结构动力学课件—applications
合集下载
《结构动力学》PPT课件

q(
x)Y
(
x)dx
2
0l q(x)Y (x)dx
0l m[Y (x)]2 dxmiYi2
例12 试求等截面简支梁的第一频率。
4
EI m
1)假设位移形状函数为抛物线
x
l
Y (x) x(l x)
满足边界条件且与第 一振型相近
y
2
2EIl ml5 / 60
2
120EI ml4
高频率误差较大。故 Rayleigh法主要用于求ω1的近似解。 3、相应于第一频率所设的振型曲线,应当是结构比较容易出现的变形 形式。曲率小,拐点少。
4、通常可取结构在某个静荷载q(x)(如自重)作用下的弹性曲线作
为Y(x)的近似表达式。此时应变能可用相应荷载q(x)所作的功来代
替,即
U
1 2
0l
1
h0
x
3
12 l
单位长度的质量: m h0 x
l
x l
设位移形状函数: Y (x)a(1 x )2 l
满足边界条件:Y (l) 0,Y (l) 0
2
5Eh02
2l 4
,
1.581h0 l2
E
与精确解
1.534h0 l2
E
相比误差为3%
2 0l EI[Y (x)]2 dx
1
§10-6 近似法求自振频率
2
1、能量法求第一频率——Rayleigh法
根据能量守恒定律,当不考虑阻尼自由振动时,振动体系在任何时刻的动能T 和应 变能U 之和应等于常数。 ※根据简谐振动的特点可知:在体系通过静力平衡位置的瞬间,速度最大(动能具有 最大值),动位移为零(应变能为零);当体系达到最大振幅的瞬间(变形能最大), 速度为零(动能为零)。对这两个特定时刻,根据能量守恒定律得:
《结构动力学》PPT课件

0
P
sin t
计算步骤: 1.求振型、频率;
2.求广义质量、广义荷载;
3.求组合系数;
4.按下式求组合系数;
N
y(t)
Y
i
Di
(t )
i 1
15
例一.求图示体系的稳态振幅.
Psin t
m1 m2 m 3.415 EI / ml3
m1
m2
EI
解:
1 5.692
6
为了使假设的振型尽可能的接近真实振型,尽可能减小假设振型对体系所 附加的约束, Ritz 提出了改进方法:
1、假设多个近似振型 2、将它们进行线性组合
1,2 n 都满足前述两个条件。 Y(x) a1 1 a2 2 an n
(a1、a2、·········、an是待定常数)
j
Y T j
2 j
K
* j
/
M
* j
k Y j
2 j
Y
T j
mY j
折算体系
13
一.振型分解法(不计阻尼)
P1(t) P2 (t)
PN (t)
运动方程
m1 m2
mN
my(t) ky(t) P(t)
设
N
y(t) Yi Di (t)
EI
D2 (t)
2 2
D2
(t )
P2* (t)
/
M
* 2
D2 (t)
0.1054
10 2
Pl 3 EI
s in t
例一.求图示体系的稳态振幅.
P
sin t
计算步骤: 1.求振型、频率;
2.求广义质量、广义荷载;
3.求组合系数;
4.按下式求组合系数;
N
y(t)
Y
i
Di
(t )
i 1
15
例一.求图示体系的稳态振幅.
Psin t
m1 m2 m 3.415 EI / ml3
m1
m2
EI
解:
1 5.692
6
为了使假设的振型尽可能的接近真实振型,尽可能减小假设振型对体系所 附加的约束, Ritz 提出了改进方法:
1、假设多个近似振型 2、将它们进行线性组合
1,2 n 都满足前述两个条件。 Y(x) a1 1 a2 2 an n
(a1、a2、·········、an是待定常数)
j
Y T j
2 j
K
* j
/
M
* j
k Y j
2 j
Y
T j
mY j
折算体系
13
一.振型分解法(不计阻尼)
P1(t) P2 (t)
PN (t)
运动方程
m1 m2
mN
my(t) ky(t) P(t)
设
N
y(t) Yi Di (t)
EI
D2 (t)
2 2
D2
(t )
P2* (t)
/
M
* 2
D2 (t)
0.1054
10 2
Pl 3 EI
s in t
例一.求图示体系的稳态振幅.
结构动力学课件PPT

my cy ky FP (t)
§2-5 广义单自由度体系:刚体集合
➢刚体的集合(弹性变形局限于局部弹性 元件中)
➢分布弹性(弹性变形在整个结构或某些 元件上连续形成)
➢只要可假定只有单一形式的位移,使得 结构按照单自由度体系运动,就可以按 照单自由度体系进行分析。
E2-1
x
p( x,t
)
=p
)
3
B'
M I1
E'
D'
F' G'
A
D
E
B
F
G
C
fD1
fI1
fS1
f D2
f I2
f S2
a
2a
a aa a
Z(t )
f S1
k1(EE')
3 4
k1Z (t )
f D1
d c1( dt
DD')
1 4
c1Z (t )
fS2
k1(GG')
1 3
k2
Z
(t
)
fD2 c2Z (t)
f
I1
m1
1 2
Z(t)
3. 有限单元法
—— 将有限元法的思想用于解决结构的动力计算问题。
要点:
▪ 先把结构划分成适当(任意)数量的单元;
▪ 对每个单元施行广义坐标法,通常取单元的节点位移作 为广义坐标;
▪ 对每个广义坐标取相应的位移函数 (插值函数);
▪ 由此提供了一种有效的、标准 化的、用一系列离散坐标 表示无限自由度的结构体系。
建立体系运动方程的方法
▪ 直接平衡法,又称动静法,将动力学问题转化为任一时刻 的静力学问题:根据达朗贝尔原理,把惯性力作为附加的 虚拟力,并考虑阻尼力、弹性力和作用在结构上的外荷载, 使体系处于动力平衡条件,按照静力学中建立平衡方程的 思路,直接写出运动方程。
结构动力学英文课件_Part2

CE4258: Structural Stability & Dynamics
cf
cu ku p(t ) Mu
14
Generalized SDOF Systems
• Most real systems which can be considered as SDOF require more complicated idealizations • What is a generalized SDOF system?
Equation of Motion (by direct equilibrium)
ut ut pt
fS
k
m
fI
pt
Free-Body Diagram
c
fD
• Idealized SDOF System
– Each property is assumed concentrated in a single physical element
– Can be easily expressed since these arise from discrete springs and dampers
• Two classes of generalized SDOF structures
– Assemblages of rigid bodies in which elastic deformations are limited to localized springs – Systems having distributed mass or elasticity
Overview and Basic Concepts
Motivation What is Linear Structural Dynamics? Fundamental Objective & Scope Dynamic vs Static Analysis Types of Dynamic Loadings Degrees of Freedom Methods of Discretization Formulation of Equations of Motion
第12章结构动力学 ppt课件

§14-1 概 述
一、结构动力计算的特点 动力荷载作用下,结构将发生振动,各种量值均随时间而变化。
1、内容: (1)研究动力荷载作用下,结构的内力、位移等计算原理和计算方法。 求出它们的最大值并作为结构设计的依据。
(2)研究单自由度及多自由度的自由振动、强迫振动。 2、静荷载和动荷载 (1)静荷载:荷载的大小和方向不随时间变化(如梁板自重)。 (2)动荷载:荷载的大小和方向随时间变化,需要考虑惯性力。 3、特点 (1)必须考虑惯性力。 (2)内力与荷载不能构成静平衡。必须考据惯性力。依达朗伯原理, 加惯性力后,将动力问题转化为静力问题。
动力自由度的确定方法:加附加链杆约束质点位移,最少链杆数即为自 由度
图刚架上有四个集中质点,但只需要加三根链杆 便可限制全部质点的位置。如图e。
自由度=3 或
图示梁,其分布质量集度为m,可看作有无穷多 个mdx的集中质量,是无限自由度结构。
自由度的数目与结构是否静定或超静定无关
§14-2 结构振动的自由度
2、运动方程的解:
方程
y2y0
为一常系数线性齐次微分方程,其通解为
y (t) A 1 co t s A 2sitn
A1和A2为任意常数,可有初始条件来确定。
振动的初始条件为 t 0 时 y y , 0 , y y 0
式中y0—初位移, y0—初速度。则有Fra bibliotekA1y0,A2
y0
可得
yy0cots y0si nt
第十四章 结构动力学
§14-1 概 述 §14-2 结构振动的自由度 §14-3 单自由度结构的自由振动 §14-4 单自由度结构在简谐荷载作用下的强迫振动 §14-5 单自由度结构在任意荷载作用下的强迫振动 §14-6 多自由度结构的自由振动 §14-7 多自由度结构在简谐荷载作用下的强迫振动 §14-8 振型分解法 §14-9 无限自由度结构的振动 §14-10 计算频率的近似法
《结构动力计算》PPT课件

Psint
1 k
1 EI
1 2
l 2
l 4
2 3
l 4
2
l3 48EI
2
k m
1
m
1
m
48EIg Ql3
EI
0.5l
0.5l
1
48
2.11011 7.48 105 9.8 35 103 43
57.43 / s
2.
荷载频率:
2n
60
2
500 60
52.36 / s
EI
0.25l MM1
3.
动力系数:
其中,
c 2m
为阻尼比, c为阻尼系数。
22
阻尼比ξ是结构阻尼的重要参数 。
§10.4 阻尼对振动的影响
1. 阻尼对体系自振频率的影响
考虑阻尼时体系的自振频率
r 1 2
<1为小阻尼,体系具有振动的性质;自振频率减小
>1(大阻尼)和=1(临界阻尼)时,体系不具有
振动的性。
通常ξ很小,一般结构可取 r≈ 。
的自振周期。EI1=3.528107Nm2.
I=∞
l=6m
• 结构的刚度系数即使柱顶发生单
位位移时,在柱顶需施加的力。 EI1
EI1
考虑梁AB的平衡可得:
k
24EI1
3
l
1
1
结构的自振频率和周期:
k m
2
24EI1g Wl 3
EI1
T
2
2
Wl 3 24EI1g
T 2
24
20 103 63 3.528 107 9.8
4. 最大动位移(振幅): yd max P 5.03mm
结构动力学(课用ppt)

10/28/2015 29
10/28/2015
30
10/28/2015
18
(4)一般任意荷载 荷载的幅值变化复杂、难以用解析函数解析表示的荷 载。 由环境振动引起的地脉动、地震引起的地震动, 以及脉动风引起的结构表面的风压时程等。
10/28/2015
19
1.5 结构动力分析中的自由度
一. 自由度的定义
结构动力学和静力学的一个本质区别:考虑惯性力的影响
结构产生动力反应的内因(本质因素):惯性力 惯性力的产生是由结构的质量引起的 动力自由度(数目):在动力计算中,一个体系的动力自由度是指为了确定 运动过程中任一时刻全部质体位置所需的独立的几何参数数目。
独立参数也称为体系的广义坐标,可以是位移、转角或其它广义量。
10/28/2015
20
二. 自由度的简化 实际结构都是无限自由度体系,这不仅导致分析困难,而且从工程 角度也没必要。常用简化方法有:
张亚辉 林家浩 编著, 结构动力学基础,大连理工大学出版社,2007. 刘晶波等编著,结构动力学,机械工业出版社,2005. 张子明等编著,结构动力学,河海大学出版社,2001.
10/28/2015
3
第一章 绪论
1.1 动力问题的基本特征 1.2 结构动力分析的目的
1.3 结构动力学研究的内容
1.4 动力荷载类型
注意!
振动体系的自由度数与计算假定有关,而与集中质量的数目和 超静定次数无关,如下图所示的体系。
10/28/2015
26
2、广义坐标法
广义坐标:能决定体系几何位置的彼此独立的量,称为该体系的广义坐标
变形曲线可用三角级数的和来表示:
nx nx u( x, t ) bn sin bn (t ) sin L L n 1 n 1
10/28/2015
30
10/28/2015
18
(4)一般任意荷载 荷载的幅值变化复杂、难以用解析函数解析表示的荷 载。 由环境振动引起的地脉动、地震引起的地震动, 以及脉动风引起的结构表面的风压时程等。
10/28/2015
19
1.5 结构动力分析中的自由度
一. 自由度的定义
结构动力学和静力学的一个本质区别:考虑惯性力的影响
结构产生动力反应的内因(本质因素):惯性力 惯性力的产生是由结构的质量引起的 动力自由度(数目):在动力计算中,一个体系的动力自由度是指为了确定 运动过程中任一时刻全部质体位置所需的独立的几何参数数目。
独立参数也称为体系的广义坐标,可以是位移、转角或其它广义量。
10/28/2015
20
二. 自由度的简化 实际结构都是无限自由度体系,这不仅导致分析困难,而且从工程 角度也没必要。常用简化方法有:
张亚辉 林家浩 编著, 结构动力学基础,大连理工大学出版社,2007. 刘晶波等编著,结构动力学,机械工业出版社,2005. 张子明等编著,结构动力学,河海大学出版社,2001.
10/28/2015
3
第一章 绪论
1.1 动力问题的基本特征 1.2 结构动力分析的目的
1.3 结构动力学研究的内容
1.4 动力荷载类型
注意!
振动体系的自由度数与计算假定有关,而与集中质量的数目和 超静定次数无关,如下图所示的体系。
10/28/2015
26
2、广义坐标法
广义坐标:能决定体系几何位置的彼此独立的量,称为该体系的广义坐标
变形曲线可用三角级数的和来表示:
nx nx u( x, t ) bn sin bn (t ) sin L L n 1 n 1
结构力学——结构动力学PPT课件

由静止状态考虑一个瞬时冲量的影响。dS FE( )d
FE(t)
dS=FE()d
mdy
dy( ) FE ( )d
m
d
t
dy( ) FE ( ) (d )2
2m
0
瞬时激振作用效果就在于使质点在τ时
t
刻产生一个初速度,而初位移为零。质
点作以此初始条件引起的自由振动。
dy(t) dy0 sin(t )
y 0
2
A0
A1
A2
arctan
y0
y 0
A0 ——振幅(amplitude of vibration)
——初始相位角。
总动力位移
第4页/共65页
4 / 67
第三节 单自由体系自由振动
1、无阻尼的自由振动 ( = 0 )
T
2
f1 T
称周期(振动一次所需的时间) 称工程频率(单位时间内振动次数)
23 / 67
第三节 单自由体系自由振动
3、确定体系阻尼比的方法
y
Ae
y
t
s
i
n
(dt
)
发现
1/
衰减性振动;
Ae t
2/ 非周期性振动; 3/ 质点两次通过平衡位
o
t
置的时间间隔相等
2
Td d 准周期
第24页/共65页
24 / 67
第三节 单自由体系自由振动
3、确定体系阻尼比的方法 ① 阻尼对自振频率的影响.
第31页/共65页
31 / 67
第四节 单自由体系受迫振动
1、单自由体系受迫振动的一般解
整个加载过程可以考虑成是由一系列瞬时冲量对同一时