备考2023年中考数学二轮复习-图形的变换_轴对称变换_翻折变换(折叠问题)

合集下载

2024年中考数学二轮专题复习之图形变换(简单)

2024年中考数学二轮专题复习之图形变换(简单)

中考二轮专题复习之 图形变换 知识点归纳 考点一:对称有关概念 1.轴对称 (1). 如果一个图形沿一条直线对折,对折后的两部分能 ,那么这个图形就是 ,这条直线就是它的 .(2). 如果一个图形沿一条直线折叠,如果它能与另一个图形 ,那么这两个图形成 ,这条直线就是 ,折叠后重合的对应点就是 .(3).如果两个图形关于 对称,那么对称轴是任何一对对应点所连线段的 .2.中心对称(1). 把一个图形绕着某一个点旋转 °,如果旋转后的图形能够与原来的图形 ,那么这个图形叫做 图形,这个点就是它的 .(2). 把一个图形绕着某一个点旋转 °,如果它能够与另一个图形 ,那么就说这两个图形关于这个点 ,这个点叫做 .这两个图形中的对应点叫做关于中心的 .(3). 关于中心对称的两个图形,对称点所连线段都经过 ,而且被对称中心所 .关于中心对称的两个图形是 图形.(4). 两个点关于原点对称时,它们的坐标符号 ,即点),(y x P 关于原点的对称点1P 为 . 对应训练1、如图,一只小狗正在平面镜前欣赏自己的全身像,此时,它所看到的全身像( )2、如图①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为( )A.①③B. ①④C.②③D.②④3、已知∠AOB=30°,点P 在∠AOB 内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则P 1,O ,P 2三点所构成的三角形是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形4、如图,AD 是ΔABC 的中线,∠ADC=45°,把ΔADC 沿AD 对折,点C 落在点C ′的位置,则BC′与BC 之间的数量关系是 .5、如图,方格纸中有三个点A B C ,,,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.6、如图,在直角坐标系xOy 中, A(一l ,5),B(一3,0),C (一4,3).(1) 在右图中作出△ABC 关于y 轴的轴对称图形△A ′B ′C ′,并写出对应点的坐标;(2) 如果ABC △中任意一点M 的坐标为()x y ,,那么它的对应点N 的坐标是 .7.如图,将矩形ABCD 沿GH 对折,点C 落在点Q 处,点D 落在点E 处,EQ 与BC 交于点F.若AD =8 cm ,AB =6 cm ,AE =4 cm ,则△EBF 的周长是________cm .8、如图,菱形ABCD 的对角线相交于点O ,AC =2,BD =23,将菱形按如图方式折叠,使点B 与点O 重合,折痕为EF ,则五边形AEFCD 的周长为 .9、如图,正方形ABCD 中,AB =2,E 是CD 中点,将正方形ABCD 沿AM 折叠,使点B 的对应点F 落在AE 上,延长MF 交CD 于点N ,则DN 的长为 __________.考点二:平移旋转有关概念1. 一个图形沿着一定的方向平行移动一定的距离,这样的图形运动称为__ ___,它是由移动的 和 所决定.2. 平移的特征是:经过平移后的图形与原图形的对应线段 ,对应图形的 与 都没有发生变化,即平移前后的两个图形 ;且对应点所连的线段 .3. 图形旋转的定义:把一个图形 的图形变换,叫做旋转,叫做旋转中心, 叫做旋转角. 4. 图形的旋转由 、 和 所决定.①旋转 在旋转过程中保持不动.②旋转 分为 时针和 时针.③旋转 一般小于360º.5. 旋转的特征是:图形中每一点都绕着 旋转了 的角度,对应点到旋转中心的 相等,对应 相等,对应 相等,图形的 都没有发生变化.也就是旋转前后的两个图形 .对应训练1、如图,下列图案②③④⑤⑥⑦中, 是由①平移得出的, 是由①平移且旋转得出的。

2024年中考数学提高复习讲义:图形的变化

2024年中考数学提高复习讲义:图形的变化

中考专题复习之图形的变化知识梳理1.点关于 x 轴、y 轴、原点对称设任意一点 P(x,y),则关于x轴对称点为(x,-y),关于y 轴对称点为(-x,y),关于原点的对称点为(-x,-y).2.轴对称图形轴对称图形:一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这条直线叫作对称轴.互相重合的点叫作对应点.3.轴对称轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合,这条直线叫作对称轴.互相重合的点叫作对应点.4.轴对称的性质轴对称的性质如下:(1)成轴对称的两个图形全等.(2)对称轴与连接对应点的线段垂直.(3)对应点到对称轴的距离相等.(4)对应点的连线互相垂直.5.中心对称一个图形旋转180°能与自身重合,则这个图形叫作中心对称图形.特征:连接对应点的线段必然经过对称中心,并被对称中心平分成相等的两部分.6.图形的平移平面图形在它所在的平面内平行地移动.决定因素:平移的方向、平移的距离.其特征如下:(1)对应点间的连线平行且相等(或在同一条直线上).(2)对应边平行且相等(或在同一条直线上).(3)对应角相等.(4)图形的形状和大小不变.7.图形的旋转一个平面图形绕一定点按一定的方向旋转一定的角度的运动叫作旋转.旋转对称图形:一个图形绕内部某一点旋转一定的角度能与自身重合.其特征如下:(1)图形上每一点都绕同一点按相同的方向和角度旋转.(2)对应点到旋转中心的距离相等.(3)对应边相等,图形的形状、大小不改变.8.由三视图想象几何体的形状由物体的三视图想象几何体的形状有一定的难度,可以从如下途径进行分析:(1)根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状及几何体的长、宽、高.(2)根据实线和虚线想象几何体看得见和看不见的轮廓线.(3)熟记一些简单的几何体的三视图会对复杂几何体的想象有帮助.(4)利用由三视图画几何体与由几何体画三视图为互逆过程,反复练习,不断总结方法.规律方法指导如下:(1)画几何体的三视图.画三视图时应注意三视图的位置要准确,看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线,主、俯视图长对正,主、左视图高平齐,俯、左视图宽相等.(2)由三视图想象物体的形状.根据三视图想象物体的形状,一般由俯视图确定物体在平面上的形状,由左视图、主视图想象物体在空间上的形状,从而确定物体的形状.9.画图方法画一个几何体的三视图时,要从三个方面观察几何体,具体画法如下.(1)确定主视图的位置,画出主视图;(2)在主视图的正下方画出俯视图,注意与主视图“长对正”;(3)在主视图的正右方画出左视图,注意与主视图“高平齐”,与俯视图“宽相等”.几何体上被其他部分遮挡而看不见的部分的轮廓线应画成虚线.要点诠释如下:画一个几何体的三视图,关键是把从正面、上方、左边三个方向观察时所得的视图画出来,所以首先要注意观察时视线与观察面垂直,即观察到的平面图是该图的正投影;其次,要注意正确地用虚线表示看不到的轮廓线;第三,要充分发挥想象,多实践,多与同学交流探讨,多总结;最后,按三视图的位置和大小要求从整体上画出几何体的三视图.典型例题例 1下列图形中既是中心对称图形又是轴对称图形的是( ).解析一个图形若是中心对称图形,必定是轴对称图形.中心对称图形:一个图形旋转180°能与自身重合.轴对称图形:一个图形沿一条直线折叠,直线两旁的部分能够完全重合.根据以上定义,此题选 A.例 2如图所示,正方形 ABCD 的边长为12,且DM=1,N 是对角线AC 上一动点,则DN+MN 的最小值为 .解析如图所示,连接BM,BN.因为正方形ABCD 中,AD=AB,且AC 平分∠DAB,又因为 AN=AN,所以△ANB≌△AND,所以BN=ND,所以DN+MN=BN+MN.因为在△BNM中,BN+MN>BM,或BN+MN=BM(此时BM与AC的交点为N),所以 DN+MN 的最小值为BM, 所以BM=√BC2+MC2=√32+12=√10.例3如图所示,在正方形ABCD 中,E 为DC 边上一点,连接BE,将△BCE绕点 C 顺时针方向旋转90°得到△D CF,连接EF,若∠BEC=60°,则∠EFD 的度数为( ).A.10°B. 15°C.20°D.25°解析图形在旋转过程中,图形的形状、大小不变.因为△BCE 绕点C 顺时针方向旋转90°得到△DCF,所以∠DCF=90°,CE=CF,∠BEC=∠DFC=60°,所以∠EFC=45°,所以∠EFD=∠DFC-∠EFC=60°-45°=15°,故选 B.例4下列水平放置的四个几何体中,主观图与其他三个不相同的是( ).解析主观图即是立体图形在所在平面内的投影,A,B,C 的主观图均为长方形,D 的主观图为三角形,因此选 D.双基训练1.正方形、矩形、圆、椭圆、菱形、等边三角形中既是轴对称图形又是中心对称图形的个数有( )个.A.2B.3C.4D.52.下列图形中既是轴对称图形又是中心对称图形的是( ).3.在直角坐标系中,将线段OA 向左平移2个单位,平移后,点 O,A 的对应点分别为点O₁,A₁,若O(0,0),A (1,4),则点O₁,A₁的坐标分别是( ).A.(0,0),(1,4)B.(0,0),(3,4)C.(-2,0),(1,4)D.(-2,0),(-1,4)5.下列图形中,经过折叠不能围成一个立方体的是( ).7.将点 A(3,2)沿y轴向左平移4个单位长度得到点 B,点 B 关于x 轴的对称点的坐标是 .8.如图所示是某物体的三视图,则这个物体的形状是 .9. 如图所示,将周长为12的△ABC 沿 BC 延长线的方向平移1个单位得到△A'B'C',则四边形 ABC'A'的周长为 .10.如图所示,已知正方形 ABCD 中,边长为2cm,则图中阴影部分的面积为 .11.如图所示,在△ABC 中, ∠CAB=75°,在同一平面内,将△ABC 绕点 A 旋转到, △AB′C′的位置,使得CC′‖AB,则∠BAB′=( ).A.30°B. 35°C.40°D.50°12.一个由n个相同大小的正方形组成的简单几何体的主视图和俯视图如下,那么它的左视图不可能是( ).13. 在 Rt△ABC 中,已知∠C=90°,∠B=50°,, 点 D 在边 BC 上,BD=2CD(如图所示).把△ABC 绕着点D 逆时针旋转m(0<m<180)度后,如果点B 恰好落在初始Rt△ABC 的边上,那么m= .14.四边形ABCD 是直角梯形,AD∥CB,AD⊥DC,且DC=BC=1,AB=2,把梯形ABCD 分别绕直线AD 与直线BC 旋转一周,所得几何体的表面积分别为M,N,则|M−N|=(平方单位).15.三棱柱的三视图如图所示,△EFG 中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为 cm.16.图形既关于点O 中心对称,又关于直线 AC,BD 对称,AC=10,BD=6,,已知点 E,M是线段AB上的动点(不与端点重合),点 O 到EF,MN 的距离分别为ℎ₁,ℎ₂,△OEF与△OGH组成的图形被称为蝶形.(1)求蝶形面积S 的最大值.(2)当以EH 为直径的圆与以MQ 为直径的圆重合时,求ℎ₁,ℎ₂满足的关系式,并求ℎ₁的取值范围.17.下列给出了某种工件的三视图,某工厂要铸造5000件这种铁质工件,要用去多少吨生铁?工件铸造成后,表面需要涂一层防锈漆,已知1kg防锈漆可以涂4m²的铁器面,涂完这批工件需要用多少千克防锈漆?(铁的密度为7.8g/cm³)第 24 讲1-6 DDDACB 7.(1,2) 8. 三棱柱 9.14 10.2 11-12 AA 13. 80 或120 14. 2π 15.6 16.(1) 由题意得,四边形ABCD 为菱形. 因为EF ∥BD, 所以△ABD ∽△AEF, 所以EF 6=5−ℎ15,即 EF =65(5−ℎ1),所以 S =2S OEF =EF ×ℎ1=65(5−ℎ1)×ℎ1=−65(ℎ1−52)2+152,所以当 ℎ1=52,S max =152.(2) 根据题意得,OE=OM.如图所示,作OR ⊥AB 于R,OB 关于OR 对称线段为OS.①当点E,M 不重合时,则OE,OM 在 OR 的两侧,易知RE=RM.因为 AB =√52+32=√34, 所以 OR =√34所以 BR =√32−(√34)2=√34.由ML ∥EK ∥OB,得OK OA=BE AB ,OL OA=BM AB,所以OK OA+OL OA =BE AB+BMAB =2BR AB即ℎ15+ℎ25=917,所以 ℎ1+ℎ2=4517,此时h ₁的取值范围为 0<ℎ1<4517且 ℎ1≠4534. ②当点E,M 重合时,则 ℎ₁=ℎ₂,此时h ₁的取值范围为 0<ℎ₁<5.17.350千克.。

中考数学二轮专题复习图形变换——折叠问题【含答案】

中考数学二轮专题复习图形变换——折叠问题【含答案】

二轮复习:图形变换(一)—折叠图形变换历来是中考必考点之一。

考试大纲要求:会运用图形变换的相关知识进行简单的作图与计算,并能解决相关动态需求数学问题,并能进行图案设计。

图形变换一般包括,折叠、平移、旋转、对称、位似和图形的探究。

在图形变换的考题中,最多题型是折叠、旋转。

在解决折叠问题时,应注意折叠前后相对应的边相等、角相等。

下面着重从三个方面进行讲述:三角形折折叠、特殊平行四边形折叠和在平面直角坐标系内的图形折叠三大类进行。

(一)三角形的折叠:题型1、一般三角形的折叠:1、如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°﹣α﹣β2、(2019•江西)如图,在△ABC中,点D是BC上的点,∠BAD=∠ABC=40°,将△ABD沿着AD翻折得到△AED,则∠CDE=°.3、如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为___.题型2、等腰或等边三角形的折叠:4、如图,在△ABC 中,AB =AC ,BC =24,tanC =2,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点E 处,直线l 与边BC 交于点D ,那么BD 的长为_____.5、如图,D 是等边△ABC 边AB 上的点,AD=2,DB=4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E 、F 分别在边AC 和BC 上,则CF CE=_______.(利用相似三角形周长的比等于相似比△AED 相似△DBF)题型3、直角三角形的折叠:6、如图,在Rt △ABC 中,∠ACB=90°,BC=6,CD 是斜边AB 上的中线,将△BCD 沿直线CD 翻折至△ECD 的位置,连接AE .若DE ∥AC ,计算AE 的长度等于.7、如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是(二)特殊平行四边形的折叠:题型1、矩形折叠:1、(求角).如图,将矩形沿对角线折叠,点落在处,交于点,已知,则的度为A. B. C. D.2、(求三角函数值)如图,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,如果AB:AD=2:3,那么tan∠EFC值是.3、(求边长)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE 折叠,使点B落在矩形内点F处,连接CF,则CF的长为4、(求折痕长)如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为5、(求边的比)如下图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则BC:AB的值为。

2023中考九年级数学分类讲解 第十三讲 图形的变换、立体图形的展开与折叠(含答案)(全国通用版)

2023中考九年级数学分类讲解 第十三讲  图形的变换、立体图形的展开与折叠(含答案)(全国通用版)

第十三讲图形的变换、立体图形的展开与折叠专项一轴对称与中心对称知识清单1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形,那么就说这两个图形关于这条直线,这条直线叫做,折叠后重合的点是对应点,叫做对称点.2.轴对称图形:如果一个平面图形沿一条直线,直线两旁的部分能够互相,这个图形就叫做轴对称图形,这条直线就是它的.3.轴对称的性质:(1)关于某条直线对称的两个图形;(2)在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴,对应线段,对应角.4.中心对称:把一个图形绕着某一点旋转,如果它能够与另一个图形,那么就说这两个图形关于这个点对称或中心对称,这个点叫做.5.中心对称图形:把一个图形绕某一个点旋转,如果旋转后的图形能够与原来的图形,那么这个图形叫做中心对称图形,这个点就是它的.6.中心对称的性质:(1)成中心对称的两个图形;(2)成中心对称的两个图形,对应线段,对应角,对应点的连线都经过,且被对称中心.考点例析例1以下是我国部分博物馆的标志图案,其中既是轴对称图形又是中心对称图形的是()A B C D分析:根据轴对称图形及中心对称图形的定义逐项判断即可.例2如图1,在Rt△ABC中,∠A=30°,∠C=90°,AB=6,P是线段AC上一动点,点M在线段AB上.当AM=13AB时,PB+PM的最小值为()A.B.C.2D.3图1 图2分析:如图2,作点B关于AC的对称点B',连接B'M交AC于点P,此时PB+PM的值最小,为B'M 的长.在Rt△ABC中,由∠A=30°,AB=6,可求得BC,进而求得B'B,过点B'作B'H⊥AB于点H,解Rt△B'HB,得B'H,BH的长,结合AM=13AB,可求得MH,最后在Rt△B'HM中,利用勾股定理求出B'M,即可得解.归纳:在一条直线同侧有两点,则直线上存在到两点的距离之和最短的点,可以通过轴对称来确定,即作出其中一点关于直线的对称点,对称点与另一点的连线与直线的交点即为所求点.跟踪训练1.下列图形中,是轴对称图形但不是中心对称图形的是()A B C D2.在平面直角坐标系中,点M(﹣2,4)关于原点对称的点的坐标是.3.如图,在△ABC中,AC=BC,∠B=38°,D是AB边上一点,点B关于直线CD的对称点为B′.若B′D∥AC,则∠BCD的度数为.第3题图第4题图4.如图,在菱形ABCD中,BC=2,∠C=120°,Q为AB的中点,P为对角线BD上任意一点,则AP+PQ 的最小值为.专项二图形的平移知识清单1.平移:在平面内,把一个图形由一个位置整体沿某一直线方向移动到另一个位置,这样的图形运动叫做平移.2.平移两要素:平移的和平移的.3.平移的性质:(1)平移不改变图形的形状和大小,即平移前后的两个图形;(2)平移前后,对应线段(或在同一条直线上)且,对应角;(3)平移前后,连接对应点的线段(或在同一条直线上)且.考点例析例如图,△ABC沿BC所在直线向右平移得到△DEF,已知EC=2,BF=8,则平移的距离为.分析:由平移的性质可知BE=CF,结合题中给出的数据计算即可.跟踪训练1.四盏灯笼的位置如图所示,已知点A,B,C,D的坐标分别是(﹣1,b),(1,b),(2,b),(3.5,b).若平移y轴右侧的一盏灯笼,使得y轴两侧的灯笼对称,则平移的方法可以是()A.将B向左平移4.5个单位长度B.将C向左平移4个单位长度C.将D向左平移5.5个单位长度D.将C向左平移3.5个单位长度第2题图2.在平面直角坐标系中,点A(3,2)关于x轴的对称点为A1,将点A1向左平移3个单位长度得到点A2,则点A2的坐标为.3.在平面直角坐标系中,平行四边形ABCD的对称中心是坐标原点,顶点A,B的坐标分别是(﹣1,1)和(2,1),将平行四边形ABCD沿x轴向右平移3个单位长度,则顶点C的对应点C1的坐标是.专项三图形的旋转知识清单1.旋转:在平面内,把一个图形绕着平面内某一点O转动一个角度,这样的图形运动叫做旋转,点O 叫做,转动的角叫做.2.旋转三要素:、和.3.旋转的性质:(1)旋转不改变图形的形状和大小,即旋转前后的两个图形;(2)对应点到的距离相等;(3)对应点与旋转中心所连线段的夹角等于.考点例析例如图,将△ABC绕点A逆时针旋转55°得到△ADE.若∠E=70°,AD⊥BC于点F,则∠BAC的度数为( )A .65°B .70°C .75°D .80°分析:由旋转的性质,得∠BAD =55°,∠C =∠E =70°,再由直角三角形的性质,得∠DAC 的度数,进而得解.归纳:图形的旋转为全等变换,解题时可充分利用其性质,得出线段的长或角的度数.另外,注意旋转角为60°时考虑运用等边三角形的性质,旋转角为90°时考虑运用等腰直角三角形的性质.跟踪训练1.如图,在△AOB 中,AO =1,BO =AB =32.将△AOB 绕点O 逆时针方向旋转90°,得到△A ′OB ′,连接AA ′,则线段AA ′的长为( )A .1BC .32 D第1题图 第2题图2.如图,在△ABC 中,∠ACB =90°,∠BAC =α,将△ABC 绕点C 顺时针旋转90°得到△A 'B 'C ,点B 的对应点B '在AC 边上(不与点A ,C 重合),则∠AA 'B '的度数为( )A .αB .α﹣45°C .45°﹣αD .90°﹣α3.如图,在平面直角坐标系中,线段OA 与x 轴正方向的夹角为45°,且OA =2.若将线段OA 绕点O 沿逆时针方向旋转105°得到线段OA ′,则点A ′的坐标为( )A .)1-B .(-C .()D .(1,第3题图 第4题图 4.如图,在平面直角坐标系中,点C 的坐标为(﹣1,0),点A 的坐标为(﹣3,3),将点A 绕点C 顺时针旋转90°得到点B ,则点B 的坐标为 .专项四立体图形的展开与折叠知识清单正方体的表面展开图考点例析例1 下列图形是正方体展开图的个数为()A.1个B.2个C.3个D.4个分析:根据正方体的表面展开图的特征解答即可.归纳:判断正方体表面展开图的方法:(12)若展开图有三行,3布在该图形上下两侧.借助这些方法可采用排除法快速判断正方体的表面展开图.例2 如图是一个正方体的表面展开图,把它折叠成正方体后,有“学”字一面的相对面上的字是()A.雷B.锋C.精D.神分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点解答即可.归纳:判断正方体表面展开图的相对面的方法:(1)在一条直线上的三个正方形,首尾两个正方形一定是正方体的相对面;(2)由几个小正方形组成的“Z”字型两端的小正方形是相对面.正方体的每个面都有且只有一个相对面,所以在展开图中分析每个小正方形相对面的个数也可用来判断其是否能围成正方体.跟踪训练1.下列四个图形中,不能作为正方体的展开图的是()A B C D2.把图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A.五棱锥B.五棱柱C.六棱锥D.六棱柱第2题图第3题图3.一个骰子相对两面的点数之和为7,它的展开图如图所示,则下列判断正确的是()A.A代表B.B代表C.C代表D.B代表专项五投影知识清单1.一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.2.投影分为投影(由平行光线形成的投影,如太阳光线)和投影(由点光源发出的光线形成的投影).3.在平行投影中,当投影线与投影面时,物体在投影面上的投影叫做正投影.平面图形的正投影的规律:平行形不变,倾斜形改变,垂直成线段.考点例析例在同一时刻,物体的高度与它在阳光下的影长成正比.在某一时刻,有人测得一高为1.8 m的竹竿的影长为3 m,某一高楼的影长为60 m,那么这幢高楼的高度是()A.18 m B.20 m C.30 m D.36 m分析:设此高楼的高度为x m,根据同一时刻物高与影长成正比例列出关于x的比例式,求解即可.归纳:投影中蕴含着相似三角形,借助相似三角形的性质进行相关计算可使问题迎刃而解.跟踪训练1.如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A B C D2.学习投影后,小华利用灯光下自己的影子长度来测量一路灯的高度.如图,身高1.7 m的小明从路灯灯泡A的正下方点B处,沿着平直的道路走8 m到达点D处,测得影子DE长为2 m,则路灯灯泡A 离地面的高度AB为m.第2题图专项六三视图知识清单1.对一个物体在三个投影面内进行正投影,在正面内得到的由前向后观察物体的视图,叫做;在水平面内得到的由上向下观察物体的视图,叫做;在侧面内得到的由左向右观察物体的视图,叫做.2.画三视图时,三个视图都要放在正确的位置,并且注意视图与视图的长对正,视图与视图的高平齐,视图与视图的宽相等.考点例析例1一个几何体如图1所示,它的左视图是()A B C D 图1分析:左视图是由左向右观察物体的视图.归纳:画三视图时一定要将物体的边缘、棱、顶点都体现出来,并规定:看得见部分的轮廓线画成实线,因被其他部分遮挡而看不见部分的轮廓线画成虚线,不能漏掉.例2 由若干个完全相同的小立方块搭成的几何体的左视图和俯视图如图2所示,则搭成该几何体所用的小立方块的个数可能是()A.4个B.5个C.7个D.8个图2分析:由左视图第一行有1个正方形,结合俯视图可知几何体上面一层有1或2个小立方块,由左视图第二行有2个正方形,结合俯视图可知几何体下面一层有4个小立方块,所以该几何体有5或6个小立方块.例3 如图是一个几何体的三视图,根据图中所标数据计算这个几何体的体积为()A.12πB.18πC.24πD.30π图3分析:观察三视图可知该几何体是空心圆柱,根据圆柱体积公式结合图中数据计算即可.归纳:根据三视图计算几何体的表面积或体积时,首先要确定几何体的形状,若是常见几何体,根据几何体的表面积公式或体积公式直接计算即可;若是较复杂的组合体,可拆分成常见几何体再进行计算.注意要准确判断三视图中的已知数据在实物图中对应的含义.跟踪训练1.如图是一个几何体的三视图,则这个几何体是()A.圆锥B.长方体C.球D.圆柱第1题图第2题图2.如图所示的几何体是由5个大小相同的小正方体搭成的,其左视图是()A B C D3.如图,该几何体的左视图是()A B C D第3题图第4题图4.如图是由若干个相同的小立方体搭成的几何体的主视图和左视图,则搭成这个几何体的小立方体的个数不可能是( )A .3B .4C .5D .65.我国某型号运载火箭的整流罩的三视图如图所示,根据图中数据(单位:米)计算该整流罩的侧面积(单位:平方米)是( )A .7.2πB .11.52πC .12πD .13.44π第5题图 第6题图 6.已知某几何体的三视图如图所示,则该几何体的侧面展开图中圆心角的度数为( )A .214°B .215°C .216°D .217°专项七 图形变换中的分类讨论思想知识清单在解决图形变换的有关问题时,由于经过变换的图形位置或形状不确定常导致问题的结果有多种可能,这时就需要把待求解的问题根据图形变换的可能性结合题目要求进行分类讨论,分类讨论时要选择恰当的分类标准,做到不重复、不遗漏.考点例析例 如图1,已知AD ∥BC ,AB ⊥BC ,AB =3,E 为射线BC 上一动点,连接AE ,将△ABE 沿AE 折叠,点B 落在点B ′处,过点B ′作AD 的垂线,分别交AD ,BC 于M ,N 两点.当B ′为线段MN 的三等分点时,BE 的长为( )A .32BC .32D图1分析:当MB '=13MN 时,如图2所示;当NB '=13MN 时,如图3所示.可设BE =x ,由折叠的性质表示出相关线段,再在Rt△B'EN中,利用勾股定理列方程即可求得BE的长.图2 图3跟踪训练1.如图,在△AOB中,OA=4,OB=6,AB=△AOB绕原点O旋转90°,则旋转后点A的对应点A′的坐标是()A.(4,2)或(﹣4,2)B.()4-或()-C.()-或()2-D.(2,-或(-第1题图第3题图2.)在矩形ABCD中,AB=2 cm,将矩形ABCD沿某直线折叠,使点B与点D重合,折痕与直线AD 交于点E,且DE=3 cm,则矩形ABCD的面积为cm2.3.如图,腰长为2的等腰三角形ABC中,顶角∠A=45°,D为腰AB上的一个动点,将△ACD沿CD折叠,点A落在点E处.当CE与△ABC的某一条腰垂直时,BD的长为.参考答案专项一轴对称与中心对称例1 A 例2 B1.D 2.(2,﹣4)3.33°4专项二图形的平移例 31.C 2.(0,﹣2) 3.(4,﹣1)专项三图形的旋转例 C1.B 2.C 3.C 4.(2,2)专项四立体图形的展开与折叠例1 C 例2 D1.D 2.A 3.A专项五投影例 D1.D 2.8.5专项六三视图例1 B 例2 B 例3 B1.D 2.A 3.D 4.D 5.C 6.C专项七图形变换中的分类讨论思想例 D1.C 2.(或(6-3或- 11 -。

折叠变换模型(原卷版)-2023年中考数学重难点解题大招复习讲义-几何模型篇

折叠变换模型(原卷版)-2023年中考数学重难点解题大招复习讲义-几何模型篇

模型介绍翻折变换(折叠问题)1、翻折变换(折叠问题)实质上就是轴对称变换.2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.例题精讲考点一:三角形中的折叠问题【例1】.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3,点D是BC边上的一动点(不与点B、C重合),过点D作DE⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处.当△AEF为直角三角形时,则折叠后所得到的四边形AEDF 的周长为.➢变式训练【变式1-1】.如图,等边△ABC中,D是BC边上的一点,把△ABC折叠,使点A落在BC 边上的点D处,折痕与边AB、AC分别交于点M、N,若AM=2,AN=3,那么边BC 长为.【变式1-2】.如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC 折叠,使点A与点D重合,EF为折痕,则AF:CF=()A.2:1B.3:2C.5:3D.7:5【变式1-3】.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,BD=6,DC=4,求AD的长.小明同学利用翻折,巧妙地解答了此题,按小明的思路探究并解答下列问题:(1)分别以AB,AC所在直线为对称轴,画出△ABD和△ACD的对称图形,点D的对称点分别为点E,F,延长EB和FC相交于点G,求证:四边形AEGF是正方形;(2)设AD=x,建立关于x的方程模型,求出AD的长.考点二:矩形中的折叠问题【例2】.如图,平面直角坐标系中,已知矩形OABC,O为原点,点A、C分别在x轴、y 轴上,点B的坐标为(1,2),连接OB,将△OAB沿直线OB翻折,点A落在点D的位置,则cos∠COD的值是______➢变式训练【变式2-1】.如图(1)是一段长方形纸带,∠DEF=a,将纸带沿EF折叠成图(2),再沿BF折叠成图(3),则图(3)中的∠CFE的度数为()A.180°﹣3a B.180°﹣2a C.90°﹣a D.90°+a【变式2-2】.如图,在矩形ABCD中,AB=8,BC=12,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()B.6C.D.A.【变式2-3】.如图,折叠矩形纸片ABCD,使B点落在AD上一点E处,折痕FG的两端点分别在AB、BC上(含端点),且AB=6,BC=10.则AE的最大值是,最小值是.考点三:菱形中的折叠问题【例3】.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对角线交点O处,折痕为EF,若菱形ABCD的边长为2cm,∠B=60°,那么EF=cm.➢变式训练【变式3-1】.如图,在菱形ABCD中,∠B=60°,E为AB的中点,将△AED沿DE翻折得到△GED,射线DG交BC于点F,若AD=2,则BF=.【变式3-2】.如图,在菱形ABCD中,∠ABC=60°,AD=6,点E在边CD上,且DE=4,F是边AD上一动点,将△DEF沿直线EF折叠,点D落在点N处,当点N在四边形ABCD内部(含边界)时,DF的长度的取值范围是.考点四:正方形中的折叠问题【例4】.如图,正方形ABCD的边长是2,点E是CD边的中点,点F是边BC上不与点B,C重合的一个动点,把∠C沿直线EF折叠,使点C落在点C′处.当△ADC′为等腰三角形时,FC的长为.➢变式训练【变式4-1】.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE 沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,则下列结论:①△ABG ≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE,其中正确的是__________.1.如图,将平行四边形纸片ABCD沿对角线AC折叠,点D落在点E处,AE恰好过BC边中点,若AB=3,BC=6,则∠B的大小为()A.30°B.45°C.60°D.90°2.如图,在矩形ABCD中,AB=4,,E为CD边上一点,将△BCE沿BE折叠,使得C落到矩形内点F的位置,连接AF,若,则CE=()A.B.C.D.3.如图,矩形纸片ABCD中,AB=4,BC=8,现将A、C重合,使纸片折叠压平,设折痕为EF,则图形中重叠部分△AEF的面积为.4.如图,矩形ABCD中,AB=4,AD=6,点E为BC上一点,将△ABE沿AE折叠得到△AEF,点H为CD上一点,将△CEH沿EH折叠得到△EHG,且F落在线段EG上,当GF=GH时,则BE的长为.5.将矩形ABCD按如图所示的方式折叠,BE、EG、FG为折痕,若顶点A、C、D都落在点O处,且点B、O、G在同一条直线上,同时点E、O、F在另一条直线上,则的值为.6.如图,在边长为8的菱形ABCD中,∠A=60°,M是边AD的中点,N是AB上一点,将△AMN沿MN所在的直线翻折得到△A'MN,连接A'B,则A'B的取值范围.7.如图,将矩形ABCD(AB<AD)沿BD折叠后,点C落在点E处,且BE交AD于点F,若AB=5,BC=10.(1)求DF的长;(2)求△DBF和△DEF的面积;(3)求△DBF中F点到BD边上的距离.8.如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)求证:EG2=AF•GF;(3)若AG=6,EG=2,求BE的长.9.如图1,四边形ABCD的对角线AC,BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠ABD+∠ADB=∠ACB.(1)填空:∠BAD与∠ACB的数量关系为;(2)求的值;(3)将△ACD沿CD翻折,得到△A′CD(如图2),连接BA′,与CD相交于点P.若CD=,求PC的长.10.如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B折叠在边AC 上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF.已知BC=4.(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上取不同的位置,①△PFM的形状是否发生变化?请说明理由;②求△PFM的周长的取值范围.11.已知在△ABC中,AC=BC=m,D是AB边上的一点,将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.(1)特例感知如图1,若∠C=60°,D是AB的中点,求证:AP=AC;(2)变式求异如图2,若∠C=90°,m=6,AD=7,过点D作DH⊥AC于点H,求AH和AP的长;(3)化归探究如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B落在AC边上两个不同的位置,请直接写出a的取值范围.12.[初步尝试](1)如图①,在三角形纸片ABC中,∠ACB=90°,将△ABC折叠,使点B与点C重合,折痕为MN,则AM与BM的数量关系为;[思考说理](2)如图②,在三角形纸片ABC中,AC=BC=6,AB=10,将△ABC折叠,使点B与点C重合,折痕为MN,求的值;[拓展延伸](3)如图③,在三角形纸片ABC中,AB=9,BC=6,∠ACB=2∠A,将△ABC沿过顶点C的直线折叠,使点B落在边AC上的点B′处,折痕为CM.①求线段AC的长;②若点O是边AC的中点,点P为线段OB′上的一个动点,将△APM沿PM折叠得到△A′PM,点A的对应点为点A′,A′M与CP交于点F,求的取值范围.13.如图,将边长为6的正三角形纸片ABC按如下顺序进行两次折叠,展平后,得折痕AD、BE(如图①),点O为其交点.(1)探求AO与OD的数量关系,并说明理由;(2)如图②,若P,N分别为BE,BC上的动点.①当PN+PD的长度取得最小值时,求BP的长度;②如图③,若点Q在线段BO上,BQ=1,则QN+NP+PD的最小值=.14.如图1,将△ABC纸片沿中位线EH折叠,使点A对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼合成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将▱ABCD纸片按图2的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段,;S矩形AEFG:S▱ABCD=.(2)▱ABCD纸片还可以按图3的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长;(3)如图4,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把该纸片折叠,得到叠合正方形,请你帮助画出叠合正方形的示意图,并求出AD、BC的长.15.如图,矩形OABC的边长OA=8,顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,反比例函数y=(k≠0)在第一象限内的图象经过点D、E、F,且tan ∠BOA=.(1)求边AB的长;(2)求反比例函数的解析式及F点坐标;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折叠分别与x、y轴正半轴交于点H、G,求线段OG的长.16.已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).17.将一个直角三角形纸片ABO放置在平面直角坐标系中,点,点B(0,1),点O(0,0).P是边AB上的一点(点P不与点A,B重合),沿着OP折叠该纸片,得点A 的对应点A'.(1)如图①,当点A'在第一象限,且满足A'B⊥OB时,求点A'的坐标;(2)如图②,当P为AB中点时,求A'B的长;(3)当∠BP A'=30°时,求点P的坐标(直接写出结果即可).18.将一个直角三角形纸片OAB放置在平面直角坐标系中,点O(0,0),点A(2,0),点B在第一象限,∠OAB=90°,∠B=30°,点P在边OB上(点P不与点O,B重合).(Ⅰ)如图①,当OP=1时,求点P的坐标;(Ⅱ)折叠该纸片,使折痕所在的直线经过点P,并与x轴的正半轴相交于点Q,且OQ =OP,点O的对应点为O',设OP=t.①如图②,若折叠后△O'PQ与△OAB重叠部分为四边形,O'P,O'Q分别与边AB相交于点C,D,试用含有t的式子表示O'D的长,并直接写出t的取值范围;②若折叠后△O'PQ与△OAB重叠部分的面积为S,当1≤t≤3时,求S的取值范围(直接写出结果即可).。

备战2025年中考数学(全国)秘籍14 二次函数图象的平移、翻折、旋转综合问题(3题型)(解析版)

备战2025年中考数学(全国)秘籍14 二次函数图象的平移、翻折、旋转综合问题(3题型)(解析版)

抢分秘籍14二次函数图象的平移、翻折、旋转综合问题(压轴通关)目录【中考预测】预测考向,总结常考点及应对的策略【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)二次函数图象的平移、翻折、旋转综合问题是全国中考的热点内容,更是全国中考的必考内容。

每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。

1.从考点频率看,二次函数图象的平移、翻折、旋转问题是几何综合,综合性比较强,同时也是高频考点、必考点,所以必须对几何和函数图象的性质定理很熟练和贯通。

2.从题型角度看,以解答题的最后一题或最后第二题为主,分值12分左右,着实不少!题型一二次函数图象的平移综合问题【例1】(2024·浙江温州·一模)如图,直线122y x =-+分别交x 轴、y 轴于点A ,B ,抛物线2y x mx =-+经过点A .(1)求点B 的坐标和抛物线的函数表达式;(2)若抛物线向左平移n 个单位后经过点B ,求n 的值.【答案】(1)点B 的坐标为()0,2,24y x x =-+;本题考查了待定系数法求二次函数解析式、一次函数的图象与性质、二次函数图象的平移,熟练掌握知识点的应用是解题的关键.【例2】(2024·江西赣州·模拟预测)如图,已知抛物线1L :2y x =-与直线1y =-相交于A ,B .(1)AB =______;(2)抛物线1L 随其顶点沿直线12y x =向上平移,得到抛物线2L ,抛物线2L 与直线1y =-相交于C ,D (点C 在点D 左边),已知抛物线2L 顶点M 的横坐标为m .①当6m =时,抛物线2L 的解析式是______,CD =______;②连接,MC MD ,当MCD △为等边三角形时,求点M 的坐标.∵MCD △是等边三角形,∴60MCE ∠=︒,∴12tan 2m ME MCE m CE +∠=+=1.(2024·陕西西安·三模)已知抛物线2:4C y ax bx =+-的对称轴为2x =,且过点()1,2A .(1)求抛物线C 的表达式及顶点坐标;(2)对称轴直线2x =与x 轴的交于点D ,与抛物线C 交于点N .平移抛物线C 得到抛物线C ',使得抛物线C '的顶点M 在直线2x =的右侧.若等腰三角形DNM 面积为8,请叙述平移过程.∵等腰三角形DNM面积为∴h为该等腰三角形的高,∴148 2h⨯=,∴()24,2M +,即()6,2M ,∴将抛物线C 向右平移4个单位长度,再向下平移2个单位长度,得到抛物线C '.当4DM DN ==时,如图,可得()6,0M ,∴将抛物线C 向右平移4个单位长度,再向下平移4个单位长度,得到抛物线C '.当NM ND =时,如图,可得()6,4M ∴将抛物线C 向右平移4个单位长度,得到抛物线C '.2.(2024·贵州安顺·一模)如图,二次函数212y x bx c =++与x 轴有两个交点,其中一个交点为(1,0)A -,且图象过点(1,2)B ,过A ,B 两点作直线AB .(1)求该二次函数的表达式,并用顶点式来表示;(2)将二次函数212y x bx c =++向左平移1个单位,得函数2y =__________;2y 与y 轴的交点坐标为(3)在(2)的条件下,将直线AB 向下平移(0)n n >个单位后与函数2y 的图象有唯一交点,求n 的值.3.(2024·安徽池州·二模)如图,抛物线2Ly ax bx c =++∶与x 正半轴交于点(3,0)A ,与y 轴交于点(0,3)B ,对称轴为直线1x =.(1)求直线AB 的解析式及抛物线的解析式;(2)如图①,点P 为第一象限抛物线上一动点,过点P 作PC x ⊥轴,垂足为C ,PC 交AB 于点D ,求当点P 的横坐标为多少时,PD AD +最大;(3)如图②,将抛物线2L y ax bx c =++∶向左平移得到抛物线L ',直线AB 与抛物线L '交于M 、N 两点,若点B 是线段MN 的中点,求抛物线'L 的解析式.(1)①写出a 与b 的数量关系______;②证明:抛物线与直线22y x =-+有两个交点;(2)如图2,抛物线经过点()1,1--,将此抛物线记为1F ,把抛物线1F 先向左平移2个单位长度,再向上平移1个单位长度,得抛物线2F .①求抛物线2F 与x 轴的交点坐标;②点P 为抛物线1F 上一动点,过点P 作x 轴的垂线,交抛物线2F 于点Q ,连接PQ ,以点P 为圆心、PQ 的长为半径作P .当P 与x 轴相切时,求点P 的坐标.特例感知(1)如图1,对于抛物线()()111332y x x =---+,()21432y x x =--+,()()311532y x x =-+-+,()()412632y x x =-+-+,下列结论正确的序号是________.①抛物线1y ,2y ,3y ,4y 的对称轴是直线2x =;②抛物线1y ,2y ,3y ,4y 由抛物线212y x =-依次向上平移2个单位长度得到;③抛物线1y ,2y ,3y ,4y 与直线3y =的交点中,对称轴两侧相邻两点之间的距离相等.概念形成把满足()()12232n y x n x n =-+---+的抛物线称为“族抛物线”.知识应用如图2,“族抛物线”n y 的顶点依次为1M ,2M ,3M ,4M ,…,n M .(2)试求线段1n n M M +的长.(用含n 的代数式表示)(3)“族抛物线”1y ,2y ,3y ,…,n y 上分别有点1P ,2P ,3P ,…,n P ,它们的横坐标分别是2,3,4,…,1n +.试判断点1P ,2P,3P ,…,n P 是否在同一条直线上,如果在,求出此直线的解析式;如果不在,请说明理由.【详解】解:(1)()()111332y x x =---+213222x x =-++()217222x =--+,∴抛物线的对称轴为直线2x =,顶点坐标为72,2⎛⎫ ⎪⎝⎭;()21432y x x =--+21232x x =-++()21252x =--+,∴抛物线的对称轴为直线2x =,顶点坐标为()2,5;()()311532y x x =-+-+2111222x x =-++()2115222x =--+,∴抛物线的对称轴为直线2x =,顶点坐标为152,2⎛⎫ ⎪⎝⎭;()()412632y x x =-+-+21292x x =-++()212112x =--+,∴抛物线的对称轴为直线2x =,顶点坐标为()2,11;①抛物线1y ,2y ,3y ,4y 的对称轴是直线2x =,故①正确;②抛物线1y ,2y ,3y ,4y 由抛物线()2122y x =--向上平移得到,但不是2个单位,故②错误;③抛物线()()111332y x x =---+与直线3y =的交点坐标为()11,3B ,()13,3A ;抛物线()21432y x x =--+与直线3y =的交点坐标为()20,3B ,()24,3A ;抛物线()()311532y x x =-+-+与直线3y =的交点坐标为()31,3B -,()35,3A ;抛物线()()412632y x x =-+-+与直线3y =的交点坐标为()42,3B -,()46,3A ;∴抛物线1y ,2y ,3y ,4y 与直线3y =的交点中,对称轴两侧相邻两点之间的距离相等,故③正确.综上分析可知,正确的是①③;(2)∵()()12232n y x n x n =-+---+()2214432x x n =---++()2212322n x =--+,∴“族抛物线”n y 的顶点坐标为22,32n n M ⎛⎫+ ⎪⎝⎭,则()2112,32n n M +⎡⎤++⎢⎥⎢⎥⎣⎦,∴()22112133222n n n n n M M ++⎛⎫+=+-+= ⎪⎝⎭;(3)把2x =代入()2117222y x =--+得:172y =,则172,2P ⎛⎫ ⎪⎝⎭;把3x =代入()221252y x =--+得:292y =,则293,2P ⎛⎫ ⎪⎝⎭;把4x =代入()23115222y x =--+得:3112y =,则3114,2P ⎛⎫ ⎪⎝⎭;把5x =代入()2412112y x =--+得:4132y =,则4135,2P ⎛⎫ ⎪⎝⎭;把1x n =+代入()2212322n n y x =--++得:52n y n =+,则51,2n P n n ⎛⎫++ ⎪⎝⎭;∴点3、4、n 在直线12上,∴点1P ,2P ,3P ,…,n P 在同一条直线上.【点睛】本题主要考查了二次函数的综合应用,二次函数的性质,求一次函数解析,解题的关键是数形结合,熟练掌握二次函数的性质.题型二二次函数图象的翻折综合问题【例1】(2024·湖北孝感·一模)如图1,抛物线254y ax bx =++与x 轴相交于1,02A ⎛⎫ ⎪⎝⎭、5,02B ⎛⎫ ⎪⎝⎭两点,与y 轴交于点C ,连接BC ,抛物线顶点为点M .(1)直接写出a ,b 的值及点M 的坐标;(2)点N 为抛物线对称轴上一点,当AN CN +最小时,求点N 的坐标;(3)平移直线BC 得直线y mx n =+.①如图2,若直线y mx n =+过点M ,交x 轴于点D ,在x 轴上取点7,06E ⎛⎫ ⎪⎝⎭,连接EM ,求∠DME 的度数.②把抛物线254y ax bx =++在x 轴下方图象沿x 轴翻折得到新图象(如图3).当直线y mx n =+与新图象有两个公共点时,请直接写出n 的取值范围.则3,02H ⎛⎫ ⎪⎝⎭,∴1MH =,3122DH ⎛⎫=--= ⎪⎝⎭在Rt DMH △中,=DM DH ∵7,06E ⎛⎫ ⎪⎝⎭,∴715DE ⎛⎫=--=,则翻折后的图象的解析式为y=-∵直线BC解析式为1524 y x=-+,直线BC平移后的解析式为1 y=-本题考查用待定系数法求二次函数解析式、解直角三角形的应用、勾股定理、一元二次方程的根与判别式的关系、解一元一次方程及解二元一次方程组,熟练利用待定系数法求得二次函数解析式是解题的关键.【例2】(2024·四川德阳·模拟预测)学习了二次函数后,我们发现抛物线的形状由二次函数的二次项系数决定.已知抛物线()2440y ax ax a =-->.(1)如图1,将抛物线244y ax ax =--在直线4y =-下方的图象沿该直线翻折,其余部分保持不变,得到一个新的函数图象“W ”.翻折后,抛物线顶点A 的对应点A '恰好在x 轴上,求抛物线244y ax ax =--的对称轴及a 的值;(2)如图2,抛物线()2440y ax ax a =-->的图象记为“G ”,与y 轴交于点B ;过点B 的直线与(1)中的图象“W ”(2)x >交于P ,C 两点,与图象“G ”交于点D .①当13a =时,求证:PC CD =;②当1a ≠时,请用合适的式子表示PC PD(直接写结果).【答案】(1)2x =,1a =;作CN x ∥轴,过点D 作DN 由各点横坐标可得:4PM =∴PM CN =.∵PM x ∥轴,CN x ∥轴,∴∥PM CN ,∴DCN CPM ∠=∠.∵DN CN CM PM ⊥⊥,,由各点的横坐标可知4PQ k =+∵CQ PQ DT PT ⊥⊥,,∴CQ DT .∴CPQ DPT ∽.则()2211PC PQ k a PD PT k a a===++.当1a >时,如图3,作PQ x ∥轴,过点C 作CQ x ⊥轴,交PQ 于点Q ,过点D 作DT x ⊥轴交PQ 于点T .由各点的横坐标可知4(4)2PQ k k k =+--=,()()144k a a k PT k a a++=--=,∵CQ PQ DT PT ⊥⊥,,∴CQ DT ,∴CPQ DPT ∽.则()2211PC PQ k a PD PT k a a===++.综上所述,用含a 的式子表示PC PD为21a a +1.(2022·湖南衡阳·中考真题)如图,已知抛物线2y x x 2=--交x 轴于A 、B 两点,将该抛物线位于x 轴下方的部分沿x 轴翻折,其余部分不变,得到的新图象记为“图象W ”,图象W 交y 轴于点C .(1)写出图象W 位于线段AB 上方部分对应的函数关系式;(2)若直线y x b =-+与图象W 有三个交点,请结合图象,直接写出b 的值;(3)P 为x 轴正半轴上一动点,过点P 作PM y ∥轴交直线BC 于点M ,交图象W 于点N ,是否存在这样的点P ,使CMN 与OBC △相似?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由.题型三二次函数图象的旋转综合问题【例1】(新考法,拓视野)(2024·江西南昌·一模)如图、在平面直角坐标系xOy 中,抛物线21:23C y x x =-++与x 轴交于点A ,点B (点A 在点B 的左侧),与y 轴交于点C ,P 为抛物线1C 的顶点,连接PB ,将抛物线1C 绕点O 旋转180︒得到抛物线2C .(1)求抛物线2C 的解析式.(2)连接AC ,BC ,求sin ACB ∠的值.(3)连接CP ,Q 是抛物线2C 上的点,若满足QCO PBC ∠=∠,求点Q 的坐标.1解得,121,3x x =-=,∴()()()0,3,1,0,3,0C A B -,又()221:2314C y x x x =-++=--+,,则111022ABC S AC BE =⨯=⨯ ∴1212610510BE AC ===,∴61025sin 532BE ACB BC ∠===∵QCO PBC ∠=∠,∴tan tan QCO PBC ∠=∠=设点Q 的坐标为(2,2m m m +∴213233m m m -=--+,解得,122,3m m =-=,∵点A 关于原点对称的点∴1OA '=,连接CA ',则有:tan A CO '∠∴tan tan ,A CO PBC '∠=∠∴点Q 与点A '重合,∴()1,0Q ,本题主要考查二次函数的图象与性质,中心对称的性质以及与解直角三角形相关的计算.【例2】(2023·陕西西安·模拟预测)已知抛物线21:22L y ax x =--与x 轴相交于A 、B 两点(点B 在点A 的左侧),点A 的坐标是(4,0),与y 轴相交于点C ,将抛物线L 绕点(2,0)旋转180︒得到抛物线1L .(1)求抛物线1L 的函数表达式.(2)将抛物线1L 向左或向右平移,得到抛物线2L ,2L 与x 轴相交于A '、B '两点(点B '在点A '的左侧),与y 轴相交于点C ',要使2A B C ABC S S '''=△△,求所有满足条件的抛物线2L 的函数表达式.(2)当0x =时,1(4y =∴抛物线219(1)44y x =--由题可知AB A B ''=,要使2A B C ABC S S '''=△△,则19【点睛】此题考查了二次函数的图象和性质、二次函数的平移和旋转、待定系数法等知识,熟练掌握二次函数的图象和性质及平移规律是解题的关键.1.(2023·河南周口·二模)如图1,抛物线21y ax bx c =++分别交x 轴于()1,0A -,()3,0B 两点,且与y 轴交于点()0,3C -.(1)求抛物线的表达式及顶点P 的坐标.(2)如图2,将该抛物线绕点()4,0旋转180︒.①求旋转后的抛物线的表达式.②旋转后的抛物线顶点坐标为Q ,且与x 轴的右侧交于点D ,顺次连接A ,P ,D ,Q ,求四边形APDQ 的面积.【答案】(1)223y x x =--,()1,4-(2)①()247y x =-+-;②40【分析】(1)根据函数的交点式设二次函数的表达式为()()13y a x x =+-,将点()0,3C -代入即可求解,再把二次函数变换成顶点式即可求出点P 的坐标;(2)①根据旋转的特点,设旋转后抛物线的顶点坐标为(),m n ,可知()4,0为顶点()1,4P -和(),Q m n 的中点,根据中点坐标公式可求旋转后函数的顶点坐标,由此即可求解;②根据题意求出点D 的坐标,由,,,A P D Q 的坐标,图形结合得AQD APD APDQ S S S =+△△四边形,由此即可求解.2.(2023河北廊坊二模)如图,抛物线1,其顶点B 的纵坐标为2-,点M 的坐标为(),0(m 0m >),将抛物线1L 绕点M 旋转180︒得到抛物线2L ,点A 对应点为点C ,点B 对应点为点D .(1)求抛物线1L 的表达式;(2)试用含m 的代数式表示出点D 的坐标,并直接写出抛物线2L 的表达式;(3)若直线y t =(t 为常数)与抛物线1L 、2L 均有交点,请直接写出t 的取值范围.【答案】(1)2221224()y x x x=+-=+(2)()21,2D m +,22212()y x m =---+(3)22t -≤≤【分析】(1)根据题意求得顶点坐标,设抛物线的解析式为2(1)2y a x =+-,将原点坐标代入求得a 的值,即可求得抛物线的解析式,(2)过点B 作BE x ⊥轴于E ,过点D 作DF x ⊥轴于F ,证明(AA )S BEM DFM ≌ ,进而求得()21,2D m +,根据旋转的性质即可求得抛物线2L 的解析式,(3)根据当直线(y t t =为常数)在点B 与点D 之间运动时,与抛物线1L 、2L 均有交点,B 点的纵坐标为2-,D 点的纵坐标为2,即可求得t 的范围,【详解】(1) 抛物线1L 经过坐标原点和点()2,0A -,∴抛物线1L 的对称轴为直线1x =-.顶点B 的纵坐标为2-,∴抛物线1L 的顶点B 的坐标为()1,2--.∴设抛物线的解析式为2(1)2y a x =+-.抛物线1L 经过坐标原点,120a ∴⨯-=.2a ∴=.∴抛物线1L 的表达式为:2221224()y x x x =+-=+.(2) 点M 为旋转中心,MA MC ∴=,MB MD =.∴四边形ABCD 为平行四边形.过点B 作BE x ⊥轴于E ,过点D 作DF x ⊥轴于F ,如图,90BEM DFM ∠=∠=︒ ,BME DMF ∠=∠,∴(AA )S BEM DFM ≌ .ME MF ∴=,BE DF =.()1,2B -- ,1OE ∴=,2BE =.2DF ∴=.点M 的坐标为(),0(0)m m >,OM m ∴=.1ME OM OE m ∴=+=+.1MF ME m ∴==+.21OF OM MF m ∴=+=+.∴()21,2D m +.将抛物线1L 绕点M 旋转180︒得到抛物线2L ,∴抛物线2L 的解析式为:22212()y x m =---+.(3) 直线(y t t =为常数)是与x 轴平行的直线,∴当直线(y t t =为常数)在点B 与点D 之间运动时,与抛物线1L 、2L 均有交点.B 点的纵坐标为2-,D 点的纵坐标为2,t ∴的取值范围为22t -≤≤.【点睛】本题主要考查了二次函数的综合运用,待定系数法求函数的解析式,二次函数的顶点坐标,对称轴,平行四边形的性质,三角形的面积.利用点的坐标表示相应线段的长度是解题的关键.3.(2023·河北邯郸·二模)如图1,抛物线2:28L y ax ax a =++-与x 轴相交于A ,B 两点(点A 在,点B 的左侧),已知点B 的横坐标是1,抛物线L 的顶点为D ,点P 从原点开始沿x 轴正半轴运动,将抛物线L 绕点P 旋转180︒后得到抛物线1L ,顶点E 的横坐标为h .(1)求a 的值及顶点D 的坐标;(2)当点P 与点B 重合时,求抛物线1L 的解析式:(3)如图2,明明设计小游戏:有一等边三角形MNK (MN 与x 轴平行),边长为5,顶点M 的坐标为1,6(),当抛物线1L 与MNK △有公共点时(含边界),MNK △会变色,此时抛物线1L 被称为“美好曲线”,请直接写出抛物线1L 为“美好曲线”时,点E 横坐标h 的取值范围.【答案】(1)2a =;(1,8)--(2)22(3)8y x =--+(3)17h ≤≤【分析】(1)将(1,0)B 代入228y ax ax a =++-中,求出a 值后即可得解;(2)连接DE ,作DH x ⊥轴于点H ,作EM x ⊥轴于点M ,证出()DBH EBM AAS ≅ ,抛物线1L 的顶点E 的坐标,然后根旋转的性质即可得解;(3)设(),0P m ,利用D ,E 关于点P 成中心对称,利用中点坐标公式得出()21,8E m +,()()21,023,0G m F m -+,,用含m 的式子表示出1L 的解析式,根据旋转的性质和新定义讨论出m 的范围,进而可得出h 的取值范围.【详解】(1)由题意可知,点B 坐标为(1,0),将(1,0)B 代入228y ax ax a =++-中,得2a =∴抛物线L 的解析式为222462(1)8y x x x =+-=+-∴顶点D 的坐标为(1,8)--;(2)如图,连接DE ,作DH x ⊥轴于点H ,作EM x ⊥轴于点M ,根据题意,点D ,E 关于点(1,0)B 成中心对称,DE ∴过点B ,且DB EB =,在DBH △和EBM △中,90,,,DHB EMB DBH EBM DB EB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()DBH EBM AAS ∴≅ ,8EM DH ∴==,2BM BH ==,∴抛物线1L 的顶点E 的坐标为(3,8),抛物线1L 由L 绕点P 旋转180︒后得到,∴抛物线1L 的函数表达式为22(3)8y x =--+;(3)设(),0P m ∵D ,E 关于点P 成中心对称,()1,8D --∴根据中心对称的性质,得出P 为DE 的中点∴()21,8E m +同理可得()()21,023,0G m F m -+,【点睛】本题考查二次函数的综合应用,图形的旋转,新定义二次项系数a确定函数的形状,形状相同.开口方向相同则二次项系数相等,若形状相同,开口方向相反,则二次项系数互为相反数,根据二次项系数和顶点坐标直接写出二次函数的解析式是关键.。

备考2021年中考数学二轮复习:图形的变换_轴对称变换_翻折变换(折叠问题),综合题专训及答案

备考2021年中考数学二轮复习:图形的变换_轴对称变换_翻折变换(折叠问题),综合题专训及答案

14、
(2020安徽.中考模拟) 如图,在矩形
中,连接 点 为 上一点,使得
连接 交
于点 ,作
交 的延长线于点 .
(1) 求证:

(2) 若
求 的长.
(3) 在(2)的条件下,将
沿着 对折得到
点 的对应点为点 ,连接 试求

周长.
15、
(2020金华.中考真卷) 如图,在△ABC中,AB= ,∠B=45°,∠C=60°.
1.答案:Biblioteka 2.答案:3.答案:
4.答案: 5.答案:
6.答案: 7.答案:
8.答案:
9.答案: 10.答案:
11.答案:
12.答案:
13.答案:
14.答案:
15.答案:
备考2021年中考数学二轮复习:图形的变换_轴对称变换_翻折变换(折叠问
题),综合题专训及答案
备 考 2021中 考 数 学 二 轮 复 习 : 图 形 的 变 换 _轴 对 称 变 换 _翻 折 变 换 ( 折 叠 问 题 ) , 综 合 题 专 训
1、
(2019无锡.中考真卷) 如图1,在矩形
中,BC=3,动点 从 出发,以每秒1个单位的速度,沿射线 方向
2、 (2019吴兴.中考模拟) 定义:长宽比为 : 为正整数 的矩形称为 矩形 下面,我们通过折叠的方式折出一个
矩形,如图a所示.
操作1:将正方形ABEF沿过点A的直线折叠,使折叠后的点B落在对角线AE上的点G处,折痕为AH . 操作2:过点G作CD∥AB,使点D、点C分别落在边AF , BE上.则四边形ABCD为 矩形.
重合.
(1) 求证:△ABG≌△C′DG; (2) 求tan∠ABG的值; (3) 求EF的长. 6、 (2019港口.中考模拟) 将平行四边形纸片ABCD按如图方式折叠,使点C与点A重合,点D落到D′处,折痕为EF .

备考2021年中考数学二轮复习:图形的变换_轴对称变换_翻折变换(折叠问题)

备考2021年中考数学二轮复习:图形的变换_轴对称变换_翻折变换(折叠问题)
(Ⅱ)如图②,在OA、OC边上选取适当的点E′、F,将△E′OF沿E′F折叠,使O点落在AB边上D′点,过D′作D′G∥OA 交E′F于T点,交OC于G点,设T的坐标为(x,y),求y与x之间的函数关系式,并直接写出自变量x的取值范围;
(Ⅲ)在(Ⅱ)的条件下,若OG=2 ,求△D′TF的面积.(直接写出结果即可)
由. 25、
(2020平阳.中考模拟) 如图,已知△ABC的顶点坐标分别为A(3,0),B(0,4),C(-3,0).动点M,N同时从A 点出发,M沿A→C,N沿折线A→B→C,均以每秒1个单位长度的速度移动,当一个动点到达终点C时,另一个动点也随之 停止移动,移动时间记为t秒.连接MN.
(1) 求直线BC的解析式; (2) 移动过程中,将△AMN沿直线MN翻折,点A恰好落在BC边上点D处,求此时t值及点D的坐标; (3) 当点M,N移动时,记△ABC在直线MN右侧部分的面积为S,求S关于时间t的函数关系式.
A.
B.
C.2 D.2
8、
(2020贵州.中考真卷) 如图,将矩形ABCD沿AC折叠,使点B落在点B′处,B′C交AD于点E,若∠l=25°,则∠2等于(

A . 25° B . 30° C . 50° D . 60° 9、 (2020镇江.中考真卷) 如图①,AB=5,射线AM∥BN,点C在射线BN上,将△ABC沿AC所在直线翻折,点B的对应点 D落在射线BN上,点P,Q分别在射线AM、BN上,PQ∥AB.设AP=x,QD=y.若y关于x的函数图象(如图②)经过点E(9 ,2),则cosB的值等于( )
23、 (2017宁夏回族自治区.中考真卷) 在△ABC中,M是AC边上的一点,连接BM.将△ABC沿AC翻折,使点B落在点D处 ,当DM∥AB时,求证:四边形ABMD是菱形.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备考2023年中考数学二轮复习-图形的变换_轴对称变换_翻折变换(折叠问题)翻折变换(折叠问题)专训单选题:1、(2017长安.中考模拟) 如图,对△ABC纸片进行如下操作:第1次操作:将△ABC沿着过AB中点D1的直线折叠,使点A落在BC边上的A1处,折痕D1E1到BC的距离记作h1,然后还原纸片;第2次操作:将△AD1E1沿着过AD1中点D2的直线折叠,使点A落在D1E1边上的A1处,折痕D1E1到BC的距离记作h2,然后还原纸片;…按上述方法不断操作下去…,经过第n次操作后得到的折痕Dn En到BC的距离记作hn ,若h=1,则hn的值不可能是()A .B .C .D .2、(2019吴兴.中考模拟) 如图,将长BC=8cm,宽AB=4cm的矩形纸片ABCD折叠,使点C与点A重合,则折痕EF的长为()A . 4cmB . cmC . cmD . c3、(2017长清.中考模拟) 如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为()A . 2B .C . 1D .4、(2017武汉.中考模拟) 如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A . 12B . 16C . 18D . 245、(2013百色.中考真卷) 如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA 与对角线DB重合,点A落在点A′处,折痕为DE,则A′E的长是()A . 1B .C .D . 26、(2015.中考真卷) 如图,在矩形OABC中,OA=8,OC=4,沿对角线OB折叠后,点A与点D重合,OD与BC交于点E,则点D的坐标是()A . (4,8)B . (5,8)C . (,)D . (,)7、(2012遵义.中考真卷) 如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为()A . 3B . 2C . 2D . 28、(2020南岸.中考模拟) △ABC中,∠ACB=45°,D为AC上一点,AD=5 ,连接BD,将△ABD沿BD翻折至△EBD,点A的对应点E点恰好落在边BC上.延长BC至点F,连接DF,若CF=2,tan∠ABD= ,则DF长为()A .B .C . 5D . 79、(2020鄞州.中考模拟) 三角形纸片ABC中,∠C=90°,甲折叠纸片使点A与点B 重合,压平得到的折痕长记为m;乙折叠纸片使得CA与CB所在的直线重合,压平得到的折痕长记为n,则m,n的大小关系是()A . m≤nB . m<nC . m≥nD . m>n10、(2020沙河.中考模拟) 欧几里得在《几何原本》中,记载了用图解法解方程的方法,类似地可以用折纸的方法求方程的一个正根。

下面是甲、乙两位同学的做法:甲:如图1,裁一张边长为1的正方形的纸片,先折出的中点,再折出线段,然后通过折叠使落在线段上,折出点的新位置,因而,类似地,在上折出点使。

此时,的长度可以用来表示方程的一个正根;乙:如图2,裁一张边长为1的正方形的纸片,先折出的中点,再折出线段N,然后通过沿线段折叠使落在线段上,折出点的新位置,因而。

此时,的长度可以用来表示方程的一个正根;甲、乙两人的做法和结果()。

A . 甲对,乙错B . 乙对,甲错C . 甲乙都对D . 甲乙都错填空题:11、(2013南京.中考真卷) 如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF=________cm.12、(2018铁西.中考模拟) 如图,矩形纸片ABCD,AD=4,AB=3,如果点E在边BC 上,将纸片沿AE折叠,使点B落在点F处,联结FC,当△EFC是直角三角形时,那么BE的长为________.13、(2018青浦.中考模拟) 如图,在△ABC中,AB=7,AC=6,∠A=45°,点D、E分别在边AB、BC上,将△BDE沿着DE所在直线翻折,点B落在点P处,PD、PE分别交边AC于点M、N,如果AD=2,PD⊥AB,垂足为点D,那么MN的长是________.14、(2017临沂.中考模拟) 如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为________.15、(2016东营.中考真卷) 如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5 cm,且tan∠EFC= ,那么矩形ABCD的周长为________cm.16、(2017荔湾.中考模拟) 如图,将正方形ABCD的边AB沿AE折叠,使点B落在对角线AC上,则∠BAE的度数为________.17、(2020鼓楼.中考模拟) 如图,正方形ABCD中,,点E在边CD上,且将沿AE对折至,延长EF交边BC于点G,连接AG、则的面积是________.18、如图,在Rt△ABC中,AB=4,BC=3 ,点D在斜边AB 上,连接CD把△ACD沿直线CD 翻折,使点A落在同一平面内的点A'处.当A'D与Rt△ABC的直角边垂直时, AD的长为.解答题:19、(2017河西.中考模拟) 注意:为了使同学们更好地解答本题的第(Ⅱ)问,我们提供了一种分析问题的方法,你可以依照这个方法按要求完成本题的解答,也可以选用其他方法,按照解答题的一般要求进行解答即可.如图,将一个矩形纸片ABCD,放置在平面直角坐标系中,A(0,0),B(4,0),D(0,3),M是边CD上一点,将△A DM沿直线AM折叠,得到△ANM.(Ⅰ)当AN平分∠MAB时,求∠DAM的度数和点M的坐标;(Ⅱ)连接BN,当DM=1时,求△ABN的面积;(Ⅲ)当射线BN交线段CD于点F时,求DF的最大值.(直接写出答案)在研究第(Ⅱ)问时,师生有如下对话:师:我们可以尝试通过加辅助线,构造出直角三角形,寻找方程的思路来解决问题.小明:我是这样想的,延长MN与x轴交于P点,于是出现了Rt△NAP,…小雨:我和你想的不一样,我过点N作y轴的平行线,出现了两个Rt△NAP,…20、(2017石家庄.中考模拟) 如图:△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边与点E,连接AD,若AE=4cm,求△ABD的周长.21、(2017绍兴.中考真卷) 如图1,已知□ABCD,AB//x轴,AB=6,点A的坐标为(1,-4),点D的坐标为(-3,4),点B在第四象限,点P是□ABCD边上的一个动点.若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x-1上,求点P 的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标(直接写出答案).22、(2018威海.中考真卷) 如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF= +1,求BC的长.23、(2020台州.中考真卷) 人字折叠梯完全打开后如图1所示,B,C是折叠梯的两个着地点,D是折叠梯最高级踏板的固定点. 图2是它的示意图,AB=AC,BD=140cm,∠BAC=40°,求点D离地面的高度DE.(结果精确到0. 1cm;参考数据sin70°≈0. 94,cos70°≈0. 34,sin20°≈0. 34,cos20°≈0. 94)(2019莲都.中考模拟) 如图,矩形纸片ABCD中,AB=4,点E在边CD上移动连接AE,将多边形ABCE沿直线AE翻折,得到多边形AB′CE,点B、C的对应点分别为点B′、C′(1)当点E与点C重合时,设B′C′与AD的交点为F,若AD=4DF,则AD=(2)若AD=6,B′C′的中点记为P,则DP的取值范围是25、在矩形中,,,F是对角线上不与点A,C重合的一点,过F作于E,将沿翻折得到,点G在射线上,连接.(1)如图1,若点A的对称点G落在上,,延长交于H,连接.①求证:;②求.(2)如图2,若点A的对称点G落在延长线上,,判断与是否全等,并说明理由.翻折变换(折叠问题)答案1.答案:C2.答案:C3.答案:D4.答案:A5.答案:C6.答案:C7.答案:B8.答案:B9.答案:A10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:16.答案:17.答案:18.答案:19.答案:20.答案:21.答案:22.答案:23.答案:24.答案:25.答案:。

相关文档
最新文档