直线平行.垂直于同一条直线的两个平面平行.1.下列命题正确的是( )A.垂直于同一条直线的两直线平行B.垂直于同一条直线的两直线垂直C.垂直于同一个平面的两直线平行D.垂直于同一条直线的一条直线和平面平行解析:选C.在空间中垂直于同一直线的两条直线,可能平行,可能相交,也可能异面,所以A,B错;垂直于同一直线的直线和平面的位置关系可以是直线在平面内,也可以是直线和平面平行,所以D错;注意分析清楚给定条件下直线和平面可能的位置关系,不要有遗漏.2.在三棱锥ABCD中,AB=AD,CB=CD,求证:AC⊥BD.证明:如图取BD的中点E,连接AE,EC.因为AB=AD,BE=ED,所以AE⊥BD.又因为CB=CD,BE=ED,所以CE⊥BD.又AE∩EC=E,所以BD⊥平面ACE,又AC⊂平面ACE,所以AC⊥BD.3.垂直于同一条直线的两条直线平行吗?解:不一定.平行、相交、异面都有可能.线面垂直的判定如图,AB为⊙O的直径,PA垂直于⊙O所在的平面,M为圆周上任意一点,AN ⊥PM,N为垂足.(1)求证:AN⊥平面PBM;(2)若AQ⊥PB,垂足为Q,求证:NQ⊥PB.【证明】(1)因为AB为⊙O的直径,所以AM⊥BM.又PA⊥平面ABM,所以PA⊥BM.又因为PA∩AM=A,所以BM⊥平面PAM.又AN⊂平面PAM,所以BM⊥AN.又AN⊥PM,且BM∩PM=M,所以AN⊥平面PBM.(2)由第一问知AN⊥平面PBM,PB⊂平面PBM,所以AN⊥PB.又因为AQ⊥PB,AN∩AQ=A,所以PB⊥平面ANQ.又NQ⊂平面ANQ,所以PB⊥NQ.在本例中若条件不变,在四面体PAMB的四个面中共有多少个直角三角形.解:由本例第一问的证明过程知,BM⊥平面PAM,又PM⊂平面PAM,所以BM⊥PM.所以∠PAM=∠PAB=∠AMB=∠BMP=90°.所以四个面都是直角三角形.证明线面垂直的方法(1)线线垂直证明线面垂直①定义法(不常用,但由线面垂直可得出线线垂直);②判定定理法:要着力寻找平面内哪两条相交直线(有时作辅助线);结合平面图形的性质(如勾股定理逆定理、等腰三角形底边中线等)及一条直线与平行线中一条垂直也与另一条垂直等结论来论证线线垂直.(2)平行转化法(利用推论)①a∥b,a⊥α⇒b⊥α;②α∥β,a⊥α⇒a⊥β.如图所示,S为Rt△ABC所在平面外一点,且SA=SB=SC.点D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若直角边BA=BC,求证:BD⊥平面ASC.证明:(1)法一:在等腰三角形SAC中,D为AC的中点,所以SD⊥AC,取AB的中点E,连接DE、SE.则ED∥BC,又AB⊥BC,所以DE⊥AB.又SE⊥AB,SE∩DE=E,所以AB⊥平面SED,所以AB⊥SD,又AB∩AC=A,所以SD⊥平面ABC.法二:因为D为AC中点,△ABC为直角三角形.所以AD=BD,又SA=SB,SD=SD,所以△SAD≌△SBD,所以∠SDB=∠SDA.又SA=SC,所以SD⊥AC,即∠SDA=90°,所以∠SDB=90°,即SD⊥BD,又BD∩AC=D,所以SD⊥平面ABC.(2)因为BA=BC,所以BD⊥AC,又SD⊥平面ABC,所以SD⊥BD,因为SD∩AC=D,所以BD⊥平面ASC.线面垂直的性质的应用如图,已知矩形ABCD,过A作SA⊥平面AC,再过A作AE⊥SB于点E,过E作EF⊥SC于点F.(1)求证:AF⊥SC;(2)若平面AEF交SD于点G,求证:AG⊥SD.【证明】(1)因为SA⊥平面AC,BC⊂平面AC,所以SA⊥BC,因为四边形ABCD为矩形,所以AB⊥BC.所以BC⊥平面SAB,所以BC⊥AE.又SB⊥AE,SB∩BC=B,所以AE⊥平面SBC,所以AE⊥SC.又EF⊥SC,AE∩EF=E,所以SC⊥平面AEF.所以AF⊥SC.(2)因为SA⊥平面AC,所以SA⊥DC.又AD⊥DC,AD∩SA=A,所以DC⊥平面SAD.所以DC⊥AG.又由(1)有SC⊥平面AEF,AG⊂面AEF,所以SC ⊥AG ,所以AG ⊥平面SDC ,所以AG ⊥SD .证明线线垂直的常用思路线面垂直――→推出定义线线垂直――→推出判定定理线面垂直――→推出定义线线垂直.如图所示,在正方体ABCD A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中点,MN ⊥平面A 1DC . 求证:(1)MN ∥AD 1; (2)M 是AB 的中点.证明:(1)因为四边形ADD 1A 1为正方形,所以AD 1⊥A 1D . 又因为CD ⊥平面ADD 1A 1,所以CD ⊥AD 1. 因为A 1D ∩CD =D , 所以AD 1⊥平面A 1DC . 又因为MN ⊥平面A 1DC , 所以MN ∥AD 1.(2)如图,连接ON ,在△A 1DC 中,A 1O =OD ,A 1N =NC . 所以ON ═∥12CD .因为CD ═∥AB , 所以ON ∥AM . 又因为MN ∥OA ,所以四边形AMNO 为平行四边形. 所以ON =AM .因为ON =12CD ,所以AM =12DC =12AB .所以M 是AB 的中点.线面垂直的综合应用如图所示,在直四棱柱ABCD A 1B 1C 1D 1中,已知DC =DD 1=2AD =2AB ,AD ⊥DC ,AB∥DC .(1)求证:D 1C ⊥AC 1;(2)设E 是DC 上一点,试确定E 的位置,使D 1E ∥平面A 1BD ,并说明理由. 【解】 (1)证明:连接C 1D .因为DC =DD 1,所以四边形DCC 1D 1是正方形,所以DC 1⊥D 1C . 因为AD ⊥DC ,AD ⊥DD 1,DC ∩DD 1=D , 所以AD ⊥平面DCC 1D 1,D 1C ⊂平面DCC 1D 1,所以AD ⊥D 1C .又AD ∩DC 1=D ,所以D 1C ⊥平面ADC 1. 又AC 1⊂平面ADC 1,所以D 1C ⊥AC 1.(2)如图,当E 是CD 的中点时满足条件,连接BE 、D 1E ,因为AB ═∥12CD , 所以四边形ABED 为平行四边形. 所以BE ∥AD ∥A 1D 1.所以四边形BED 1A 1为平行四边形, 所以D 1E ∥A 1B .又D 1E ⊄面A 1BD ,A 1B ⊂A 1BD , 所以D 1E ∥平面A 1BD .综上所述,当E 是DC 的中点时,可使D 1E ∥平面A 1BD .线面垂直与平行的相互转化(1)空间中直线与直线垂直、直线与平面垂直、直线与直线平行可以相互转化,每一种垂直与平行的判定都是从某种垂直与平行开始转化为另一种垂直与平行,最终达到目的的.(2)转化关系:线线垂直判定定理定义线面垂直性质判定定理推论线线平行.如图所示,侧棱垂直于底面的三棱柱ABC A 1B 1C 1中,底面ABC 为等腰直角三角形,∠ACB =90°,CE ⊥AB 1,D 为AB 的中点.求证:(1)CD ⊥AA 1; (2)AB 1⊥平面CED .证明:(1)由题意,得AA 1⊥平面ABC ,CD ⊂平面ABC ,所以CD ⊥AA 1.(2)因为D 是AB 的中点,△ABC 为等腰直角三角形,∠ACB =90°,所以CD ⊥AB . 又CD ⊥AA 1,AB ∩A 1A =A ,所以CD ⊥平面A 1B 1BA ,因为AB 1⊂平面A 1B 1BA ,所以CD ⊥AB 1. 又CE ⊥AB 1,CD ∩CE =C , 所以AB 1⊥平面CED .1.直线与直线垂直如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直.两条直线垂直包括相交垂直和异面垂直. 2.线面垂直、线线垂直的证明方法 (1)线面垂直的证明方法:①定义法;②判定定理法;③判定定理的推论.(2)线线垂直的证明方法:①定义法;②线面垂直的性质. (3)线线垂直与线面垂直可相互转化.1.直线与平面垂直的定义,应注意:①定义中的“任何直线”这一条件,②直线与平面垂直是相交中的特殊情况,③利用定义可得直线和平面垂直则直线与平面内的所有直线垂直.2.直线与平面垂直应注意两点:①定理中的条件,是“平面内的两条相交直线”既不能说是“两条直线”,也不能说“无数条直线”.②应用定理的关键是在平面内,找到两条相交直线与已知直线垂直.3.“垂直于同一条直线的两条直线平行”要求涉及到的三条直线在同一个平面内,否则不正确.这告诉我们平面几何中的一些结论推广到空间时不一定成立,需要多加注意.1.一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( )A.平行B.垂直C.相交不垂直D.不确定解析:选B.一条直线垂直于三角形的两条边,那么这条直线必垂直于这个三角形所在的平面,因而必与第三边垂直.2.l1,l2,l3是空间三条不同的直线,则下列命题正确的是( )A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面解析:选B.A答案还有异面或者相交的情况,C、D不一定.3.已知PA垂直于平行四边形ABCD所在平面,若PC⊥BD,平行四边形ABCD一定是.解析:因为PA⊥平面ABCD,所以PA⊥BD.又因为PC⊥BD,PA∩PC=P,所以BD⊥平面PAC,所以BD⊥AC,所以平行四边形ABCD一定是菱形.答案:菱形4.点P是等腰三角形ABC所在平面外一点,PA⊥平面ABC,PA=8,在△ABC中,AB=AC=5,BC=6,则点P到BC的距离是.答案:4 5[学生用书P97(单独成册)])[A 基础达标]1.已知直线a⊥平面α,b∥α,则a与b的关系为( )A.a⊥b,且a与b相交B.a⊥b,且a与b不相交D.a与b不一定垂直解析:选C.过b作平面β,β∩α=b′,则b∥b′,因为a⊥平面α,所以a⊥b′,所以a⊥b.2.已知m,n为两条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( ) A.m⊂α,n⊂α,m∥β,n∥β⇒α∥βB.α∥β,m⊂α,n⊂β⇒m∥nC.m⊥α,m⊥n⇒n∥αD.m∥n,n⊥α⇒m⊥α解析:选D.由直线与平面垂直的判定定理的推论可知D正确.3.E、F分别是正方形ABCD中AB、BC的中点,沿DE、DF及EF把△ADE、△CDF和△BEF 折起,使A、B、C三点重合于一点P,则有( )A.DP⊥平面PEF B.DE⊥平面PEFC.EF⊥平面PEF D.DF⊥平面PEF解析:选A.如图所示,A、B、C三点重合于点P,则PD⊥PE,PD⊥PF,又PE∩PF=P,所以PD⊥平面PEF.4.如图,设平面α∩平面β=PQ,EG⊥平面α,FH⊥平面α,垂足分别为G,H.为使PQ⊥GH,则需增加的一个条件是( )A.EF⊥平面αB.EF⊥平面βC.PQ⊥GE解析:选B .因为EG ⊥平面α,PQ ⊂平面α,所以EG ⊥PQ .若EF ⊥平面β,则由PQ ⊂平面β,得EF ⊥PQ .又EG 与EF 为相交直线,所以PQ ⊥平面EFHG ,所以PQ ⊥GH ,故选B .5.在正方体ABCD A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总保持AP ⊥BD 1,则动点P 的轨迹是( )A .线段B 1C B .线段BC 1C .BB 1中点与CC 1中点连成的线段D .BC 中点与B 1C 1中点连成的线段解析:选A .如图,由于BD 1⊥平面AB 1C ,故点P 一定位于B 1C 上.6.如图,▱ADEF 的边AF ⊥平面ABCD ,AF =2,CD =3,则CE =.解析:因为AF ⊥平面ABCD ,AF ∥DE ,所以DE ⊥平面ABCD ,CD ⊂平面ABCD ,所以DE ⊥CD ,因为DE =AF =2,CD =3,所以CE =22+33=13.答案:137.α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线,给出四个论断:①m ∥n ;②α∥β;③m ⊥α;④n ⊥β.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题: .答案:⎭⎪⎬⎪⎫m ∥n α∥βm ⊥α⇒n ⊥β 8.如图所示,在矩形ABCD 中,AB =1,BC =a (a >0),PA ⊥平面AC ,且PA =1,若BC 边上存在点Q ,使得PQ ⊥QD ,则a 的最小值为 .解析:因为PA ⊥平面ABCD ,所以PA ⊥QD . 若BC 边上存在一点Q ,使得QD ⊥PQ , 则有QD ⊥平面PAQ ,从而QD ⊥AQ .在矩形ABCD 中,当AD =a <2时,直线BC 与以AD 为直径的圆相离,故不存在点Q ,使PQ ⊥DQ .所以当a ≥2时,才存在点Q ,使得PQ ⊥QD .所以a 的最小值为2. 答案:29.如图,在四棱锥P ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,AP =AB =2,BC =22,E ,F 分别是AD ,PC 的中点.证明:PC ⊥平面BEF .证明:如图所示,连接PE ,EC , 在Rt △PAE 和Rt △CDE 中,因为PA =AB =CD ,AE =DE ,所以PE =CE ,即△PEC 是等腰三角形. 又因为F 是PC 的中点,所以EF ⊥PC . 又因为BP = AP 2+AB 2=22=BC ,F 是PC 的中点,所以BF ⊥PC .又因为BF ∩EF =F ,所以PC ⊥平面BEF . 10.侧棱垂直于底面的三棱柱ABC A ′B ′C ′满足∠BAC =90°,AB =AC =12AA ′=2,点M ,N 分别为A ′B ,B ′C ′的中点.(1)求证:MN ∥平面A ′ACC ′; (2)求证:A ′N ⊥平面BCN ; (3)求三棱锥C MNB 的体积. 解:(1)证明:如图,连接AB ′,AC ′,因为四边形ABB ′A ′为矩形,M 为A ′B 的中点,所以AB ′与A ′B 交于点M ,且M 为AB ′的中点,又点N 为B ′C ′的中点,所以MN ∥AC ′, 又MN ⊄平面A ′ACC ′,且AC ′⊂平面A ′ACC ′, 所以MN ∥平面A ′ACC ′.(2)证明:因为A ′B ′=A ′C ′=2,点N 为B ′C ′的中点, 所以A ′N ⊥B ′C ′.又BB ′⊥平面A ′B ′C ′,所以A ′N ⊥BB ′, 所以A ′N ⊥平面B ′C ′CB ,所以A ′N ⊥平面BCN . (3)由图可知V C MNB =V M BCN , 因为∠BAC =90°, 所以BC =AB 2+AC 2=22,S △BCN =12×22×4=42.由(2)及∠B ′A ′C ′=90°可得A ′N =2, 因为M 为A ′B 的中点, 所以M 到平面BCN 的距离为22, 所以V C MNB =V M BCN =13×42×22=43.[B 能力提升]11.在正方体ABCD A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( ) A .AC B .BD C .A 1DD .A 1A解析:选B.如图所示,连接AC,BD,因为BD⊥AC,A1C1∥AC,所以BD⊥A1C1,因为BD⊥A1A,A1A∩A1C1=A1,所以BD⊥平面ACC1A1,因为CE⊂平面ACC1A1,所以BD⊥CE.12.如图所示,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中,正确结论的序号是.解析:对于①、③,因为PA⊥平面ABC,故PA⊥BC.又BC⊥AC,故BC⊥平面PAC,从而BC⊥AF.故③正确.又AF⊥PC,故AF⊥平面PBC,所以AF⊥PB,故①正确.对于②,由①知AF⊥PB,而AE⊥PB,从而PB⊥平面AEF,故EF⊥PB.故②正确.对于④,AE与平面PBC不垂直,故④不正确.答案:①②③13.如图,四棱锥PABCD中,O是底面正方形ABCD的中心,侧棱PD⊥底面ABCD,PD =DC,E是PC的中点.(1)证明:EO∥平面PAD;(2)证明:DE⊥平面PBC.证明:(1)连接AC,因为点O是底面正方形ABCD的中心,所以点O是AC的中点,又因为E是PC的中点,所以在△PAC中,EO是中位线,所以PA∥EO.因为EO⊄平面PAD,PA⊂平面PAD,所以EO∥平面PAD.(2)因为PD⊥平面ABCD,BC⊂平面ABCD,所以PD⊥BC,因为底面ABCD是正方形,有BC⊥DC,所以BC⊥平面PDC.而DE⊂平面PDC,所以BC⊥DE.因为PD=DC,可知△PDC是等腰直角三角形,而DE是斜边PC的中线,所以DE⊥PC.又BC,PC⊂平面PBC,且BC∩PC=C,所以DE⊥平面PBC.14.(选做题)如图,A、B、C、D为空间四点,在△ABC中,AC=BC,等边三角形ADB 以AB为轴转动,问是否总有AB⊥CD?证明你的结论.解:当△ADB以AB为轴转动时,总有AB⊥CD.证明如下:①当点D在平面ABC内时,因为AC=BC,AD=BD,所以C、D都在线段AB的垂直平分线上.所以CD⊥AB.②当点D不在平面ABC内时,取AB中点O,连DO,CO.因为AC=BC,AD=BD,所以CO⊥AB,DO⊥AB.又CO∩DO=O,所以AB⊥平面COD.因为CD⊂平面COD,所以AB⊥CD.综上所述,总有AB⊥CD.。
数学必修2立体几何第一章全部教(学)案

第一章:空间几何体1.1.1柱、锥、台、球的结构特征(一)一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪四、教学过程:一、创设情景,揭示课题1. 讨论:经典的建筑给人以美的享受,其中奥秘为何?世间万物,为何千姿百态?2. 提问:小学与初中在平面上研究过哪些几何图形?在空间围上研究过哪些?3. 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算.二、讲授新课:1. 教学棱柱、棱锥的结构特征:①提问:举例生活中有哪些实例给我们以两个面平行的形象?②讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征?③定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱.→列举生活中的棱柱实例(三棱镜、方砖、六角螺帽).结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线.④分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等.表示:棱柱ABCDE-A’B’C’D’E’⑤讨论:埃及金字塔具有什么几何特征?⑥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.结合图形认识:底面、侧面、侧棱、顶点、高. →讨论:棱锥如何分类及表示?⑦讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.2. 教学圆柱、圆锥的结构特征:①讨论:圆柱、圆锥如何形成?②定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥.→列举生活中的棱柱实例→结合图形认识:底面、轴、侧面、母线、高. →表示方法③讨论:棱柱与圆柱、棱柱与棱锥的共同特征?→柱体、锥体.④观察书P2若干图形,找出相应几何体;举例:生活中的柱体、锥体.3.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
2019-2020学年度最新北师大版高中数学必修二学案:第一章 1 简单几何体

2019-2020学年度最新北师大版高中数学必修二学案:第一章1简单几何体 1.理解旋转体与多面体的概念.2.掌握球、圆柱、圆锥、圆台的结构特征.3.掌握棱柱、棱锥、棱台的基本性质.知识点一两平面平行和直线与平面垂直的概念思考1如何定义两平面平行?思考2如何判定直线与平面垂直?梳理(1)________________的两个平面平行.(2)如果一条直线与一个平面内的__________________都垂直,则这条直线与这个平面垂直.知识点二旋转体与多面体知识点三常见的旋转体及概念思考1以直角三角形的一条直角边所在的直线为轴旋转180°所得的旋转体是圆锥吗?思考2能否由圆锥得到圆台?梳理记作:球O 球面:以_______线为旋转轴,将半圆________面.球体:球面所围成的几何体叫作球体,简称球记作:圆柱OO′以直线为旋转轴,其余各边旋转而形成的的几何体叫作圆柱记作:圆锥OO′以直角三角形的__________直线为旋转轴,其余各边旋转而形成的的几何体叫作圆锥记作:圆台OO′以直角梯形_____________在的直线为旋转轴,其余各边旋转而形成的所围成的几何体叫作圆台特别提醒:(1)经过旋转体轴的截面称为该几何体的轴截面.(2)圆柱的母线互相平行,圆锥的母线相交于圆锥的顶点,圆台的母线延长后相交于一点.知识点四常见的多面体及相关概念思考观察下列多面体,试指明其类别.梳理(1)棱柱①定义要点:(ⅰ)两个面________________;(ⅱ)其余各面都是________________;(ⅲ)每相邻两个四边形的公共边都________________.②相关概念:底面:两个________________的面.侧面:除底面外的其余各面.侧棱:相邻______________的公共边.顶点:底面多边形与________的公共顶点.③记法:如三棱柱ABC-A1B1C1.④分类及特殊棱柱:(ⅰ)按底面多边形的边数分,有____________________、________________、________________、…….(ⅱ)直棱柱:侧棱________于底面的棱柱.(ⅲ)正棱柱:底面是________________的直棱柱.(2)棱锥①定义要点:(ⅰ)有一个面是________________;(ⅱ)其余各面是三角形;(ⅲ)这些三角形有一个________________.②相关概念:底面:除去棱锥的侧面余下的那个________________.侧面:除底面外的其余__________面.侧棱:相邻两个________的公共边.顶点:________的公共顶点.③记法:如三棱锥S-ABC.④分类及特殊棱锥:(ⅰ)按底面多边形的边数分,有________、__________、__________、……,(ⅱ)正棱锥:底面是______________,且各侧面________的棱锥.(3)棱台①定义要点:用一个______________________的平面去截棱锥,________与________之间的部分.②相关概念:上底面:原棱锥的________.下底面:原________的底面.侧棱:相邻的________的公共边.顶点:________与底面的公共顶点.③记法:如三棱台ABC-A1B1C1.④分类及特殊棱台:(ⅰ)按底面多边形的边数分,有____________________、________________、________________、……,(ⅱ)正棱台:由________________截得的棱台.类型一旋转体的概念例1下列命题正确的是________.(填序号)①以直角三角形的一边所在直线为旋转轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰所在直线为旋转轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④以等腰三角形的底边上的高线所在的直线为旋转轴,其余各边旋转一周形成的几何体是圆锥;⑤半圆面绕其直径所在直线旋转一周形成球;⑥用一个平面去截球,得到的截面是一个圆面.反思与感悟(1)判断简单旋转体结构特征的方法①明确由哪个平面图形旋转而成.②明确旋转轴是哪条直线.(2)简单旋转体的轴截面及其应用①简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量.②在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想.跟踪训练1下列命题:①圆柱的轴截面是过母线的截面中最大的一个;②用任意一个平面去截圆锥得到的截面一定是一个圆;③圆台的任意两条母线的延长线,可能相交也可能不相交;④球的半径是球心与球面上任意一点的连线段.其中正确的个数为()A.0 B.1C.2 D.3类型二多面体及其简单应用例2(1)下列关于多面体的说法正确的个数为________.①所有的面都是平行四边形的几何体为棱柱;②棱台的侧面一定不会是平行四边形;③底面是正三角形,且侧棱相等的三棱锥是正三棱锥;④棱台的各条侧棱延长后一定相交于一点;⑤棱柱的每一个面都不会是三角形.(2)如图所示,长方体ABCD-A1B1C1D1.①这个长方体是棱柱吗?如果是,是几棱柱?为什么?②用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,说明理由.(提示:可以证明BC綊MN)引申探究若用一个平面去截本例(2)中的四棱柱,能截出三棱锥吗?反思与感悟(1)棱柱的识别方法①两个面互相平行.②其余各面都是四边形.③每相邻两个四边形的公共边都互相平行.(2)棱锥的识别方法①有一个面是多边形.②其余各面都是有一个公共顶点的三角形.③棱锥仅有一个顶点,它是各侧面的公共顶点.④对几类特殊棱锥的认识(ⅰ)三棱锥是面数最少的多面体,又称四面体.它的每一个面都可以作为底面.(ⅱ)各棱都相等的三棱锥称为正四面体.(ⅲ)正棱锥有以下性质:侧面是全等的等腰三角形,顶点与底面正多边形中心的连线与底面垂直.(3)棱台的识别方法①上、下底面互相平行.②各侧棱延长交于一点.跟踪训练2下列说法正确的是()A.有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台B.两底面平行,并且各侧棱也互相平行的几何体是棱柱C.棱锥的侧面可以是四边形D.棱柱中两个互相平行的平面一定是棱柱的底面1.下列几何体中棱柱有()A.5个B.4个C.3个D.2个2.关于下列几何体,说法正确的是()A.图①是圆柱B.图②和图③是圆锥C.图④和图⑤是圆台D.图⑤是圆台3.下面有关棱台说法中,正确的是()A.上下两个底面平行且是相似四边形的几何体是四棱台B.棱台的所有侧面都是梯形C.棱台的侧棱长必相等D.棱台的上下底面可能不是相似图形4.等腰三角形ABC绕底边上的中线AD所在的直线旋转一周所得的几何体是() A.圆台B.圆锥C.圆柱D.球5.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的母线长为________.1.圆柱、圆锥、圆台的关系如图所示.2.棱柱、棱锥、棱台定义的关注点(1)棱柱的定义有以下两个要点,缺一不可:①有两个平面(底面)互相平行;②其余各面(侧面)每相邻两个面的公共边(侧棱)都互相平行.(2)棱锥的定义有以下两个要点,缺一不可:①有一个面(底面)是多边形;②其余各面(侧面)是有一个公共顶点的三角形.(3)用一水平平面截棱锥可得到棱台.答案精析问题导学知识点一思考1两平面无公共点.思考2直线和平面内的任何一条直线都垂直.梳理(1)无公共点(2)任何一条直线知识点二平面曲线旋转面旋转体平面多边形多面体知识点三思考1不是.以直角三角形的一条直角边所在的直线为轴旋转180°所得的旋转体是圆锥的一半,不是整个圆锥.思考2用平行于圆锥底面的平面截去一个圆锥可以得到.梳理半圆的直径曲面圆心球面球心矩形的一边曲面一条直角边曲面垂直于底边的腰曲面旋转轴旋转轴圆面不垂直于旋转轴不垂直于旋转轴知识点四思考(1)五棱柱;(2)四棱锥;(3)三棱台.梳理(1)①(ⅰ)互相平行(ⅱ)四边形(ⅲ)互相平行②互相平行两个侧面侧面④(ⅰ)三棱柱四棱柱五棱柱(ⅱ)垂直(ⅲ)正多边形(2)①(ⅰ)多边形(ⅲ)公共顶点②多边形三角形侧面侧面④(ⅰ)三棱锥四棱锥五棱锥(ⅱ)正多边形全等(3)①平行于棱锥底面底面截面②截面棱锥侧面侧面④(ⅰ)三棱台四棱台五棱台(ⅱ)正棱锥题型探究例1④⑤⑥解析①以直角三角形的一条直角边所在直线为旋转轴旋转一周才可以得到圆锥;②以直角梯形垂直于底边的腰所在直线为旋转轴旋转一周可得到圆台;③它们的底面为圆面;④⑤⑥正确.跟踪训练1 C例2 3解析①中两个四棱柱放在一起,如下图所示,能保证每个面都是平行四边形,但并不是棱柱.故①错;②中棱台的侧面一定是梯形,不可能为平行四边形,②正确;根据棱锥的概念知,③正确;根据棱台的概念知,④正确;棱柱的底面可以是三角形,故⑤错.正确的个数为3.(2)解①长方体是棱柱,是四棱柱.因为它有两个平行的平面ABCD与A1B1C1D1,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,符合棱柱的定义.②用平面BCNM把这个长方体分成两部分,其中一部分有两个平行的平面BB1M与CC1N,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,符合棱柱的定义,所以是三棱柱,可用符号表示为三棱柱BB1M-CC1N;另一部分有两个平行的平面ABMA1与DCND1,其余各面都是四边形且每相邻两个四边形的公共边互相平行,符合棱柱的定义,所以是四棱柱,可用符号表示为四棱柱ABMA1-DCND1.引申探究解如图,几何体B-A1B1C1就是三棱锥.跟踪训练2B[A中所有侧棱不一定交于一点,故A不正确;B正确;C中棱锥的侧面一定是三角形,故C不正确;D中棱柱的侧面也可能平行,故D不正确.]当堂训练1.D[由棱柱的定义知,①③为棱柱.]2.D[由旋转体的结构特征知,D正确.]3.B[由棱台的结构特征知,B正确.]4.B[中线AD⊥BC,左右两侧对称,旋转体为圆锥.]5.2解析如图所示,设等边三角形ABC为圆锥的轴截面,由题意知,圆锥的母线长即为△ABC的边长,且S△ABC=34AB 2,∴3=34AB2,∴AB=2.故答案为2.11 / 11。
2019_2020学年高中数学第一章立体几何初步1.2.1平面的基本性质与推论学案新人教B版必修2

若 A∈l,B∈l,A∈α, B∈α,则 l⊂α
过直线
经过不在同一条直线上的三
若 A,B,C 三点不共线,
基本
点,有且只有一个平面,简称
则有且只有一个平面
性质 2 为不共线的三点确定一个平
α,使 A∈α,B∈α,C
面
∈α
基本 性质 3
如果不重合的两个平面有一 个公共点,那么它们有且只有 一条过这个点的公共直线
2.如图,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,且 C∉ l,则平面 ABC 与平面β的交线是( )
A.直线 AC B.直线 BC C.直线 AB D.直线 CD 解析:选 D.由题意知平面 ABC 与平面β有公共点 C,根据基本性质 3,这两平面必定 相交,有且只有一条经过点 C 的交线.由于两点确定一条直线,所以只要再找到两平面的另 一个公共点即可.显然点 D 在直线 AB 上,从而它在平面 ABC 内;而 D 在直线 l 上,所以它 又在平面β内,这样 D 也是平面 ABC 与平面β的公共点.因此平面 ABC 与平面β的交线是直 线 CD. 3.已知α,β为平面,A,B,M,N 为点,a 为直线,下列推理错误的是( ) A.A∈a,A∈β,B∈a,B∈β⇒a⊂β B.M∈α,M∈β,N∈α,N∈β⇒α∩β=MN C.A∈α,A∈β⇒α∩β=A D.A,B,M∈α,A,B,M∈β,且 A,B,M 不共线⇒α,β重合 解析:选 C.选项 C 中,α与β有公共点 A,则它们有过点 A 的一条交线,而不是点 A, 故 C 错. 4.空间四点 A,B,C,D 共面但不共线,那么这四点中( ) A.必有三点共线 B.必有三点不共线 C.至少有三点共线 D.不可能有三点共线 解析:选 B.若 AB∥CD,则 AB,CD 共面,但 A,B,C,D 任何三点都不共线,故排除 A, C;若直线 l 与直线外一点 A 在同一平面内,且 B,C,D 三点在直线 l 上,所以排除 D.故 选 B.
2019-2020高中数学 第一章 立体几何初步章末复习课学案 北师大版必修2

第一章立体几何初步章末复习课网络构建核心归纳1.多面体的结构特征(1)棱柱的侧棱都互相平行且相等,上下底面是全等的多边形. (2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形. (3)棱台可由平行于底面的平面截棱锥得到,其上、下底面是相似多边形. 2.旋转体的结构特征(1)圆柱可以由矩形绕一边所在的直线旋转一周得到.(2)圆锥可以由绕直角三角形一条直角边所在的直线旋转一周得到.(3)圆台可以由直角梯形绕垂直于底边的腰所在直线或等腰梯形绕上、下底面中心连线旋转一周得到,也可由平行于底面的平面截圆锥得到. (4)球可以由半圆或圆绕直径所在直线旋转一周得到. 3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本步骤是: (1)画几何体的底面在已知图形中取互相垂直的x 轴、y 轴,两轴相交于点O ,画直观图时,把它们画成对应的x ′轴、y ′轴,两轴相交于点O ′,且使∠x ′O ′y ′=45°,已知图形中平行于x 轴、y轴的线段,在直观图中平行于x ′轴、y ′轴.已知图形中平行于x 轴的线段,在直观图中长度不变,平行于y 轴的线段,长度变为原来的一半. (2)画几何体的高在已知图形中过O 点作z 轴垂直于xOy 平面,在直观图中对应的z ′轴,也垂直于x ′O ′y ′平面,已知图形中平行于z 轴的线段,在直观图中仍平行于z ′轴且长度不变. 4.空间几何体的三视图空间几何体的三视图是用平行投影得到的,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是全等的,三视图包括主视图、左视图、俯视图. 5.平面的基本性质公理1 过不在一条直线上的三点,有且只有一个平面.公理2 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 6.(1)公理4 平行于同一条直线的两直线平行. (2)空间直线与直线的位置关系有且只有三种:⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧相交直线平行直线异面直线:不同在任何一个平面内,没有公共点.7.直线与平面的位置关系(1)直线a与平面α的位置关系有平行、相交、在平面内,其中平行与相交统称直线在平面外.(2)直线和平面平行的判定①定义:直线和平面没有公共点,则称直线平行平面;②判定定理:aα,bα,a∥b⇒a∥α;③其他判定方法:α∥β,aα⇒a∥β.(3)直线和平面平行的性质定理:a∥α,aβ,α∩β=l⇒a∥l.(4)直线和平面垂直①定义如果一条直线l和一个平面α内的任意一条直线都垂直,那么就说这条直线和平面α互相垂直.②判定与性质a.判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.b.性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.8.两平面的位置关系(1)两个平面的位置关系有平行、相交.(2)两个平面平行的判定①定义:两个平面没有公共点,称这两个平面平行;②判定定理:aα,bα,a∩b=M,a∥β,b∥β⇒α∥β;(3)两个平面平行的性质定理α∥β,aα⇒a∥β;α∥β,r∩α=a,r∩β=b⇒a∥b.(4)与垂直相关的平行的判定①a⊥α,b⊥α⇒a∥b;②a⊥α,a⊥β⇒α∥β.(5)两个平面垂直①二面角的平面角以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫作二面角的平面角.②定义如果两个相交平面所成的二面角是直二面角,就说这两个平面互相垂直.③判定和性质a.判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.b.性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.9.多面体的侧面积(1)设直棱柱高为h ,底面多边形的周长为c ,则S 直棱柱侧=ch .(2)设正n 棱锥底面边长为a ,底面周长为c ,斜高为h ′,则S 正棱锥侧=12nah ′=12ch ′.(3)设正n 棱台下底面边长为a ,周长为c ,上底面边长为a ′,周长为c ′,斜高为h ′,则S 正棱台侧=12n (a +a ′)h ′=12(c +c ′)h ′.10.旋转体的表面积(1)如果圆柱的底面半径为r ,母线长为l ,那么圆柱的底面面积为πr 2,侧面积为2πrl .因此,圆柱的表面积S =2πr 2+2πrl =2πr (r +l ).(2)如果圆锥的底面半径为r ,母线长为l ,那么它的侧面积为πrl ,表面积S =πr 2+πrl =πr (r +l ).(3)如果圆台的两底面半径分别为r ′、r ,母线长为l ,则侧面积为π(r ′+r )l ,表面积为S =π(r ′2+r 2+r ′l +rl ).(4)球的表面积公式:S =4πR 2(其中R 为球的半径)即球面面积等于它的大圆面积的四倍. 11.几何体的体积公式(1)柱体的体积V 柱体=Sh (其中S 为柱体的底面面积,h 为高). 特别地,底面半径是r ,高是h 的圆柱体的体积V 圆柱=πr 2h . (2)锥体的体积V 锥体=13Sh (其中S 为锥体的底面面积,h 为高).特别地,底面半径是r ,高是h 的圆锥的体积V 圆锥=13πr 2h .(3)台体的体积V 台体=13h (S +SS ′+S ′)(其中S ′,S 分别是台体上、下底面的面积,h 为高).特别地,上、下底面的半径分别是r ′、r ,高是h 的圆台的体积V 圆台=13πh (r 2+rr ′+r ′2).(4)球的体积V 球=43πR 3(其中R 为球的半径).要点一 三视图与直观图由三视图确定几何体分三步:第一步:通过主视图和左视图确定是柱体、锥体还是台体.若主视图和左视图为矩形,则原几何体为柱体;若主视图和左视图为等腰三角形,则原几何体为锥体;若主视图和左视图为等腰梯形,则原几何体为台体.第二步:通过俯视图确定是多面体还是旋转体.若俯视图为多边形,则原几何体为多面体;若俯视图为圆,则原几何体为旋转体.第三步:由“长对正、高平齐、宽相等”的原则确定几何体的尺寸.【例1】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( )A.6 2B.6C.4 2D.4解析由多面体的三视图可知该几何体的直观图为一个三棱锥,如图所示.其中面ABC⊥面BCD,△ABC为等腰直角三角形,AB=BC=4,取BC的中点M,连接AM,DM,则DM⊥面ABC,在等腰△BCD中,BD=DC=25,BC=DM=4,所以在Rt△AMD中,AD=AM2+DM2=42+22+42=6,又在Rt△ABC中,AC=42<6,故该多面体的各条棱中,最长棱为AD,长度为6,故选B.答案 B【训练1】某几何体的三视图如图所示,则该几何体的体积为( )A.12B.18C.24D.30解析由俯视图可以判断该几何体的底面为直角三角形,由主视图和左视图可以判断该几何体是由直三棱柱(侧棱与底面垂直的棱柱)截取得到的.在长方体中分析还原,如图(1)所示,故该几何体的直观图如图(2)所示.在图(1)中,V 棱柱ABC -A 1B 1C 1=S △ABC ·AA 1=12×4×3×5=30,V棱锥P -A 1B 1C 1=13S △A 1B 1C 1·PB 1=13×12×4×3×3=6.故几何体ABC -PA 1C 1的体积为30-6=24.故选C.答案 C【训练2】 某几何体的三视图如图所示,则该几何体的体积为( )A.16+8πB.8+8πC.16+16πD.8+16π解析 由三视图可知该几何体由长方体和圆柱的一半组成.其中长方体的长、宽、高分别为4、2、2,圆柱的底面半径为2,高为4.所以该几何体的体积V =4×2×2+12π×22×4=16+8π.故选A. 答案 A要点二 空间中的平行关系 1.判断线面平行的两种常用方法:面面平行判定的落脚点是线面平行,因此掌握线面平行的判定方法是必要的,判定线面平行的两种方法:(1)利用线面平行的判定定理;(2)利用面面平行的性质,即当两平面平行时,其中一平面内的任一直线平行于另一平面. 2.判断面面平行的常用方法: (1)利用面面平行的判定定理;(2)面面平行的传递性(α∥β,β∥γ⇒α∥γ); (3)利用线面垂直的性质(l ⊥α,l ⊥β⇒α∥β).【例2】 如图所示,四边形ABCD 是平行四边形,PB ⊥平面ABCD ,MA ∥PB ,PB =2MA .在线段PB 上是否存在一点F ,使平面AFC ∥平面PMD ?若存在,请确定点F 的位置;若不存在,请说明理由.解 当点F 是PB 的中点时,平面AFC ∥平面PMD ,证明如下:如图连接AC 和BD 交于点O ,连接FO ,则PF =12PB .∵四边形ABCD 是平行四边形, ∴O 是BD 的中点,∴OF ∥PD . 又O F⃘平面PMD ,PD 平面PMD , ∴OF ∥平面PMD .又MA 綊12PB ,∴PF 綊MA ,∴四边形AFPM 是平行四边形, ∴AF ∥PM .又A F⃘平面PMD ,PM 平面PMD . ∴AF ∥平面PMD .又AF ∩OF =F ,AF 平面AFC ,OF 平面AFC . ∴平面AFC ∥平面PMD .【训练3】 如图,E 、F 、G 、H 分别是正方体ABCD -A 1B 1C 1D 1的棱BC 、CC 1、C 1D 1、AA 1的中点,求证:(1)GE ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H . 证明 (1)如图,取B 1D 1中点O , 连接GO ,OB ,易证OG 綊12B 1C 1,BE 綊12B 1C 1,∴OG 綊BE ,四边形BEGO 为平行四边形. ∴OB ∥GE .∵OB 平面BDD 1B 1,G E⃘平面BDD 1B 1,∴GE ∥平面BDD 1B 1.(2)由正方体性质得B 1D 1∥BD , ∵B 1D 1平面BDF ,B D⃘平面BDF ,∴B 1D 1∥平面BDF . 连接HB ,D 1F ,易证HBFD 1是平行四边形,得HD 1∥BF . ∵HD 1平面BDF ,BF 平面BDF ,∴HD 1∥平面BDF . ∵B 1D 1∩HD 1=D 1, ∴平面BDF ∥平面B 1D 1H . 要点三 空间中的垂直关系 空间垂直关系的判定方法: (1)判定线线垂直的方法:①计算所成的角为90°(包括平面角和异面直线所成的角); ②线面垂直的性质(若a ⊥α,b α,则a ⊥b ). (2)判定线面垂直的方法:①线面垂直定义(一般不易验证任意性);②线面垂直的判定定理(a ⊥b ,a ⊥c ,b α,c α,b ∩c =M ⇒a ⊥α); ③平行线垂直平面的传递性质(a ∥b ,b ⊥α⇒a ⊥α);④面面垂直的性质(α⊥β,α∩β=l ,a β,a ⊥l ⇒a ⊥α); ⑤面面平行的性质(a ⊥α,α∥β⇒a ⊥β);⑥面面垂直的性质(α∩β=l ,α⊥γ,β⊥γ⇒l ⊥γ). (3)面面垂直的判定方法:①根据定义(作两平面构成二面角的平面角,计算其为90°); ②面面垂直的判定定理(a ⊥β,a α⇒α⊥β).【例3】 如图,A ,B ,C ,D 为空间四点.在△ABC 中,AB =2,AC =BC =2,等边三角形ADB 以AB 为轴运动. (1)当平面ADB ⊥平面ABC 时,求CD 的长;(2)当△ADB 转动时,是否总有AB ⊥CD ?证明你的结论.解 (1)如图,取AB 的中点E ,连接DE ,CE ,因为△ADB 是等边三角形,所以DE ⊥AB .当平面ADB ⊥平面ABC 时,因为平面ADB ∩平面ABC =AB ,所以DE ⊥平面ABC ,因为CE平面ABC ,可知DE ⊥CE ,由已知可得DE=3,EC =1,在Rt△DEC 中,CD =DE 2+EC 2=2. (2)当△ADB 以AB 为轴转动时,总有AB ⊥CD .证明如下:①当D 在平面ABC 内时,因为AC =BC ,AD =BD , 所以C ,D 都在线段AB 的垂直平分线上,即AB ⊥CD . ②当D 不在平面ABC 内时,取AB 中点E ,由(1)知AB ⊥DE .又因AC =BC ,所以AB ⊥CE .又DE ,CE 为相交直线,所以AB ⊥平面CDE ,由CD 平面CDE ,得AB ⊥CD .综上所述,总有AB ⊥CD .【训练4】 如图,在三棱锥V -ABC 中,平面VAB ⊥平面ABC ,△VAB 为等边三角形,AC ⊥BC 且AC =BC =2,O ,M 分别为AB ,VA 的中点. (1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB ; (3)求三棱锥V -ABC 的体积.(1)证明 ∵O ,M 分别为AB ,VA 的中点, ∴OM ∥VB .∵V B⃘平面MOC ,OM 平面MOC , ∴VB ∥平面MOC .(2)证明 ∵AC =BC ,O 为AB 的中点,∴OC ⊥AB .又∵平面VAB ⊥平面ABC ,且平面VAB ∩平面ABC =AB ,OC 平面ABC ,∴OC ⊥平面VAB . ∵OC 平面MOC ,∴平面MOC ⊥平面VAB . (3)解 在等腰直角△ACB 中,AC =BC =2, ∴AB =2,OC =1, ∴S △VAB =34AB 2= 3. ∵OC ⊥平面VAB ,∴V C -VAB =13OC ·S △VAB =13×1×3=33,∴V V -ABC =V C -VAB =33. 要点四 几何体的表面积与体积几何体的表面积和体积的计算是现实生活中经常遇到的问题,如制作物体中的如何下料问题、材料最省问题、相同材料容积最大问题,都涉及表面积和体积的计算.特别是特殊的柱、锥、台,在计算中要注意其中矩形、梯形及直角三角形等重要的平面图形的使用,对于圆柱、圆锥、圆台,要重视旋转轴所在轴截面、底面圆的作用.割补法、构造法是常用的技巧.【例4】 如图所示,已知三棱柱ABC -A ′B ′C ′,侧面B ′BCC ′的面积是S ,点A ′到侧面B ′BCC ′的距离是a ,求三棱柱ABC -A ′B ′C ′的体积. 解 连接A ′B ,A ′C ,如图所示,这样就把三棱柱分割成了两个棱锥.设所求体积为V ,显然三棱锥A ′-ABC 的体积是13V .而四棱锥A ′-BCC ′B ′的体积为13Sa ,故有13V +13Sa =V ,即V =12Sa .【训练5】 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也.又以高乘之,三十六成一.该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈136L 2h .它实际上是将圆锥体积公式中的圆周率π近似取为3.那么,近似公式V ≈275L 2h 相当于将圆锥体积公式中的π近似取为( ) A.227 B.258C.15750D.355113解析 圆锥的体积V =13πr 2h =13π⎝ ⎛⎭⎪⎫L 2π2h =L 2h 12π,由题意得12π≈752,π近似取为258,故选B. 答案 B【训练6】 已知某一多面体内接于球构成一个简单组合体,如果该组合体的主视图、左视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是________.解析 由三视图知,组合体是棱长为2的正方体内接于球,故正方体的体对角线长为23,即为球的直径.所以球的表面积S =4π⎝ ⎛⎭⎪⎫2322=12π.答案 12π要点五 线线角、线面角和二面角问题(1)两条异面直线所成的角的范围是(0°,90°].找两条异面直线所成的角,关键是选取合适的点,引两条异面直线的平行线,这两条相交直线所成的锐角或直角即为两条异面直线所成的角.特别地,两条异面直线垂直,可由线面垂直得到.(2)直线和平面所成的角的范围是 [0°,90°].找线面角的关键是找到直线与其在平面内的射影的夹角.当线面角为0°时,直线与平面平行或直线在平面内;当线面角为90°时,直线与平面垂直.(3)如果求两个相交平面所成的二面角,除垂直外,均有两个答案,即θ或180°-θ.具体几何体中,由题意和图形确定.作二面角的平面角时,首先要确定二面角的棱,然后结合题设构造二面角的平面角.一般常用:①定义法;②垂面法.(4)求角度问题时,无论哪种情况,最终都归结到两条相交直线所成的角的问题.求角度的解题步骤:①找出这个角;②证该角符合题意;③构造出含这个角的三角形,解这个三角形,求出角.【例5】 如图所示,矩形ABCD 中,AB =6,BC =23,沿对角线BD 将△ABD 折起,使点A 移至点P ,P 在平面BCD 内的投影为O ,且O 在DC 上. (1)求证:PD ⊥PC ;(2)求二面角P -DB -C 的余弦值.(1)证明 P 在平面BCD 内的投影为O , 则PO ⊥平面BCD ,∵BC 平面BCD ,∴PO ⊥BC .∵BC ⊥CD ,CD ∩PO =O ,∴BC ⊥平面PCD . ∵DP 平面PCD ,∴BC ⊥DP .又∵DP ⊥PB ,PB ∩BC =B ,∴DP ⊥平面PBC . 而PC 平面PBC ,∴PD ⊥PC .(2)解 △PBD 在平面BCD 内的投影为△OBD , 且S △PBD =12×6×23=63,S △OBD =S △CBD -S △BOC =63-12×23×OC .在Rt△DPC 中,PC 2=DC 2-DP 2=24.设OC =x ,则OD =6-x , ∴PC 2-OC 2=DP 2-DO 2,即24-x 2=12-(6-x )2,解得x =4. ∴S △BOD =63-43=2 3.过点P 作PQ ⊥DB ,连接OQ ,则DB ⊥平面OPQ , ∴∠OQP 即为二面角P -DB -C 的平面角, ∴cos∠OQP =S △BOD S △PBD =2363=13. ∴二面角P -DB -C 的余弦值为13.【训练7】 在长方体ABCD -A 1B 1C 1D 1中,异面直线AB ,A 1D 1所成的角等于( ) A.30° B.45° C.60°D.90°解析 由于AD ∥A 1D 1,则∠BAD 是异面直线AB ,A 1D 1所成的角,很明显∠BAD =90°. 答案 D基础过关1.设a ,b ,c 是空间的三条直线,给出以下三个命题:①若a ⊥b ,b ⊥c ,则a ⊥c ;②若a 和b 共面,b 和c 共面,则a 和c 也共面; ③若a ∥b ,b ∥c ,则a ∥c .其中正确命题的个数是( ) A.0 B.1 C.2D.3解析 借助正方体中的线线关系易知①②全错;由公理4知③正确. 答案 B2.某几何体的三视图如图所示,则该几何体的体积为( )A.13+π B.23+π C.13+2π D.23+2π 解析 由三视图知,该几何体是一个三棱锥与半个圆柱的组合体.V =V 三棱锥+ 12V 圆柱=13×12×2×1×1+12×π×12×2=13+π.选A. 答案 A3.如图,已知正六棱柱的最大对角面的面积为4 m 2,互相平行的两个侧面的距离为2 m ,则这个六棱柱的体积为( ) A.3 m 3B.6 m 3C.12 m 3D.以上都不对解析 设底面边长为a ,高为h ,则a =233,又2×233×h =4,∴h =3,∴V =12×233×32×233×6×3=6(m 3),故选B.答案 B4.如图所示,点P 在正方形ABCD 所在平面外,PA ⊥平面ABCD ,PA =AB ,则PB 与AC 所成的角是________.解析 将其还原成正方体ABCD -PQRS ,连接SC ,AS ,则PB ∥SC ,∴∠ACS (或其补角)是PB 与AC 所成的角,∵△ACS 为正三角形,∴∠ACS =60°,∴PB 与AC 所成的角是60°. 答案 60°5.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.解析 设正方体棱长为a ,则6a 2=18⇒a 2=3,a = 3. 外接球直径为2R =3a =3,R =32,V =43πR 3=43π×278=92π.答案 9π26.如图所示,在长方体ABCD -A 1B 1C 1D 1中,M 、N 分别为AB 、A 1D 1的中点,判断MN 与平面A 1BC 1的位置关系,为什么? 解 直线MN ∥平面A 1BC 1.证明如下:∵M ∉平面A 1BC 1,N ∉平面A 1BC 1. ∴M N⃘平面A 1BC 1. 如图,取A 1C 1的中点O 1, 连接NO 1、BO 1.∵NO 1綊12D 1C 1,MB 綊12D 1C 1,∴NO 1綊MB ,∴四边形NO 1BM 为平行四边形,∴MN ∥BO 1. 又∵BO 1平面A 1BC 1, ∴MN ∥平面A 1BC 1.7.如图,在直三棱柱ABC -A 1B 1C 1中,E ,F 分别为A 1C 1和BC 的中点. (1)求证:EF ∥平面AA 1B 1B ;(2)若AA 1=3,AB =23,求EF 与平面ABC 所成的角. (1)证明 如图,取A 1B 1的中点D ,连接DE ,BD . 因为E 是A 1C 1的中点,所以DE 綊12B 1C 1.又因为BC 綊B 1C 1,BF =12BC ,所以DE 綊BF ,所以四边形BDEF 为平行四边形, 所以BD ∥EF .又因为BD 平面AA 1B 1B ,E F⃘平面AA 1B 1B , 所以EF ∥平面AA 1B 1B .(2)解 如图,取AC 的中点H ,连接HF ,EH .因为EH ∥AA 1,AA 1⊥平面ABC , 所以EH ⊥平面ABC .所以∠EFH 就是EF 与平面ABC 所成的角. 在Rt△EHF 中,FH =3,EH =AA 1=3, tan∠EFH =EH FH=3, 所以∠EFH =60°.故EF 与平面ABC 所成的角为60°.能力提升8.已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A.36π B.64π C.144πD.256π解析 ∵S △OAB 是定值,且V O -ABC =V C -OAB ,∴当OC ⊥平面OAB 时,V C -OAB 最大,即V O -ABC 最大. 设球O 的半径为R ,则(V O -ABC )max =13×12R 2×R =16R 3=36,∴R =6,∴球O 的表面积S =4πR 2=4π×62=144π. 答案 C9.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( ) A.26 B.36 C.23D.22解析 利用三棱锥的体积变换求解.由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,所以三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍.在三棱锥O -ABC 中,其棱长都是1,如图所示,S △ABC =34×AB 2=34, 高OD =12-⎝ ⎛⎭⎪⎫332=63,∴V S -ABC =2V O -ABC =2×13×34×63=26.答案 A10.三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC 的体积为V 2,则V 1V 2=________.解析 如图,设S △ABD =S 1,S △PAB =S 2,E 到平面ABD 的距离为h 1,C 到平面PAB 的距离为h 2,则S 2=2S 1,h 2=2h 1,V 1=13S 1h 1,V 2=13S 2h 2,∴V 1V 2=S 1h 1S 2h 2=S 1h 12S 1×2h 1=14. 答案 1411.如图所示,在矩形ABCD 中,AB =3,BC =a ,若PA ⊥平面ABCD ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值范围是________.解析 由题意知:PA ⊥DE , 又PE ⊥DE ,PA ∩PE =P ,∴DE ⊥平面PAE ,∵AE 平面PAE , ∴DE ⊥AE . 易证△ABE ∽△ECD . 设BE =x ,则AB CE =BE CD ,即3a -x =x3.∴x 2-ax +9=0,E 点有两个,即方程有两不同的实根,由Δ>0,解得a >6. 答案 (6,+∞)12.如图,在直三棱柱ABC -A 1B 1C 1中,AB =AC =5,BB 1=BC =6,D ,E 分别是AA 1和B 1C 的中点. (1)求证:DE ∥平面ABC ; (2)求三棱锥E -BCD 的体积.(1)证明 如图,取BC 中点G ,连接AG ,EG . 因为E 是B 1C 的中点, 所以EG ∥BB 1,且EG =12BB 1.由直棱柱知,AA 1綊BB 1,而D 是AA 1的中点,所以EG 綊AD ,所以四边形EGAD 是平行四边形.所以ED ∥AG . 又D E⃘平面ABC ,AG 平面ABC , 所以DE ∥平面ABC .(2)解 因为AD ∥EG ,所以AD ∥平面BCE , 所以V E -BCD =V D -BEC =V A -BCE =V E -ABC , 由(1)知,DE ∥平面ABC .所以V E -ABC =V D -ABC =13AD ·12BC ·AG =16×3×6×4=12.13.(选做题)如图,在三棱锥P -ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点. (1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC ;(3)当PA ∥平面BDE 时,求三棱锥E -BCD 的体积. (1)证明 ∵PA ⊥AB ,PA ⊥BC ,AB 平面ABC ,BC 平面ABC ,且AB ∩BC =B ,∴PA ⊥平面ABC ,又∵BD 平面ABC ,∴PA ⊥BD . (2)证明 ∵AB =BC ,D 是AC 的中点, ∴BD ⊥AC .由(1)知PA ⊥平面ABC ,∵PA 平面PAC ,∴平面PAC ⊥平面ABC . ∵平面PAC ∩平面ABC =AC ,BD 平面ABC ,BD ⊥AC ,∴BD ⊥平面PAC . ∵BD 平面BDE , ∴平面BDE ⊥平面PAC , (3)解 ∵PA ∥平面BDE , 又平面BDE ∩平面PAC =DE ,PA 平面PAC ,∴PA ∥DE .由(1)知PA ⊥平面ABC ,∴DE ⊥平面ABC . ∵D 是AC 的中点,∴E 为PC 的中点, ∴DE =12PA =1.∵D 是AC 的中点,∴S △BCD =12S △ABC =12×12×2×2=1,1 3×S△BCD×DE=13×1×1=13.∴V E-BCD=。
必修2第一章立体几何导学案

1、1简单几何体学习目标1、知识与技能了解简单旋转体和简单多面体的有关概念。
通过教材展示的几何体的实物、模型、图片等,让学生感受空间几何体的结构特征。
3、情感、态度与价值观通过学生生活中的实物展示和化学中的物质晶体状来培养学生观察、分析、思考的科学态度。
进一步培养学生的数学建模思想。
【重点】简单几何体的有关概念。
【难点】对简单多面体中棱柱、棱台概念的理解。
学习过程一、预习案:“我学习,我主动,我参与,我收获!”◆学法指导:认真阅读教材p3-p4,初步了解简单几何体的有关概念及结构特征,最后把自己在学习中遇到的疑惑写下来,有待上课时和老师、同学共同探究解决。
◆教材助读:1、旋转体(1)旋转面:一条绕着它所在的平面内的一条旋转所形成的曲面。
(2)旋转体:的旋转面围成的几何体。
2、球(1)球面:所在的直线为旋转轴,将半圆旋转所围成的曲面。
(2)球:所围成的几何体叫作球体,简称球。
(3)球的有关概念①球心: .②球的半径:连接和的线段。
③球的直径:连接,并且的线段。
3、圆柱、圆锥、圆台(1)定义:分别以、、所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体分别叫作圆柱、圆锥、圆台。
(2)高、底面、侧面及侧面的母线。
4、多面体:由若干个围成的几何体叫作多面体。
5、棱柱:两个面互相平行(无公共点的两个平面是平行的),其余各面都是,并且每相邻两个四边形的公共边都,这些面围成的几何体叫作棱柱。
(1)棱柱的有关概念:棱柱定义里的的平面叫作棱柱的底面,其余各面叫作棱柱的侧面,棱柱的侧面是。
叫作棱柱的棱,与的公共顶点叫作棱柱的顶点。
(2)棱柱的分类按侧棱是否垂直于底面(侧棱垂直于底面)斜棱柱(侧棱不垂直于底面)按底面多边形形状(底面是三角形)(底面是四边形)(底面是五边形)……(3)正棱柱:底面是的叫作正棱柱。
6、棱锥:有一个面是,其余各面是的三角形,这些面围成的几何体叫作棱锥。
7、棱台:用一个棱锥底面的平面去截棱锥,,叫作棱台。
2019_2020学年高中数学第1章立体几何初步1_4_2_2空间图形的公理(第2课时)学案北师大版必修2

4.2 空间图形的公理(第2课时)1.空间图形的公理公理4 平行于同一条直线的两条直线平行.定理 空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补. 2.异面直线 (1)异面直线的定义不共面(不同在任何一个平面内)的两条直线叫作异面直线. (2)空间两条直线的位置关系有且只有三种共面直线⎩⎪⎨⎪⎧相交直线:在同一平面内,有且只有一个公共点.平行直线:在同一平面内,没有公共点.异面直线:不共面的两条直线,没有公共点.(3)异面直线所成的角过空间任意一点P 分别引两条异面直线a ,b 的平行线l 1,l 2(a ∥l 1,b ∥l 2),这两条相交直线所成的锐角(或直角)就是异面直线a ,b 所成的角.如果两条异面直线所成的角是直角,我们称这两条直线互相垂直,记作:a ⊥b .判断正误(正确的打“√”,错误的打“×”) (1)分别在两个平面内的直线一定为异面直线.( ) (2)两条直线垂直,则一定相交.( )(3)两条直线和第三条直线成等角,则这两条直线平行.( )(4)两条直线若不是异面直线,则必相交或平行.( )(5)两条直线无公共点,则这两条直线平行.( )(6)过平面外一点与平面内一点的连线,与平面内的任意一条直线均构成异面直线.( )(7)和两条异面直线都相交的两直线必是异面直线.( )[答案] (1)×(2)×(3)×(4)√(5)×(6)×(7)×题型一空间两直线位置关系的判定【典例1】已知a、b、c是空间三条直线,下面给出四个命题:①如果a⊥b,b⊥c,那么a∥c;②如果a、b是异面直线,b、c是异面直线,那么a、c也是异面直线;③如果a、b是相交直线,b、c是相交直线,那么a、c也是相交直线;④如果a、b共面,b、c共面,那么a、c也共面.在上述命题中,正确命题的个数是( )A.0 B.1 C.2 D.3[思路导引] 两条直线的位置关系拓展到空间中有且仅有三种:相交、平行、异面.根据具体情况,具体分析.[解析] ①a与c可能相交,也可能异面;②a与c可能相交,也可能平行;③a与c可能异面,也可能平行;④a与c可能不在一个平面内.故①②③④均不正确.[答案] A(1)判定两条直线平行与相交可用平面几何的方法去判断,而两条直线平行也可以用公理4判断.(2)判定两条直线是异面直线有定义法和排除法,由于使用定义判断不方便,故常用排除法,即说明这两条直线不平行、不相交,则它们异面.[针对训练1] 如图,正方体ABCD-A1B1C1D1中,判断下列直线的位置关系:①直线A 1B 与直线D 1C 的位置关系是________; ②直线A 1B 与直线B 1C 的位置关系是________; ③直线D 1D 与直线D 1C 的位置关系是________; ④直线AB 与直线B 1C 的位置关系是________.[解析] 根据题目条件知道直线A 1B 与直线D 1C 在平面A 1BCD 1中,且没有交点,则两直线“平行”,所以①应该填“平行”;点A 1、B 、B 1在一个平面A 1BB 1内,而C 不在平面A 1BB 1内,则直线A 1B 与直线B 1C “异面”.同理,直线AB 与直线B 1C “异面”.所以②④都应该填“异面”;直线D 1D 与直线D 1C 相交于D 1点,所以③应该填“相交”.[答案] ①平行 ②异面 ③相交 ④异面 题型二公理4及等角定理的应用【典例2】 如图,已知在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱CD ,AD 的中点.求证:(1)四边形MNA 1C 1是梯形; (2)∠DNM =∠D 1A 1C 1.[思路导引] (1)由中位线定理可证MN ∥AC ,MN =12AC .由正方体的性质得:AC ∥A 1C 1,AC =A 1C 1.从而应用公理4,可证MN ∥A 1C 1,且MN =12A 1C 1,于是命题可证.(2)利用等角定理可证.[证明] (1)如图,连接AC ,在△ACD 中,∵M ,N 分别是CD ,AD 的中点, ∴MN 是△ACD 的中位线, ∴MN ∥AC ,MN =12AC .由正方体的性质得:AC ∥A 1C 1,AC =A 1C 1.∴MN ∥A 1C 1,且MN =12A 1C 1,即MN ≠A 1C 1,∴四边形MNA 1C 1是梯形. (2)由(1)可知MN ∥A 1C 1.又∵ND ∥A 1D 1,∴∠DNM 与∠D 1A 1C 1相等或互补. 而∠DNM 与∠D 1A 1C 1均为锐角, ∴∠DNM =∠D 1A 1C 1.(1)空间两条直线平行的证明一是定义法:即证明两条直线在同一个平面内且两直线没有公共点;二是利用平面图形的有关平行的性质,如三角形中位线,梯形,平行四边形等关于平行的性质;三是利用公理4:找到一条直线,使所证的直线都与这条直线平行. (2)求证角相等一是用等角定理;二是用三角形全等或相似.[针对训练2] 长方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AA 1,CC 1的中点.(1)求证:D1E∥BF;(2)求证:∠B1BF=∠A1ED1.[证明] (1)取BB1的中点M,连接EM,C1M.在矩形ABB1A1中,易得EM綊A1B1,∵A1B1綊C1D1,∴EM綊C1D1,∴四边形EMC1D1为平行四边形,∴D1E∥C1M.在矩形BCC1B1中,易得MB綊C1F,∴BF∥C1M,∴D1E∥BF.(2)∵ED1∥BF,BB1∥EA1,又∠B1BF与∠A1ED1的对应边方向相同,∴∠B1BF=∠A1ED1.题型三异面直线所成的角【典例3】如图所示,在正方体ABCD-EFGH中,O为侧面ADHE的中心,求:(1)BE与CG所成的角;(2)FO与BD所成的角.[思路导引] (1)由于CG∥BF,即∠EBF(或其补角)为异面直线CG与BE所成的角.(2)由于BD∥FH,故∠HFO(或其补角)为异面直线FO与BD所成的角.[解] (1)如图,因为CG∥BF,所以∠EBF(或其补角)为异面直线BE与CG所成的角,又在△BEF中,∠EBF=45°,所以BE与CG所成的角为45°.(2)连接FH,因为HD∥EA,EA∥FB,所以HD∥FB,又HD=FB,所以四边形HFBD为平行四边形.所以HF∥BD,所以∠HFO(或其补角)为异面直线FO与BD所成的角.连接HA,AF,易得FH=HA=AF,所以△AFH为等边三角形,又知O为AH的中点.所以∠HFO=30°,即FO与BD所成的角为30°.求异面直线所成的角的步骤(1)找出(或作出)适合题设的角——用平移法,遇题设中有中点,常考虑中位线;若异面直线依附于某几何体,且对异面直线平移有困难时,可利用该几何体的特殊点,使异面直线转化为相交直线.(2)求——转化为求一个三角形的内角,通过解三角形,求出所找的角.(3)结论——设由(2)所求得的角的大小为θ.若0°<θ≤90°,则θ为所求;若90°<θ<180°,则180°-θ为所求.提醒:求异面直线所成的角,通常把异面直线平移到同一个三角形中去,通过解三角形求得,但要注意异面直线所成的角θ的范围是0°<θ≤90°.[针对训练3] 如图,P 是平面ABC 外一点,PA =4,BC =25,D 、E 分别为PC 和AB 的中点,且DE =3.求异面直线PA 和BC 所成角的大小.[解] 如图,取AC 中点F ,连接DF 、EF ,在△PAC 中,∵D 是PC 中点,F 是AC 中点,∴DF ∥PA ,同理可得EF ∥BC , ∴∠DFE 为异面直线PA 与BC 所成的角(或其补角). 在△DEF 中,DE =3,又DF =12PA =2,EF =12BC =5,∴DE 2=DF 2+EF 2.∴∠DFE =90°,即异面直线PA 与BC 所成的角为90°.1.过一点与已知直线垂直的直线有( )A.一条B.两条C.无数条D.无法确定[解析] 过一点与已知直线垂直的直线有无数条,包括相交垂直和异面垂直.[答案] C2.异面直线是指( )A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线[解析] 不相交的直线有可能是平行也有可能是异面,故A不正确;如图①中,aα,bβ,但是,a∩b=A,故B不正确;如图②,aα,bα,但是a∩b=A,故C不正确;D是异面直线的定义.[答案] D3.若a、b是异面直线,b、c是异面直线,则( )A.a∥c B.a、c是异面直线C.a、c相交D.a、c平行或相交或异面[解析] a、b、c的位置关系有下面三种情况,如图所示,由图形分析可得答案为D.[答案] D4.过直线l外两点可以作l的平行线条数为( )A.1 B.2C.3 D.0或1[解析] 以如图所示的正方体ABCD -A 1B 1C 1D 1为例.令A 1B 1所在直线为直线l ,过l 外的两点A ,B 可以作一条直线与l 平行,过l 外的两点B ,C 不能作直线与l 平行,故选D.[答案] D探究空间中四边形的形状问题根据三角形的中位线、公理4证明两条直线平行是常用的方法.公理4表明了平行线的传递性,它可以作为判断两条直线平行的依据,同时也给出空间两直线平行的一种证明方法.【示例】 如图,空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点.求证:四边形EFGH 是平行四边形.[思路分析] 欲证EFGH 为平行四边形,只需证EH ∥FG ,只需证BD ∥FG 且BD ∥EH . [证明] 连接BD , 因为EH 是△ABD 的中位线, 所以EH ∥BD ,且EH =12BD .同理,FG ∥BD ,且FG =12BD .因此EH ∥FG .又EH =FG ,所以四边形EFGH 为平行四边形.[引申探究] (1)本例中若加上条件“AC ⊥BD ”,则四边形EFGH 是什么形状? (2)本例中,若加上条件“AC =BD ”,则四边形EFGH 是什么形状?(3)本例中,若加上条件“AC ⊥BD ,且AC =BD ”,则四边形EFGH 是什么形状? [解] (1)由例题可知EH ∥BD ,同理EF ∥AC , 又BD ⊥AC ,因此EH ⊥EF , 所以四边形EFGH 为矩形.(2)由例题知EH ∥BD ,且EH =12BD ,同理EF ∥AC ,且EF =12AC .又AC =BD ,所以EH =EF .又EFGH 为平行四边形,所以EFGH 为菱形. (3)由(1)(2)可知,EFGH 为正方形.[针对训练] 如图所示,设E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且AE AB =AH AD =λ,CF CB =CG CD=μ(λ,μ∈(0,1)),试判断四边形EFGH 的形状.[解] 连接BD ,在△ABD 中,AE AB =AHAD=λ, ∴EH ∥BD ,且EH =λBD . 在△CBD 中,CF CB =CGCD=μ,∴FG ∥BD ,且FG =μBD ,∴EH ∥FG ,∴顶点E 、F ,G 、H 在由EH 和FG 确定的平面内. (1)当λ=μ时.EH =FG ,故四边形EFGH 为平行四边形; (2)当λ≠μ时.EH ≠FG ,故四边形EFGH 是梯形.课后作业(六) (时间45分钟)学业水平合格练(时间20分钟)1.分别和两条异面直线平行的两条直线的位置关系是( ) A .一定平行 B .一定相交 C .一定异面D .相交或异面[解析] 可能相交也可能异面,选D.[答案] D2.下列选项中,点P,Q,R,S分别在正方体的四条棱上,并且是所在棱的中点,则直线PQ与RS是异面直线的一个图是( )[解析] 易知选项A,B中PQ∥RS,选项D中RS与PQ相交,只有选项C中RS与PQ是异面直线.[答案] C3.异面直线a,b,有aα,bβ,且α∩β=c,则直线c与a,b的关系是( ) A.c与a,b都相交B.c与a,b都不相交C.c至多与a,b中的一条相交D.c至少与a,b中的一条相交[解析] 若c与a,b都不相交,∵c与a在α内,∴a∥c.又c与b都在β内,∴b∥c.由公理4,可知a∥b,与已知条件矛盾.如图,只有以下三种情况.[答案] D4.如图,三棱柱ABC-A1B1C1中,底面三角形A1B1C1是正三角形,E是BC的中点,则下列叙述正确的是( )A .CC 1与B 1E 是异面直线 B .C 1C 与AE 共面 C .AE 与B 1C 1是异面直线D .AE 与B 1C 1所成的角为60°[解析] 由于CC 1与B 1E 都在平面C 1B 1BC 内,故C 1C 与B 1E 是共面的,所以A 错误;由于C 1C 在平面C 1B 1BC 内,而AE 与平面C 1B 1BC 相交于E 点,点E 不在C 1C 上,故C 1C 与AE 是异面直线,B 错误;同理AE 与B 1C 1是异面直线,C 正确;而AE 与B 1C 1所成的角就是AE 与BC 所成的角,E 为BC 中点,△ABC 为正三角形,所以AE ⊥BC ,D 错误.[答案] C5.已知空间四边形ABCD 中,M ,N 分别为AB ,CD 的中点,则下列判断正确的是( ) A .MN ≥12(AC +BD )B .MN ≤12(AC +BD )C .MN =12(AC +BD )D .MN <12(AC +BD )[解析] 取BC 的中点E ,连接ME ,EN ,又M 、N 分别为AB 、CD 的中点, ∴ME 綊12AC ,EN 綊12BD ,又在△EMN 中,ME +EN >MN ,∴12(AC +BD )>MN . [答案] D6.在四棱锥P -ABCD 中,各棱所在的直线互相异面的有________对.[解析] 以底边所在直线为准进行考查,因为四边形ABCD 是平面图形,4条边在同一平面内,不可能组成异面直线,而每一边所在直线能与2条侧棱组成2对异面直线,所以共有4×2=8(对)异面直线.[答案] 87.如图,正方体ABCD-A1B1C1D1中,AC与BC1所成角的大小是________.[解析] 连接AD1,则AD1∥BC1.∴∠CAD1(或其补角)就是AC与BC1所成的角,连接CD1,在正方体ABCD—A1B1C1D1中,AC =AD1=CD1,∴∠CAD1=60°,即AC与BC1所成的角为60°.[答案] 60°8.如图,在三棱锥A-BCD中,E,F,G分别是AB,BC,AD的中点,∠GEF=120°,则BD和AC所成角的度数为________.[解析] 依题意知,EG∥BD,EF∥AC,所以∠GEF所成的角或其补角即为异面直线AC 与BD所成的角,又∠GEF=120°,所以异面直线BD与AC所成的角为60°.[答案] 60°9.如图所示,空间四边形ABCD 中,AB =CD ,AB ⊥CD ,E 、F 分别为BC 、AD 的中点,求EF 和AB 所成的角.[解] 取AC 的中点G ,连接EG ,FG , 则FG ∥CD ,EG ∥AB ,所以∠FEG 即为EF 与AB 所成的角(或其补角), 且FG =12CD ,EG =12AB ,所以FG =EG .又由AB ⊥CD 得FG ⊥EG , 所以∠FEG =45°.故EF 和AB 所成的角为45°.10.在平行六面体ABCD -A 1B 1C 1D 1中,M 、N 、P 分别是CC 1、B 1C 1、C 1D 1的中点.求证:∠NMP =∠BA 1D.[证明] 如图,连接CB 1、CD 1,∵CD 綊A 1B 1∴四边形A1B1CD是平行四边形∴A1D∥B1C.∵M、N分别是CC1、B1C1的中点∴MN∥B1C,∴MN∥A1D.∵BC綊A1D1,∴四边形A1BCD1是平行四边形∴A1B∥CD1.∵M、P分别是CC1、C1D1的中点,∴MP∥CD1∴MP∥A1B∴∠NMP和∠BA1D的两边分别平行且方向都相反∴∠NMP=∠BA1D.应试能力等级练(时间25分钟)11.若直线a、b分别与直线l相交且所成的角相等,则a、b的位置关系是( ) A.异面B.平行C.相交D.三种关系都有可能[解析] 以正方体ABCD-A1B1C1D1为例.A1B1、AB所在直线与BB1所在直线相交且所成的角相等,A1B1∥AB;A1B1、BC所在直线与BB1所在直线相交且所成的角相等,A1B1与BC是异面直线;AB、BC所在直线与AC所在直线相交且所成的角相等,AB与BC相交,故选D.[答案] D12.如图所示,空间四边形ABCD的对角线AC=8,BD=6,M、N分别为AB、CD的中点,并且异面直线AC与BD所成的角为90°,则MN等于( )A .5B .6C .8D .10[解析] 如图,取AD 的中点P ,连接PM 、PN ,则BD ∥PM ,AC ∥PN ,∴∠MPN 即异面直线AC 与BD 所成的角,∴∠MPN =90°,PN =12AC =4,PM =12BD =3,∴MN =5.[答案] A13.如图正方体ABCD -A 1B 1C 1D 1中,与AD 1异面且与AD 1所成的角为90°的面对角线(面对角线是指正方体各个面上的对角线)共有________条.[解析] 与AD 1异面的面对角线分别为:A 1C 1、B 1C 、BD 、BA 1、C 1D ,其中只有B 1C 和AD 1所成的角为90°.[答案] 114.已知空间四边形ABCD 中,AB ≠AC ,BD =BC ,AE 是△ABC 的边BC 上的高,DF 是△BCD 的边BC 上的中线,则直线AE 与DF 的位置关系是________.[解析] 由已知,得E 、F 不重合. 设△BCD 所在平面为α则DF α,A ∉α,E ∈α,E ∉DF ∴AE 与DF 异面. [答案] 异面15.梯形ABCD 中,AB ∥CD ,E 、F 分别为BC 和AD 的中点,将平面DCEF 沿EF 翻折起来,使CD 到C ′D ′的位置,G 、H 分别为AD ′和BC ′的中点,求证:四边形EFGH 为平行四边形.[证明] ∵梯形ABCD 中,AB ∥CDE 、F 分别为BC 、AD 的中点∴EF ∥AB 且EF =12(AB +CD )又C ′D ′∥EF ,EF ∥AB ,∴C ′D ′∥AB . ∵G 、H 分别为AD ′、BC ′的中点∴GH ∥AB 且GH =12(AB +C ′D ′)=12(AB +CD )∴GH 綊EF ,∴四边形EFGH 为平行四边形.。
数学必修2立体几何第一章全部教案

第一章:空间几何体1.1.1柱、锥、台、球的结构特征(一)一、教学目标1 •知识与技能(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2. 过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3. 情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪四、教学过程:一、创设情景,揭示课题1. 讨论:经典的建筑给人以美的享受,其中奥秘为何?世间万物,为何千姿百态?2. 提问:小学与初中在平面上研究过哪些几何图形?在空间范围上研究过哪些?3. 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算二、讲授新课:1. 教学棱柱、棱锥的结构特征:①提问:举例生活中有哪些实例给我们以两个面平行的形象?②讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有D哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征?③定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱→列举生活中的棱柱实例(三棱镜、方砖、六角螺帽)结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线•④分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等表示:棱柱ABCDE-A 'B'C'D''⑤讨论:埃及金字塔具有什么几何特征?⑥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.结合图形认识:底面、侧面、侧棱、顶点、高∙→讨论:棱锥如何分类及表示?⑦讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方•2. 教学圆柱、圆锥的结构特征:①讨论:圆柱、圆锥如何形成?②定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥•→列举生活中的棱柱实例→结合图形认识:底面、轴、侧面、母线、高.→表示方法③讨论:棱柱与圆柱、棱柱与棱锥的共同特征?→ 柱体、锥体.④观察书P2若干图形,找出相应几何体;举例:生活中的柱体、锥体.3. 质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高中数学必修二第一章《立体几何初步》学案一、课前自学[学习目标]1.了解螺旋体的概念;2.理解几何体轴截面的的概念,并解决一些简单的问题。
[预习指导]1、螺旋体(1)一条绕着它所在的平面内的一条定直线旋转形成的曲面叫做旋转面;的旋转面围成的几何体叫做旋转体。
(平面曲线、封闭)(2)特殊的旋转体:圆柱、圆锥、圆台、球。
2、球(1)以半圆的所在的直线为旋转轴,将半圆旋转所形成的曲面叫做球面。
所围成的几何体叫做球体,简称球。
半圆的叫做球心,连接球心与球面上任意一点的线段叫做半径,连接球面上两点并且过的线段叫做球的。
(直径、球面、圆心、球心、直径)(2)表示:球心为O时记为球O 。
3、圆柱、圆锥、圆台(1)概念:分别以矩形的、直角三角形的一条、直角梯形垂直于底边的所在直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体分别叫做圆柱、圆锥、圆台。
圆台也可以看作是用于圆锥的平面截这个圆锥而得到的,垂直于的边旋转而成的圆面叫做它们的底面;旋转轴的边旋转而成的曲面叫做它们的侧面,无论转到什么位置这条边都叫做侧面的(一边、直角边、腰、底面、旋转轴、不垂直于母线)(2)表示:圆柱OO’,圆锥SO ,圆台OO’(如上图)二、课堂练习[精讲点拨]1、如何理解简单旋转体的有关概念?(1)对于定义应该注意以下几点:①旋转轴是一条直线;②旋转面是曲面;③旋转体为实体。
(2)几种简单旋转体的比较:想一想:以上旋转体还可以由怎样的平面图形旋转而成?提示:球,圆柱、圆锥、圆台还可以分别由圆,矩形、等腰三角形、等腰梯形绕其..对称轴...旋转半周而成。
[例题解析]例1、 直角梯形绕与底边不垂直的腰旋转所得到的旋转体是() A 、 圆台B 、圆锥C 、圆柱D 、以上都不是 [点拨]根据经验有以下结论:①垂直于旋转轴且与旋转轴有交点的线段旋转所得的图形是圆面;②垂直于旋转轴但与旋转轴没有交点的线段旋转所得到的图形是圆环面;③不垂直于旋转轴且与旋转轴有交点的线段旋转所得到的图形是圆锥侧面;④不垂直于旋转轴且与旋转轴没有交点的线段旋转所得到的图形是圆台侧面;⑤与旋转轴平行的线段旋转所形成的图形是圆柱侧面。
[解析]D解析:如图所示,直角梯形ABCD 绕与底边不垂直的 腰CD 旋转所得的几何体。
很明显,该旋转体既不是圆柱,也不是圆台,也不是球,上部是一个圆锥,下部是 一个圆台挖去了一个圆锥。
例2、 如图,下列几何体是台体的是() ① ②③④A 、①②B 、①③C 、④D 、①④ [思路点拨]由题目可获取以下主要信息:(1)①中各侧面棱延长后不能交于同一点;(2)②② 中截面不平行于底面;(3) ④中截面平行于底面,侧棱延长线交于一点。
[解析]选C ∵①中各侧面棱延长线不相交同一点,不符合台体的定义和特征,∴①不正确。
∵②③中的截面不平行于底面,不符合台体的定义和特征,∴②③不正确。
∵④中截面平行于底面,且侧棱延长线交于一点,符合台体的定义和特征。
∴④正确。
例3、 如图,请描述(1)、(2)中L 围绕∫旋转一周形成的空间几何体。
ABC D A BC D D ’C ’ B ’ A ’ ∫[点拨]①旋转轴固定;②旋转图形L 形状和位置已知; ③ 空间想象。
[解析](1) 由同底的两个圆锥相扣而组成的几何体。
(2) 圆环,形如呼拉圈。
[方法总结]多以运动的思想想象空间几何体,有利于培养空间想象能力。
一、[课堂检测]1、一条直线绕着一条直线(两条直线不重合)旋转一周,所得几何图形可以称为( ) A 、旋转体B 、圆柱C 、圆锥D 、旋转面2、以下几何体中符合球的结构特征的是 ( ) A 、足球B 、篮球C 、乒乓球D 、铅球3、下列说法不正确的是( ) A 、圆柱的侧面展开图是一个矩形。
B 、圆锥中过轴的截面是一个等腰三角形。
C 、直角三角形绕他的一条边所在直线旋转一周形成的曲面围成的几何体是圆椎。
D 、圆台平行于底面的截面是圆面。
4、圆台的轴截面为 梯形。
5、下列命题中,正确的个数是( ) (1)、球的直径是球面上任意两点间的连线段; (2)、用一个平面截一个球,得到一个圆; (3)、不过圆的截面截得的圆叫做小圆; (4)、用一个平面截一个球面,得到一个圆。
6、如图所示的几何体有 个面,面面相交成 条线。
答案:1、D2、D (解析:A 、B 、C 符合球面的定义) 3、C 4、等腰 5、2 6、3 ,2 二、课后强化1、矩形ABCD (不是正方形)绕其一边所在的直线旋转得圆柱,则得不同形状的圆柱的个数为…………………………………………………………………………………… ( ) A.1 B.2 C.3 D.42、如图一条线段绕着与它相交(不垂直)的直线旋转一周,所得几何图形是………………………………( ) A 、旋转体B 、两个圆锥侧面C 、圆柱D 、圆面3、下列旋转体仅有一个底面的是……………………………………………………… ( )∫A BA、圆台B 、圆锥C、圆柱D 、球4、下列几何体是圆柱的是…………………………………………………………………( )A 、 B、 C 、 D 、5等腰三角形ABC 绕底边上的中线AD 旋转所得到的几何体是………………………( ) A 、圆台B 、圆锥C 、圆柱D 、球6、下列说法中正确的是……………………………………………………………………( ) A 、圆台是直角梯形绕其一边旋转而成的 B 、圆锥是直角三角形绕其一边旋转而成的 C 、圆柱不是旋转体D 、圆台可以看作是平行于底面的平面截一个圆锥而得到的底面与截面之间的部分 7、有下列说法:①、连接以圆心和球心的线段垂直于小圆; ②、球的直径是球面上任意两点间的连线段; ③、用一个平面去截一个圆锥,得到的是一个圆; ④、不过球心的截面截得的圆叫做小圆。
则正确说法的序号是 。
8、边长为4的等边三角形ABC 绕∠BAC 的平分线旋转所得到圆锥的高h= 底面半径r= 。
9、一个圆台的母线长为12cm ,两底面面积分别为4πcm 2和25πcm 2 。
求:(1)圆台的高;(2)截得此圆台的圆锥的母线长。
答案:1、B 2、 B 3、B 4、B5、B 6、D 7、①④ 8、 2 9分析 :过圆台的轴作截面,通过解截面等腰梯形来解决。
解:(1)如图,过圆台的轴作截面为等腰梯形ABCD ,由 已知可得上底半径O 1A=12㎝,下底面半径OB=5㎝,且 腰长AB=12㎝,∴=,即圆台的高为(2) 设截得此圆台的圆锥的母线长为l ,则由△SAO 1∽△SBO,(3) 可得 l-12l =25,∴l=20㎝,即截得此圆台的圆锥的母线为20cm 。
[学习反思]B OCM S ’§1.简单的几何体 1.2 简单的多面体一、课前学习 [学习目标]1、 了解和认识多面体、棱柱、棱锥、棱台的结构特征,加深对几种几何体的概念及性质的理解。
2、 掌握棱锥、棱台中平行于底面的截面的性质。
3、 了解棱柱、棱锥、棱台的分类。
[预习指导]1.简单多面体的定义把若干个 围成的几何体叫做多面体,其中 、 、 是简单多面体。
2.棱柱 (1)定义两个面 ,其中各面都是 ,并且相邻两个四边形的公共边都 ,这些围成的几何体叫做棱柱。
(2)相关概念两个 的面叫作棱柱的底面, 叫做棱柱的侧面,棱柱的侧面是 ,两个面的 叫做棱柱的棱,其中两个 的公共边叫作棱柱的侧棱,底面多边形与侧面的公共顶点叫做棱柱的顶点。
(3)图示(4)特殊棱柱直棱柱:侧棱 底面的棱柱。
正棱柱:底面是 的直棱柱。
(5)分类(底面为三角形) (底面为四角形) (底面为五角形) ……(底面为n 角形)棱柱底面 侧面 侧棱 底面 顶点答案:1.平面多边形、棱柱、棱锥、棱台2.(1)平行、平行四边形、平行(2)平行、其余各面、平行四边形、公共边侧面(4)垂直于、正多边形(5)三棱柱、四棱柱、五棱柱、n棱柱3.多边形、有一个公共点、正多边形、全等、平行于、正棱锥、全等的等腰梯形二、课堂学习[精讲点拨]2. 理解之棱柱、郑棱柱、正棱台的概念 [例题解析]例1:判断下列语句是否正确。
(1) 有一个面是多边形,其余各面都是三角形的几何体是棱锥。
(2) 有两个面平行,其余各面为梯形,则此几何体为棱台。
[思路点拨]由题目可获取以下主要信息:(1) 一几何体有一个面是多边形,其余面都是三角形。
(2) 一几何体有两个面平行,其余各面为梯形。
[解析](1)不正确,有一个面试多边形,其余各面必须是有一个公共点的三角形,否则此几何体不是棱锥,如图①。
(2)不正确,此语句不能反映出侧棱延长线交于一点,如图②,满足条件但不是棱台。
①②例2.小明设计了某个产品的包装盒,但是少设计了其中一部分 (如图所示),现欲把它补上,使其成为两边均有盖的正方体盒 子。
请你设计四种弥补的方法,并画出设计图。
[思路点拨]根据正方体有六个面只需确定两个面的位置,可先确定一个面为“底面”,进行翻折确定其他面的位置。
设计图如下:① ② ③ ④例3.在以O 为顶点的三棱锥中,过O 的三条棱两两所成的角都是30°,在一条棱上取A 、B 两点,OA=4cm,OB=3cm ,以A 、B 为端点用一条绳子紧绕三棱锥的侧面一周,求此绳在A 、B 之间的最短绳长。
[点拨]解决空间几何体表面上两点的最短路程的问题,一般都是将空间几何体表面展开,将问题转换为平面能里昂点的线段长进行求解,这体现了数学中的转化思想。
[解析]如图①所示的三棱锥,作出它的侧面展开图,如图②,A ,B 两点之间的最短绳长就是AB 长度,在△AOB 中 ,∠AOB=3×30°=90°,OA=4cm,OB=3cm,所以=5(cm)。
即此绳在A ,B 之间的最短绳长为5cm 。
① ②[变式]已知一正方体铁盒ABCD-A 1B 1C 1D 1,棱长为2,如图,O 为B 1C 1CB 的中心,一蚂蚁从A 1出发,求到达O 1的最短距离。
A 1ABB 1与面B 1BCC 1展开成一个平面,再连接A 1O ,则A 1=【课堂检测】1.棱台不具有的性质是 ( ) A 、两底面相似 B 、侧面都是梯形 C 、侧棱都平行D 、侧棱延长线后都交与一点2.下列说法中正确的是 ( ) A 、棱柱的底面一定是平行四边形BOAB 、棱锥的底面一定是三角形C 、棱锥被平面分成的两部分不可能都是棱锥D 、棱锥被平面分成的两部分可以是棱锥3.用一个过正棱柱底面一边的平面去截正四棱柱,截面形状是( ) A 、正方形B 、矩形C 、菱形D 、不确定4下列几何体中是棱柱的有 个。
①② ③ ④ ⑤ ⑥ ⑦5.有一枚正方体的骰子,每一个面上都有一个英文字母,如下图所示的是从3个不同角度看同一枚骰子的情况,则与H相对的字母是。