中考复习_图形的变换
2024年中考数学二轮专题复习之图形变换(简单)

中考二轮专题复习之 图形变换 知识点归纳 考点一:对称有关概念 1.轴对称 (1). 如果一个图形沿一条直线对折,对折后的两部分能 ,那么这个图形就是 ,这条直线就是它的 .(2). 如果一个图形沿一条直线折叠,如果它能与另一个图形 ,那么这两个图形成 ,这条直线就是 ,折叠后重合的对应点就是 .(3).如果两个图形关于 对称,那么对称轴是任何一对对应点所连线段的 .2.中心对称(1). 把一个图形绕着某一个点旋转 °,如果旋转后的图形能够与原来的图形 ,那么这个图形叫做 图形,这个点就是它的 .(2). 把一个图形绕着某一个点旋转 °,如果它能够与另一个图形 ,那么就说这两个图形关于这个点 ,这个点叫做 .这两个图形中的对应点叫做关于中心的 .(3). 关于中心对称的两个图形,对称点所连线段都经过 ,而且被对称中心所 .关于中心对称的两个图形是 图形.(4). 两个点关于原点对称时,它们的坐标符号 ,即点),(y x P 关于原点的对称点1P 为 . 对应训练1、如图,一只小狗正在平面镜前欣赏自己的全身像,此时,它所看到的全身像( )2、如图①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为( )A.①③B. ①④C.②③D.②④3、已知∠AOB=30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点所构成的三角形是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形4、如图,AD 是ΔABC 的中线,∠ADC=45°,把ΔADC 沿AD 对折,点C 落在点C ′的位置,则BC′与BC 之间的数量关系是 .5、如图,方格纸中有三个点A B C ,,,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.6、如图,在直角坐标系xOy 中, A(一l ,5),B(一3,0),C (一4,3).(1) 在右图中作出△ABC 关于y 轴的轴对称图形△A ′B ′C ′,并写出对应点的坐标;(2) 如果ABC △中任意一点M 的坐标为()x y ,,那么它的对应点N 的坐标是 .7.如图,将矩形ABCD 沿GH 对折,点C 落在点Q 处,点D 落在点E 处,EQ 与BC 交于点F.若AD =8 cm ,AB =6 cm ,AE =4 cm ,则△EBF 的周长是________cm .8、如图,菱形ABCD 的对角线相交于点O ,AC =2,BD =23,将菱形按如图方式折叠,使点B 与点O 重合,折痕为EF ,则五边形AEFCD 的周长为 .9、如图,正方形ABCD 中,AB =2,E 是CD 中点,将正方形ABCD 沿AM 折叠,使点B 的对应点F 落在AE 上,延长MF 交CD 于点N ,则DN 的长为 __________.考点二:平移旋转有关概念1. 一个图形沿着一定的方向平行移动一定的距离,这样的图形运动称为__ ___,它是由移动的 和 所决定.2. 平移的特征是:经过平移后的图形与原图形的对应线段 ,对应图形的 与 都没有发生变化,即平移前后的两个图形 ;且对应点所连的线段 .3. 图形旋转的定义:把一个图形 的图形变换,叫做旋转,叫做旋转中心, 叫做旋转角. 4. 图形的旋转由 、 和 所决定.①旋转 在旋转过程中保持不动.②旋转 分为 时针和 时针.③旋转 一般小于360º.5. 旋转的特征是:图形中每一点都绕着 旋转了 的角度,对应点到旋转中心的 相等,对应 相等,对应 相等,图形的 都没有发生变化.也就是旋转前后的两个图形 .对应训练1、如图,下列图案②③④⑤⑥⑦中, 是由①平移得出的, 是由①平移且旋转得出的。
中考复习《图形的变换》投影与视图

1
2
3
4
1.【2020·福建·4 分】如图所示的六角螺母,其俯视图是( B )
A
B
C
D
2.【2019·福建·4 分】如图是由一个长方体和一个球组成的几何 体,它的主视图是( C )
A
B
C
D
3.【2018·福建·4 分】某几何体的三视图如图所示,则该几何体
是( C )
A.圆柱
B.三棱柱
C.长方体
教材梳理
第六章 图形的变换 第32课时 投影与视图
目录
01 知识梳理 02 考点突破
03 福建4年中考聚焦
01 知识梳理
·知识点1 投影 ·知识点2 三视图的有关概念与画法 ·知识点3 立体图形的展开与折叠
知识点1 投影
有关 定义
投影
一般地,用光线照射物体,在某个平面上得到
的影子叫做物体的①__投__影______,照射光线 叫做②投__影__线______,投影所在的平面叫做③ __投__影__面____.
图示(选其中一种)
一个圆和一个 扇形
两个全等的三 角形和三个矩 形
2.正方体展开图的常见类型及相对面(如图) (1)“一四一”型:
(2)“一三二”型:
(3)“二二二”型:
(4)“三三”型:
(注:相同颜色表示相对的面)
3.立体图形的折叠 一个几何体能展开成一个平面图形,这个平面图形就可 以折叠成相应的几何体,展开与折叠是一对互逆过程.
中心 由同一点发出的光线形成的投影叫做④ 投影 __中__心__投_影___________.
平行 由平行光线形成的投影叫做⑤ 有关 投影 __平__行__投__影____________.
第七章图形的变换与坐标原创中考总复习

4.常见的中心对称图形有:__________________________________________ .
垂直平分线
线段、角、等腰三角形、矩形、菱形、正方形、正n边形、圆
全等的
对称中心
平分
线段、平行四边形(矩形、菱形、正方形)、正2n边形圆
【变式2】如图,MN是⊙O的直径,MN=4,点A在⊙O上,∠AMN=30°,B为 的中点,P是直径MN上一动点. (1)利用尺规作图,确定当PA+PB最小时P点的位置(不写作法,但要保留作图痕迹); (2)求PA+PB的最小值.
课后训练
1.观察下列图形,其中既是轴对称又是中心对称图形的是( )
第七章 图形的变换与坐标第31课 轴对称与中心对称
1.轴对称的性质:关于某条直线对称的两个图形是________;对称轴是对应点连线的__________.
,
2.常见的轴对称图形有: ______________________________________________.
全等的
3.中心对称的性质:成中心对称的两个图形是__________,连接对称点的线段都经过__________,并且被对称中心__________.
【变式1】如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(-2,-2),B(-4,-1),C(-4,-4).(1)作出△ABC关于x轴对称的图形△A1B1C1;(2)写出过点C1的反比例函数的解析式.
中考复习_图形的变换

图形的变换一、选择题1. (北京4分)下列图形中,即是中心对称又是轴对称图形的是A、等边三角形B、平行四边形C、梯形D、矩形【答案】D。
【考点】中心对称和轴对称图形。
【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
从而有A、是轴对称图形,不是中心对称图形.故本选项错误;B、是不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、既是轴对称图形,又是中心对称图形.故本选项正确。
故选D。
2.(天津3分)下列汽车标志中,可以看作是中心对称图形的是【答案】A。
【考点】中心对称图形。
【分析】根据在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形的定义,直接得出结果。
3.(天津3分)下图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度.则它的三视图是【答案】A。
【考点】几何体的三视图。
【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中:细心观察原立体图形的位置,从正面看,是一个矩形,矩形左上角缺一个角;从左面看,是一个正方形;从上面看,也是一个正方形。
故选A 。
4.(河北省2分)将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的A 、面CDHEB 、面BCEFC 、面ABFGD 、面ADHG【答案】A 。
【考点】展开图折叠成几何体。
【分析】由图1中的红心“”标志,可知它与等边三角形相邻,折叠成正方体是正方体中的面CDHE 。
故选A 。
5.(山西省2分)将一个矩形纸片依次按图(1)、图(2)的方式对折,然后沿图(3)中的虚线裁剪,最后将图(4)的纸再展开铺平,所得到的图案是【答案】A 。
【考点】剪纸问题。
【分析】严格按照图中的顺序先向上再向右对折,从左下方角剪去一个直角三角形,展开得到结论。
【中考一轮复习】图形的变换---轴对称与中心对称课件

5.如图,将△ABC折叠,使点A与BC边中点D重合,
折痕为MN,若AB=9,BC=6,则△DNB的周长为( A )
A.12 B.13
C.14
D.15
A
C
Mቤተ መጻሕፍቲ ባይዱ
D
N
B
当堂训练
6.如图,Rt△ABC中,AB=9,BC=6,∠B=90º,将△ABC折叠,使A点与
BC的中点D重合,折痕为MN,则线段BN的长为( C )
是( C ) A.12厘米 B.16厘米 C.20厘米 D.28厘米
考点聚焦---轴对称
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合, 轴对称 那么就说这两个图形关于这条直线成轴对称,这条直线叫做对称
轴,折叠后重合的点是对应点,叫做对称点.
轴对称 如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重 图形 合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.
人教版中考数学第一轮总复习
第七单元 图形的变化
§7.3 轴对称与中心对称
目录
01 轴对称与轴对称图形 02 中心对称与中心对称图形
典型例题
【例1-1】下列四个图案中,不是轴对称图案的是( B )
A.
B.
C.
D.
解:A有3条对称轴,是轴对称图形,故本选项错误;
B没有对称轴,不是轴对称图形,故本选项正确;
△CDA,点A,B,C的坐标分别为(-5,2),(-2,-2),(5,-2),则点D的坐
标为( A )
A.(2,2) C.(2,5)
B.(2,-2) D.(-2,5)
y
A
D
A
x
B
C
做关于对称中心的对称点.
新初三数学:图形的变换复习

图形的变换与计算【第一部分平移】【知识点】1、平移的概念.2、理解“对应点的连线平行且相等”等平移变换的基本特征;能够按照要求画出简单平面图形平移后的图形;能利用平移进行简单的图案设计.3、平移变换的确定:给定了平移方向和平移的距离,就确定了平移.4、图形在平移下的不变性和不变量.平移把任一线段变成与它平行且相等的线段,即在平移下,任一线段保持方向和长度不变;平移把任一个角变成与它相等的角,即在平移下,任一个角保持大小不变.【基础训练】一、选择题1.下列几种运动属于平移的有()①水平运输带上的砖在运动;②升降机上下做机械运动;③足球场上足球的运动;④超市里电梯上的乘客;⑤平直公路上行驶的汽车A.2种B.3种C.4种D.5种2.点A(1,2)向右平移2个单位得到对应点A’,则点A’的坐标是( )A.(1.4)B.(1.0) C.(-l,2) D.(3,2)二、填空题1.如图5-1-1所示,每个小正方形的边长都是1个单位长度,△ABC移到了△A′B′C′的位置,则平移的方向是,平移的距离是个单位长度.2.如图5-1-2所示,△ABC平移到△A′B′C′的位置,则与AA′平行的线段有,与AA′相等的线段是.【提高训练】一、选择题1.如图所示5-1-3,在平面内,将一个图形沿某个方向移动一定距离,这样的图形变换为平移,如图,将网格中的三条线段沿网格线的方向(水平或垂直)平移后组成一个首尾依次相接的三角形,至少需要移动()A.12格B.11格C.9格D.8格2.如图5-1-4所示:边长分别为和的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为,大正方形内除去小正方形部分的面积为(阴影部分),那么与的大致图象应为()二、解答题A.B.C.D.图5-1-3图5-1-4图2FD EA BC图1图5-1-5 图5-1-1 图5-1-21.已知如图5-1-5所示,图1和图2中的每个小正方形的边长都是1个单位.(1)将图1中的格点△ABC ,先向右平移3个单位,再向上平移2个单位,得到△A 1B 1C 1,请你在图1中画出△A 1B 1C 1.(2)在图2中画出一个与格点△DEF 相似但相似比不等于1的格点三角形.2.在平面直角坐标系中,直线l 过点M(3,0),且平行于轴.(1)如果△ABC 三个顶点的坐标分别是A(-2,0),B(-l,O),C(-1,2),△ABC 关于轴的对称图形是△A 1B 1C 1,△A 1B 1C 1关于直线的对称图形是△A 2B 2C 2,写出△A 2B 2C 2的三个顶点的坐标; (2)如果点的坐标是(,0),其中,点P 关于轴的对称点是,点关于直线的对称点是,求的长.3.如图5-1-7(单位:m ),等腰三角形ABC 以2米/秒的速度沿直线L 向正方形移动,直到AB 与CD 重合。
图形的变换知识点归纳总结

图形的变换知识点归纳总结一、平移变换平移变换是指图形在平面上按照一定的方向和距离进行移动,移动后的图形与原图形形状相同,但位置发生了改变。
平移变换的基本性质如下:1. 平移变换不改变图形的大小、形状和方向。
2. 平移变换前后的图形相似,并且对应的点保持相等的距离。
二、旋转变换旋转变换是指图形绕定点旋转一定角度后得到的图形。
旋转变换的基本性质如下:1. 旋转变换不改变图形的大小和形状,但可能改变图形的方向。
2. 旋转变换前后的图形相似,且对应的点保持相等的距离。
3. 旋转角度可以为正数表示顺时针旋转,也可以为负数表示逆时针旋转。
三、缩放变换缩放变换是指图形按照一定的比例进行放大或缩小的操作。
缩放变换的基本性质如下:1. 缩放变换改变图形的大小,但保持图形的形状和方向不变。
2. 缩放变换前后的图形相似,且对应的点保持相等的距离。
3. 缩放因子大于1表示放大,缩放因子小于1表示缩小。
四、对称变换对称变换是指图形绕一条直线、点或中心对称后得到的图形。
对称变换的基本性质如下:1. 对称变换改变图形的形状、大小和方向。
2. 对称变换前后的图形相似,且对应的点与对称轴的距离相等。
五、复合变换复合变换是指对同一个图形进行多次变换操作,可以是平移、旋转、缩放或对称变换的组合。
复合变换的基本性质如下:1. 复合变换的结果与变换的顺序有关。
2. 复合变换可以通过矩阵运算来表示。
六、应用举例1. 平移变换:例子如将一个正方形沿水平方向平移10个单位。
2. 旋转变换:例子如将一个三角形绕原点逆时针旋转45度。
3. 缩放变换:例子如将一个长方形按照缩放因子2放大。
4. 对称变换:例子如将一个矩形绕直线y=x对称。
5. 复合变换:例子如将一个矩形先绕原点旋转90度,然后再沿y轴平移10个单位。
通过对图形的变换操作,我们可以更好地理解空间几何变换的性质和规律。
图形变换在计算机图形学、几何学、建筑设计等领域都有重要的应用,对于培养思维能力和观察力也有积极的影响。
专题20 图形的变换与坐标(学生版)

知识点01:轴对称变换【高频考点精讲】1、轴对称图形把一个图形沿一条直线折叠,直线两边的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,折叠后重合的对应点,叫做对称点。
常见的轴对称图形:等腰三角形,矩形,正方形,等腰梯形,圆等。
2、轴对称性质(1)关于直线对称的两个图形是全等图形。
(2)对称轴是对应点连线的垂直平分线。
(3)如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称。
3、关于x轴、y轴对称的点的坐标(1)关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y);(2)关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y)。
4、最短路线问题在直线l上方有两个点A、B,确定直线l上到A、B的距离之和最短的点,可以通过轴对称来确定,即作出其中一点关于直线l的对称点,对称点与另一点的连线与直线l的交点即为所求。
知识点02:平移变换【高频考点精讲】1、把一个图形整体沿某一直线方向移动一定的距离,得到一个新的图形,图形的这种移动,叫做平移。
2、平移的两个要素:(1)图形平移的方向;(2)图形平移的距离。
3、平移性质:对应点所连线段平行且相等。
4、平移变换与坐标变化(1)坐标点P(x,y)向右平移a个单位,得出P(x+a,y);(2)坐标点P(x,y)向左平移a个单位,得出P(x﹣a,y);(3)坐标点P(x,y)向上平移b个单位,得出P(x,y+b);(4)坐标点P(x,y)向下平移b个单位,得出P(x,y﹣b)。
知识点03:旋转变换【高频考点精讲】1、将一个图形绕一个定点沿某个方向转动一定的角度,这样的图形变换叫做旋转,这个定点叫做旋转中心,转动的角度叫做旋转角。
2、旋转性质(1)对应点到旋转中心的距离相等.(2)对应点与旋转中心所连线段的夹角等于旋转角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的变换一、选择题1. (北京4分)下列图形中,即是中心对称又是轴对称图形的是A、等边三角形B、平行四边形C、梯形D、矩形【答案】D。
【考点】中心对称和轴对称图形。
【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
从而有A、是轴对称图形,不是中心对称图形.故本选项错误;B、是不是轴对称图形,是中心对称图形.故本选项错误;C、是轴对称图形,不是中心对称图形.故本选项错误;D、既是轴对称图形,又是中心对称图形.故本选项正确。
故选D。
2.(天津3分)下列汽车标志中,可以看作是中心对称图形的是【答案】A。
【考点】中心对称图形。
【分析】根据在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形的定义,直接得出结果。
3.(天津3分)下图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度.则它的三视图是【答案】A。
【考点】几何体的三视图。
【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中:细心观察原立体图形的位置,从正面看,是一个矩形,矩形左上角缺一个角;从左面看,是一个正方形;从上面看,也是一个正方形。
故选A 。
4.(河北省2分)将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的A 、面CDHEB 、面BCEFC 、面ABFGD 、面ADHG【答案】A 。
【考点】展开图折叠成几何体。
【分析】由图1中的红心“”标志,可知它与等边三角形相邻,折叠成正方体是正方体中的面CDHE 。
故选A 。
5.(山西省2分)将一个矩形纸片依次按图(1)、图(2)的方式对折,然后沿图(3)中的虚线裁剪,最后将图(4)的纸再展开铺平,所得到的图案是【答案】A 。
【考点】剪纸问题。
【分析】严格按照图中的顺序先向上再向右对折,从左下方角剪去一个直角三角形,展开得到结论。
故选A 。
6.(山西省2分)如图是一个工件的三视图,图中标有尺寸,则这个工件的体积是A .13π2cmB .17π2cmC .66π2cmD .68π2cm【答案】B。
【考点】由三视图判断几何体,圆柱的计算【分析】根据三视图可知该几何体是两个圆柱体叠加在一起,体积是两个圆柱体的体积的和:底面直径分别是2cm和4cm,高分别是4cm和1cm,∴体积为:4π×22+π=17πcm2。
故选B。
7.(内蒙古巴彦淖尔、赤峰3分)在下面的四个几何体中,主视图、俯视图、左视图都相同的几何体的个数有A、1个B、2个C、3个D、4个【答案】A。
【考点】简单几何体的三视图。
【分析】主视图、俯视图、左视图是分别从物体正面、上面和左面看,所得到的图形,圆柱主视图、俯视图、左视图分别是长方形、圆、长方形,主视图、左视图与俯视图不相同;圆锥主视图、俯视图、左视图分别是三角形、有圆心的圆、三角形,主视图、左视图与俯视图不相同;球主视图、俯视图、左视图都是圆,主视图、俯视图、左视图都相同;长方体主视图、俯视图、左视图是大小不同的矩形,三视图不相同。
共1个同一个几何体的主视图与俯视图、左视图相同。
故选A。
8.(内蒙古包头3分)下列几何体各自的三视图中,只有两个视图相同的是①正方体②圆锥体③球体④圆柱体A.①③ B.②③ C.③④ D.②④【答案】D。
【考点】简单几何体的三视图。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,分别分析四个几何体的三视图,从中找出只有两个视图相同的几何体,可得出结论:①正方形的主、左和俯视图都是正方形;②圆锥的主、左视图是三角形,俯视图是圆;③球体的主、左和俯视图都是圆形;④圆柱的主、左视图是长方形,俯视图是圆。
只有两个视图相同的几何体是圆锥和圆柱。
故选D。
9.(内蒙古呼和浩特3分)已知圆柱的底面半径为1,母线长为2,则圆柱的侧面积为A、2B、4C、2πD、4π【答案】D。
【考点】圆柱的展开。
【分析】圆柱沿一条母线剪开,所得到的侧面展开图是一个矩形,它的长是底面圆的周长,即2π,宽为母线长为2cm,所以它的面积为4πcm2。
故选D。
10.(内蒙古呼和浩特3分)将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是A、B、C、D、【答案】C。
【考点】几何体的展开图。
【分析】由原正方体知,带图案的三个面相交于一点,而通过折叠后A、B都不符合,且D 折叠后图案的位置正好相反,所以能得到的图形是C。
故选C。
11.(内蒙古呼伦贝尔3分)如图,几何体的俯视图是【答案】C。
【考点】简单组合体的三视图。
【分析】找到从上面看所得到的图形即可:从上面看易得里层有4个正方形,外层左边有1个正方形。
故选C。
12.(内蒙古乌兰察布3分)如图是由五个相同的小正方体搭成的几何体,它的主视图是【答案】B。
【考点】简单组合体的三视图。
【分析】找到从正面看所得到的图形即可:从正面看易得第一层左边有1个正方形,第二层有3个正方形。
故选B。
13.(内蒙古乌兰察布3分)己知O为圆锥的顶点,M 为圆锥底面上一点,点 P 在 OM上.一只锅牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示,若沿OM将圆锥侧面剪开并展开,所得侧面展开图是【答案】D。
【考点】圆锥的展开,扇形的轴对称性,线段的性质。
【分析】根据两点之间比下有余最短的性质,锅牛爬过的最短路线应是一条线段:根据扇形的轴对称性,选择D正确。
故选D。
14.(内蒙古乌兰察布3分)将正方体骰子(相对面上的点数分别为 1 和 6 、 2 和 5 、3 和 4 )放置于水平桌面上,如图① .在图② 中,将骰子向右翻滚 90 ,然后在桌面上按逆时针方向旋转 900,则完成一次变换.若骰子的初始位置为图①所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是A . 6B . 5C . 3D . 2【答案】B。
【考点】分类归纳(图形变化类)。
【分析】寻找规律:可知,按上述规则连续完成3次变换后,骰子回到初始位置,因此连续完成10次变换后,骰子与完成1次变换的状态相同。
故选B。
二、填空题1.(北京4分)若下图是某几何体的表面展开图,则这个几何体是▲.【答案】圆柱。
【考点】平面图形的折叠和立体图形的表面展开。
【分析】由平面图形的折叠及立体图形的表面展开图的特点知道,一个长方形和两个圆折叠后,能围成的几何体是圆柱。
2.(河北省3分)如图1,两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,得到图2,则阴影部分的周长为▲.【答案】2。
【考点】平移的性质,等边三角形的判定和性质。
【分析】如图,∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2。
3.(河北省3分)如图,给正五边形的顶点依次编号为1,2,3,4,5.若从某一顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”.如:小宇在编号为3的顶点上时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是▲.【答案】3。
【考点】分类归纳(图形的变化类)。
【分析】根据“移位”的特点,寻找规律,得出结论:∵小宇在编号为2的顶点上时,那么他应走2个边长,即从2→3→4为第1次“移位”,这时他到达编号为4的顶点;然后从4→5→1→2→3为第2次“移位”,然后从3→4→5→1为第3次“移位”;然后从1→2为第4次“移位”。
∴2→3→4→5→1→2四次移位为一个循环返回顶点2。
∴第10次“移位”后,他所处顶点的编号与第2次“移位”的编号3相同,即他所处顶点的编号是3。
4.(山西省3分)如图是用相同长度的小棒摆戍的一组有规律的图案,图案(1)需要4根小棒,图案(2)需要10根小棒……,按此规律摆下去,第n个图案需要小棒▲根(用含有n的代数式表示)。
【答案】6n-2。
【考点】分类归纳(图形的变化类)。
【分析】找出规律:如图可知,后一幅图总是比前一幅图多两个菱形,即多6根小棒,图案(1)需要小棒:6×1-2=4(根);图案(2)需要小棒:6×2-2=10(根);图案(3)需要小棒:6×3-2=16(根);图案(4)需要小棒:6×4-2=22(根);则第n 个图案需要小棒:6n -2根。
5.(山西省3分)如图,△ABC 是等腰直角三角形,∠ACB=90°,AB=AC ,把△ABC 绕点A 按顺时针方向旋转45°后得到△AB’C’,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是 ▲ (结果保留π)。
【答案】14π+。
【考点】旋转的性质,等腰三角形的性质,勾股定理,扇形和三角形面积。
【分析】根据题意,阴影部分的面积为(S 扇形ABB′-S △ABC )+(S △AB′C′-S 扇形ACC′) 由勾股定理,得450。
∴阴影部分的面积为224545211221360223604πππ⋅⋅⋅⋅-⋅⋅-=+6.(内蒙古包头3分)如图,边长为a 的正方形中有一个边长为b 的小正方形,若将图1的阴影部分拼成一个长方形,如图2,比较图1和图2的阴影部分的面积,你能得到的公式是 ▲ .【答案】a 2﹣b 2=(a+b )(a ﹣b )。
【考点】平方差公式的几何意义。
【分析】根据题意分别求得图1与图2中阴影部分的面积,由两图形阴影面积相等,即可求得答案:图1中阴影部分的面积为:a 2﹣b 2;图2中阴影部分的面积为:(a+b )(a ﹣b )。
∵两图形阴影面积相等,∴可以得到的结论是:a 2﹣b 2=(a+b )(a ﹣b )。
7.(内蒙古包头3分)如图,把矩形纸片OABC 放入平面直角坐标系中,使OA ,OC 分别落在x 轴、y 轴上,连接AC ,将矩形纸片OABC 沿AC 折叠,使点B 落在点D 的位置,若B (1,2),则点D 的横坐标是 ▲ .【答案】-35。
【考点】翻折变换(折叠问题),矩形的性质,平行的判定和性质,折叠对称的性质,相似三角形的判定和性质,坐标与图形性质。
【分析】过点D 作DF⊥OA 于F ,∵四边形OABC 是矩形,∴OC∥AB。
∴∠ECA=∠CAB。
根据折叠对称的性质得:∠CAB=∠CAD,∠CDA=∠B=90°,∴∠ECA=∠EAC,∴EC=EA。