结构动力学课件.20页PPT
合集下载
结构动力学完整ppt课件

输出 (动力反应)
.
第四类问题:控制问题
输入 (动力荷载)
结构 (系统)
输出 (动力反应)
控制系统 (装置、能量)
本课程主要介绍结构的反应分析
任务 讨论结构在动力荷载作用下反应的分析的方法。寻找
结构固有动力特性、动力荷载和结构反应三者间的相互关 系,即结构在动力荷载作用下的反应规律,为结构的动力 可靠性(安全、舒适)设计提供依据。
结构动力学是研究结构、动荷载、结构反应三者关 系的学科。
.
当前结构动力学的研究内容为:
第一类问题:反应分析(结构动力计算)
输入 (动力荷载)
结构 (系统)
输出 (动力反应)
第二类问题:参数(或称系统)识别
输入 (动力荷载)
结构 (系统)
第三类问题:荷载识别。
输出 (动力反应)
输入 (动力荷载)
结构 (系统)
11
l3 3 EI
柔度系数
m y (t)3lE3 Iy(t)P(t)
柔度法步骤: 1.在质量上沿位移正向加惯性力; 2.求外力和惯性力引起的位移; 3.令该位移等于体系位移。
.
二、刚度法
P(t)
m
1
m y(t)
y(t)
l EI
y
k11
k11y(t)
k 1y 1 (t)P (t) m y (t)
EI
m
l/2
l/2
W
m y(t)
1
11
st y(t)
Y(t)y(t)st
加速度为
Y(t) y(t)
y (t) s t 1[P 1 (t) W m y (t)]
st W11
结构动力学
《结构动力学》PPT课件

q(
x)Y
(
x)dx
2
0l q(x)Y (x)dx
0l m[Y (x)]2 dxmiYi2
例12 试求等截面简支梁的第一频率。
4
EI m
1)假设位移形状函数为抛物线
x
l
Y (x) x(l x)
满足边界条件且与第 一振型相近
y
2
2EIl ml5 / 60
2
120EI ml4
高频率误差较大。故 Rayleigh法主要用于求ω1的近似解。 3、相应于第一频率所设的振型曲线,应当是结构比较容易出现的变形 形式。曲率小,拐点少。
4、通常可取结构在某个静荷载q(x)(如自重)作用下的弹性曲线作
为Y(x)的近似表达式。此时应变能可用相应荷载q(x)所作的功来代
替,即
U
1 2
0l
1
h0
x
3
12 l
单位长度的质量: m h0 x
l
x l
设位移形状函数: Y (x)a(1 x )2 l
满足边界条件:Y (l) 0,Y (l) 0
2
5Eh02
2l 4
,
1.581h0 l2
E
与精确解
1.534h0 l2
E
相比误差为3%
2 0l EI[Y (x)]2 dx
1
§10-6 近似法求自振频率
2
1、能量法求第一频率——Rayleigh法
根据能量守恒定律,当不考虑阻尼自由振动时,振动体系在任何时刻的动能T 和应 变能U 之和应等于常数。 ※根据简谐振动的特点可知:在体系通过静力平衡位置的瞬间,速度最大(动能具有 最大值),动位移为零(应变能为零);当体系达到最大振幅的瞬间(变形能最大), 速度为零(动能为零)。对这两个特定时刻,根据能量守恒定律得:
《结构动力学》PPT课件

0
P
sin t
计算步骤: 1.求振型、频率;
2.求广义质量、广义荷载;
3.求组合系数;
4.按下式求组合系数;
N
y(t)
Y
i
Di
(t )
i 1
15
例一.求图示体系的稳态振幅.
Psin t
m1 m2 m 3.415 EI / ml3
m1
m2
EI
解:
1 5.692
6
为了使假设的振型尽可能的接近真实振型,尽可能减小假设振型对体系所 附加的约束, Ritz 提出了改进方法:
1、假设多个近似振型 2、将它们进行线性组合
1,2 n 都满足前述两个条件。 Y(x) a1 1 a2 2 an n
(a1、a2、·········、an是待定常数)
j
Y T j
2 j
K
* j
/
M
* j
k Y j
2 j
Y
T j
mY j
折算体系
13
一.振型分解法(不计阻尼)
P1(t) P2 (t)
PN (t)
运动方程
m1 m2
mN
my(t) ky(t) P(t)
设
N
y(t) Yi Di (t)
EI
D2 (t)
2 2
D2
(t )
P2* (t)
/
M
* 2
D2 (t)
0.1054
10 2
Pl 3 EI
s in t
例一.求图示体系的稳态振幅.
P
sin t
计算步骤: 1.求振型、频率;
2.求广义质量、广义荷载;
3.求组合系数;
4.按下式求组合系数;
N
y(t)
Y
i
Di
(t )
i 1
15
例一.求图示体系的稳态振幅.
Psin t
m1 m2 m 3.415 EI / ml3
m1
m2
EI
解:
1 5.692
6
为了使假设的振型尽可能的接近真实振型,尽可能减小假设振型对体系所 附加的约束, Ritz 提出了改进方法:
1、假设多个近似振型 2、将它们进行线性组合
1,2 n 都满足前述两个条件。 Y(x) a1 1 a2 2 an n
(a1、a2、·········、an是待定常数)
j
Y T j
2 j
K
* j
/
M
* j
k Y j
2 j
Y
T j
mY j
折算体系
13
一.振型分解法(不计阻尼)
P1(t) P2 (t)
PN (t)
运动方程
m1 m2
mN
my(t) ky(t) P(t)
设
N
y(t) Yi Di (t)
EI
D2 (t)
2 2
D2
(t )
P2* (t)
/
M
* 2
D2 (t)
0.1054
10 2
Pl 3 EI
s in t
例一.求图示体系的稳态振幅.
第12章结构动力学 ppt课件

§14-1 概 述
一、结构动力计算的特点 动力荷载作用下,结构将发生振动,各种量值均随时间而变化。
1、内容: (1)研究动力荷载作用下,结构的内力、位移等计算原理和计算方法。 求出它们的最大值并作为结构设计的依据。
(2)研究单自由度及多自由度的自由振动、强迫振动。 2、静荷载和动荷载 (1)静荷载:荷载的大小和方向不随时间变化(如梁板自重)。 (2)动荷载:荷载的大小和方向随时间变化,需要考虑惯性力。 3、特点 (1)必须考虑惯性力。 (2)内力与荷载不能构成静平衡。必须考据惯性力。依达朗伯原理, 加惯性力后,将动力问题转化为静力问题。
动力自由度的确定方法:加附加链杆约束质点位移,最少链杆数即为自 由度
图刚架上有四个集中质点,但只需要加三根链杆 便可限制全部质点的位置。如图e。
自由度=3 或
图示梁,其分布质量集度为m,可看作有无穷多 个mdx的集中质量,是无限自由度结构。
自由度的数目与结构是否静定或超静定无关
§14-2 结构振动的自由度
2、运动方程的解:
方程
y2y0
为一常系数线性齐次微分方程,其通解为
y (t) A 1 co t s A 2sitn
A1和A2为任意常数,可有初始条件来确定。
振动的初始条件为 t 0 时 y y , 0 , y y 0
式中y0—初位移, y0—初速度。则有Fra bibliotekA1y0,A2
y0
可得
yy0cots y0si nt
第十四章 结构动力学
§14-1 概 述 §14-2 结构振动的自由度 §14-3 单自由度结构的自由振动 §14-4 单自由度结构在简谐荷载作用下的强迫振动 §14-5 单自由度结构在任意荷载作用下的强迫振动 §14-6 多自由度结构的自由振动 §14-7 多自由度结构在简谐荷载作用下的强迫振动 §14-8 振型分解法 §14-9 无限自由度结构的振动 §14-10 计算频率的近似法
结构动力学(课用ppt)

11/14/2011
25
注意! 注意!
振动体系的自由度数与计算假定有关,而与集中质量的数目和 超静定次数无关,如下图所示的体系。
11/14/2011
26
2、广义坐标法
广义坐标:能决定体系几何位置的彼此独立的量,称为该体系的广义坐标
变形曲线可用三角级数的和来表示:
n πx = u ( x, t ) = bn sin L n =1
11/14/2011
18
(4)一般任意荷载 荷载的幅值变化复杂、难以用解析函数解析表示的荷 载。 由环境振动引起的地脉动、地震引起的地震动, 以及脉动风引起的结构表面的风压时程等。
11/14/2011
19
1.5 结构动力分析中的自由度
一. 自由度的定义 结构动力学和静力学的一个本质区别:考虑惯性力的影响 结构产生动力反应的内因(本质因素):惯性力 惯性力的产生是由结构的质量引起的 动力自由度(数目):在动力计算中,一个体系的动力自由度是指为了确定 运动过程中任一时刻全部质体位置所需的独立的几何参数数目。 独立参数也称为体系的广义坐标,可以是位移、转角或其它广义量。
11/14/2011 29
11/14/2011
30
11/14/2011
5
结构动力问题的基本特征: 1、动力问题随时间而变化,必须建立反应时程中感兴趣的全部时间点 上的一系列解。 2、与静力问题相比,由于动力反应中结构的位移随时间迅速变化,从 而产生惯性力,惯性力对结构的反应又产生重要影响。
11/14/2011
6
动力反应的特点: 在动荷载作用下,结构的动力反应(动内力、动位移等) 都随时间变化,它的除与动荷载的变化规律有关外,还与结 构的固有特性(自振频率、振型和阻尼)有关。 不同的结构,如果它们具有相同的阻尼、频率和振型,则 在相同的荷载下具有相同的反应。可见,结构的固有特性能 确定动荷载下的反应,故称之为结构的动力特性。
哈尔滨工业大学结构动力学PPT课件

x0 x0 , x0 x0 xt c1n cosnt c2n sinnt
c1 x0 n , c2 x0
第36页/共42页
x
t
x0
n
sin nt
x0
cos nt
令
x0 cos n
, x0 sin
则可化为
其中:
xt sinnt
2
x02
x0
n
tg x0n arctg x0n
T1
1 2
l 0
d
l
2
x2
1 2
(1 3
l)x2
1 m1 23
x2TΒιβλιοθήκη T1Tm1 2
m1 3
m
x2
1 2
meq x2
又因为: 弹簧的势能与弹簧质量无关, 则
V 1 kx2 2
由能量法,可得
meq x kx 0 弹性元件质量不能忽略时,利用等
效质量,将质量折算到质量块上, 弹性元件仍看作无质量的。
• 18世纪线性振动理论成熟期。
第11页/共42页
• 19世纪非线性振动理论,各种工程实际结构振动的近似 求解方法。
• 20世纪50年代初由于航空航天工程的发展,原本确定性 理论无法解释包含随机变化的工程问题,发展了随机振 动理论。
• 20世纪后期计算机技术的飞速发展,数值计算方法和理 论成为主要研究方法之一。
第7页/共42页
三、结构动力学研究的内容
结构动力学就是研究结构系统在激励力作用下产生的响 应规律的科学,研究激励力、结构和响应三者关系的科 学。
现代结构动力学主要研究以下三个方面的内容 第一类问题:响应分析(结构动力计算)
输入 (动力荷载)
《结构动力计算》PPT课件

Psint
1 k
1 EI
1 2
l 2
l 4
2 3
l 4
2
l3 48EI
2
k m
1
m
1
m
48EIg Ql3
EI
0.5l
0.5l
1
48
2.11011 7.48 105 9.8 35 103 43
57.43 / s
2.
荷载频率:
2n
60
2
500 60
52.36 / s
EI
0.25l MM1
3.
动力系数:
其中,
c 2m
为阻尼比, c为阻尼系数。
22
阻尼比ξ是结构阻尼的重要参数 。
§10.4 阻尼对振动的影响
1. 阻尼对体系自振频率的影响
考虑阻尼时体系的自振频率
r 1 2
<1为小阻尼,体系具有振动的性质;自振频率减小
>1(大阻尼)和=1(临界阻尼)时,体系不具有
振动的性。
通常ξ很小,一般结构可取 r≈ 。
的自振周期。EI1=3.528107Nm2.
I=∞
l=6m
• 结构的刚度系数即使柱顶发生单
位位移时,在柱顶需施加的力。 EI1
EI1
考虑梁AB的平衡可得:
k
24EI1
3
l
1
1
结构的自振频率和周期:
k m
2
24EI1g Wl 3
EI1
T
2
2
Wl 3 24EI1g
T 2
24
20 103 63 3.528 107 9.8
4. 最大动位移(振幅): yd max P 5.03mm
结构动力学(课用ppt)

10/28/2015 29
10/28/2015
30
10/28/2015
18
(4)一般任意荷载 荷载的幅值变化复杂、难以用解析函数解析表示的荷 载。 由环境振动引起的地脉动、地震引起的地震动, 以及脉动风引起的结构表面的风压时程等。
10/28/2015
19
1.5 结构动力分析中的自由度
一. 自由度的定义
结构动力学和静力学的一个本质区别:考虑惯性力的影响
结构产生动力反应的内因(本质因素):惯性力 惯性力的产生是由结构的质量引起的 动力自由度(数目):在动力计算中,一个体系的动力自由度是指为了确定 运动过程中任一时刻全部质体位置所需的独立的几何参数数目。
独立参数也称为体系的广义坐标,可以是位移、转角或其它广义量。
10/28/2015
20
二. 自由度的简化 实际结构都是无限自由度体系,这不仅导致分析困难,而且从工程 角度也没必要。常用简化方法有:
张亚辉 林家浩 编著, 结构动力学基础,大连理工大学出版社,2007. 刘晶波等编著,结构动力学,机械工业出版社,2005. 张子明等编著,结构动力学,河海大学出版社,2001.
10/28/2015
3
第一章 绪论
1.1 动力问题的基本特征 1.2 结构动力分析的目的
1.3 结构动力学研究的内容
1.4 动力荷载类型
注意!
振动体系的自由度数与计算假定有关,而与集中质量的数目和 超静定次数无关,如下图所示的体系。
10/28/2015
26
2、广义坐标法
广义坐标:能决定体系几何位置的彼此独立的量,称为该体系的广义坐标
变形曲线可用三角级数的和来表示:
nx nx u( x, t ) bn sin bn (t ) sin L L n 1 n 1
10/28/2015
30
10/28/2015
18
(4)一般任意荷载 荷载的幅值变化复杂、难以用解析函数解析表示的荷 载。 由环境振动引起的地脉动、地震引起的地震动, 以及脉动风引起的结构表面的风压时程等。
10/28/2015
19
1.5 结构动力分析中的自由度
一. 自由度的定义
结构动力学和静力学的一个本质区别:考虑惯性力的影响
结构产生动力反应的内因(本质因素):惯性力 惯性力的产生是由结构的质量引起的 动力自由度(数目):在动力计算中,一个体系的动力自由度是指为了确定 运动过程中任一时刻全部质体位置所需的独立的几何参数数目。
独立参数也称为体系的广义坐标,可以是位移、转角或其它广义量。
10/28/2015
20
二. 自由度的简化 实际结构都是无限自由度体系,这不仅导致分析困难,而且从工程 角度也没必要。常用简化方法有:
张亚辉 林家浩 编著, 结构动力学基础,大连理工大学出版社,2007. 刘晶波等编著,结构动力学,机械工业出版社,2005. 张子明等编著,结构动力学,河海大学出版社,2001.
10/28/2015
3
第一章 绪论
1.1 动力问题的基本特征 1.2 结构动力分析的目的
1.3 结构动力学研究的内容
1.4 动力荷载类型
注意!
振动体系的自由度数与计算假定有关,而与集中质量的数目和 超静定次数无关,如下图所示的体系。
10/28/2015
26
2、广义坐标法
广义坐标:能决定体系几何位置的彼此独立的量,称为该体系的广义坐标
变形曲线可用三角级数的和来表示:
nx nx u( x, t ) bn sin bn (t ) sin L L n 1 n 1