(物理)物理牛顿运动定律练习题含答案含解析
【物理】物理牛顿运动定律练习题及答案及解析

(1)释放后,小滑块的加速度 al 和薄平板的加速度 a2; (2)从释放到小滑块滑离薄平板经历的时间 t。
【答案】(1) 4m/s2 ,1m/s2 ;(2) t 1s
【解析】
【详解】
(1)设释放后,滑块会相对于平板向下滑动,
对滑块 m :由牛顿第二定律有: mg sin 370 f1 ma1
其中 FN1 mg cos 370 , f1 1FN1
(1)小环的质量 m;
(2)细杆与地面间的倾角 a. 【答案】(1)m=1kg,(2)a=30°. 【解析】 【详解】
由图得:0-2s 内环的加速度 a= v =0.5m/s2 t
前 2s,环受到重力、支持力和拉力,根据牛顿第二定律,有: F1 mg sin ma 2s 后物体做匀速运动,根据共点力平衡条件,有: F2 mg sin
=4m/s2
解得滑雪者从静止开始到动摩擦因数发生变化所经历的时间:t= =1s
(2)由静止到动摩擦因素发生变化的位移:x1= a1t2=2m
动摩擦因数变化后,由牛顿第二定律得加速度:a2=
=5m/s2
由 vB2-v2=2a2(L-x1) 解得滑雪者到达 B 处时的速度:vB=16m/s (3)设滑雪者速度由 vB=16m/s 减速到 v1=4m/s 期间运动的位移为 x3,则由动能定理有:
;解得 x3=96m
速度由 v1=4m/s 减速到零期间运动的位移为 x4,则由动能定理有:
;解得 x4=3.2m
所以滑雪者在水平雪地上运动的最大距离为 x=x3+x4=96+ 3.2=99.2m
5.近年来,随着 AI 的迅猛发展,自动分拣装置在快递业也得到广泛的普及.如图为某自动 分拣传送装置的简化示意图,水平传送带右端与水平面相切,以 v0=2m/s 的恒定速率顺时 针运行,传送带的长度为 L=7.6m.机械手将质量为 1kg 的包裹 A 轻放在传送带的左端,经过 4s 包裹 A 离开传送带,与意外落在传送带右端质量为 3kg 的包裹 B 发生正碰,碰后包裹 B 在水平面上滑行 0.32m 后静止在分拣通道口,随即被机械手分拣.已知包裹 A、B 与水平面 间的动摩擦因数均为 0.1,取 g=10m/s2.求:
高考物理牛顿运动定律题20套(带答案)含解析

高考物理牛顿运动定律题20套(带答案)含解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,质量为M=0.5kg 的物体B 和质量为m=0.2kg 的物体C ,用劲度系数为k=100N/m 的竖直轻弹簧连在一起.物体B 放在水平地面上,物体C 在轻弹簧的上方静止不动.现将物体C 竖直向下缓慢压下一段距离后释放,物体C 就上下做简谐运动,且当物体C 运动到最高点时,物体B 刚好对地面的压力为0.已知重力加速度大小为g=10m/s 2.试求:①物体C 做简谐运动的振幅;②当物体C 运动到最低点时,物体C 的加速度大小和此时物体B 对地面的压力大小. 【答案】①0.07m ②35m/s 2 14N 【解析】 【详解】①物体C 放上之后静止时:设弹簧的压缩量为0x . 对物体C ,有:0mg kx = 解得:0x =0.02m设当物体C 从静止向下压缩x 后释放,物体C 就以原来的静止位置为平衡位置上下做简谐运动,振幅A =x当物体C 运动到最高点时,对物体B ,有:0()Mg k A x =- 解得:A =0.07m②当物体C 运动到最低点时,设地面对物体B 的支持力大小为F ,物体C 的加速度大小为a .对物体C ,有:0()k A x mg ma +-= 解得:a =35m/s 2对物体B ,有:0()F Mg k A x =++ 解得:F =14N所以物体B 对地面的压力大小为14N2.如图,质量分别为m A =1kg 、m B =2kg 的A 、B 两滑块放在水平面上,处于场强大小E=3×105N/C 、方向水平向右的匀强电场中,A 不带电,B 带正电、电荷量q=2×10-5C .零时刻,A 、B 用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s 末细绳断开.已知A 、B 与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s 2.求:(1)前2s 内,A 的位移大小; (2)6s 末,电场力的瞬时功率. 【答案】(1) 2m (2) 60W 【解析】 【分析】 【详解】(1)B 所受电场力为F=Eq=6N ;绳断之前,对系统由牛顿第二定律:F-μ(m A +m B )g=(m A +m B )a 1 可得系统的加速度a 1=1m/s 2; 由运动规律:x=12a 1t 12 解得A 在2s 内的位移为x=2m ;(2)设绳断瞬间,AB 的速度大小为v 1,t 2=6s 时刻,B 的速度大小为v 2,则v 1=a 1t 1=2m/s ;绳断后,对B 由牛顿第二定律:F-μm B g=m B a 2 解得a 2=2m/s 2;由运动规律可知:v 2=v 1+a 2(t 2-t 1) 解得v 2=10m/s电场力的功率P=Fv ,解得P=60W3.如图所示,水平地面上固定着一个高为h 的三角形斜面体,质量为M 的小物块甲和质量为m 的小物块乙均静止在斜面体的顶端.现同时释放甲、乙两小物块,使其分别从倾角为α、θ的斜面下滑,且分别在图中P 处和Q 处停下.甲、乙两小物块与斜面、水平面间的动摩擦因数均为μ.设两小物块在转弯处均不弹起且不损耗机械能,重力加速度取g.求:小物块(1)甲沿斜面下滑的加速度; (2)乙从顶端滑到底端所用的时间;(3)甲、乙在整个运动过程发生的位移大小之比. 【答案】(1) g(sin α-()2sin sin cos hg θθμθ-【解析】 【详解】(1) 由牛顿第二定律可得F 合=Ma 甲Mg sin α-μ·Mg cos α=Ma 甲 a 甲=g(sin α-μcos α)(2) 设小物块乙沿斜面下滑到底端时的速度为v ,根据动能定理得W 合=ΔE k mgh -μmgcos θ·θsin h=212mv v=cos 21sin gh θμθ⎛⎫- ⎪⎝⎭a 乙=g (sin θ-μcos θ) t =()2sin sin cos hg θθμθ-(3) 如图,由动能定理得Mgh -μ·Mg cos α·sin hα-μ·Mg (OP -cos sin h αα)=0mgh -μmg cos θ·θsin h-μmg (OQ -cos sin h θθ)=0 OP=OQ根据几何关系得222211x h OP x h OQ ++甲乙4.高铁的开通给出行的人们带来了全新的旅行感受,大大方便了人们的工作与生活.高铁每列车组由七节车厢组成,除第四节车厢为无动力车厢外,其余六节车厢均具有动力系统,设每节车厢的质量均为m ,各动力车厢产生的动力相同,经测试,该列车启动时能在时间t 内将速度提高到v ,已知运动阻力是车重的k 倍.求: (1)列车在启动过程中,第五节车厢对第六节车厢的作用力;(2)列车在匀速行驶时,第六节车厢失去了动力,若仍要保持列车的匀速运动状态,则第五节车厢对第六节车厢的作用力变化多大? 【答案】(1)13m (v t +kg ) (2)1415kmg 【解析】 【详解】(1)列车启动时做初速度为零的匀加速直线运动,启动加速度为a =vt① 对整个列车,由牛顿第二定律得:F -k ·7mg =7ma ②设第五节对第六节车厢的作用力为T ,对第六、七两节车厢进行受力分析,水平方向受力如图所示,由牛顿第二定律得26F+T -k ·2mg =2ma , ③ 联立①②③得T =-13m (vt+kg ) ④ 其中“-”表示实际作用力与图示方向相反,即与列车运动相反. (2)列车匀速运动时,对整体由平衡条件得F ′-k ·7mg =0 ⑤设第六节车厢有动力时,第五、六节车厢间的作用力为T 1,则有:26F '+T 1-k ·2mg =0 ⑥ 第六节车厢失去动力时,仍保持列车匀速运动,则总牵引力不变,设此时第五、六节车厢间的作用力为T 2, 则有:5F '+T 2-k ·2mg =0, ⑦ 联立⑤⑥⑦得T 1=-13kmg T 2=35kmg 因此作用力变化ΔT =T 2-T 1=1415kmg5.在水平长直的轨道上,有一长度为L 的平板车在外力控制下始终保持速度v 0做匀速直线运动.某时刻将一质量为m 的小滑块轻放到车面的中点,滑块与车面间的动摩擦因数为μ,此时调节外力,使平板车仍做速度为v 0的匀速直线运动.(1)若滑块最终停在小车上,滑块和车之间因为摩擦产生的内能为多少?(结果用m ,v 0表示)(2)已知滑块与车面间动摩擦因数μ=0.2,滑块质量m =1kg ,车长L =2m ,车速v 0=4m/s ,取g =10m/s 2,当滑块放到车面中点的同时对该滑块施加一个与车运动方向相同的恒力F ,要保证滑块不能从车的左端掉下,恒力F 大小应该满足什么条件? 【答案】(1)2012m v (2)6F N ≥【解析】解:根据牛顿第二定律,滑块相对车滑动时的加速度mga g mμμ==滑块相对车滑动的时间:0v t a=滑块相对车滑动的距离2002v s v t g=-滑块与车摩擦产生的内能Q mgs μ= 由上述各式解得2012Q mv =(与动摩擦因数μ无关的定值) (2)设恒力F 取最小值为1F ,滑块加速度为1a ,此时滑块恰好达到车的左端,则: 滑块运动到车左端的时间011v t a = 由几何关系有:010122v t Lv t -= 由牛顿定律有:11F mg ma μ+= 联立可以得到:10.5s t=,16F N =则恒力F 大小应该满足条件是:6F N ≥.6.某天,张叔叔在上班途中沿人行道向一公交车站走去,发现一辆公交车正从身旁的平直公路驶过,此时,张叔叔的速度是1m/s ,公交车的速度是15m/s ,他们距车站的距离为50m .假设公交车在行驶到距车站25m 处开始刹车.刚好到车站停下,停车10s 后公交车又启动向前开去.张叔叔的最大速度是6m/s ,最大起跑加速度为2.5m/s 2,为了安全乘上该公交车,他用力向前跑去,求:(1)公交车刹车过程视为匀减速运动,其加速度大小是多少. (2)分析张叔叔能否在该公交车停在车站时安全上车. 【答案】(1)4.5m/s 2 (2)能 【解析】试题分析:(1)公交车的加速度221110 4.5/2v a m s x -==- 所以其加速度大小为24.5/m s (2)汽车从相遇处到开始刹车时用时:11153x x t s v -==汽车刹车过程中用时:1210103v t s a -== 张叔叔以最大加速度达到最大速度用时:32322v v t s a -== 张叔叔加速过程中的位移:2323·72v v x t m +== 以最大速度跑到车站的时间243437.26x x t s s v -==≈ 因341210t t t t s +<++,张叔叔可以在汽车还停在车站时安全上车. 考点:本题考查了牛顿第二定律、匀变速直线运动的规律.7.2019年1月3日10时26分.中国嫦娥四号探测器成功着陆在月球背面南极艾特肯盆地内的冯·卡门撞击坑内。
(物理)物理牛顿运动定律的应用练习题含解析

(物理)物理牛顿运动定律的应用练习题含解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,光滑水平面上静置一长木板A ,质量M =4kg ,A 的最前端放一小物块B (可视为质点),质量m =1kg ,A 与B 间动摩擦因数μ=0.2.现对木板A 施加一水平向右的拉力F ,取g =10m/s 2.则:(1)若拉力F 1=5N ,A 、B 一起加速运动,求A 对B 的静摩擦力f 的大小和方向; (2)为保证A 、B 一起加速运动而不发生相对滑动,求拉力的最大值F m (设最大静摩擦力与滑动摩擦力相等);(3)若拉力F 2=14N ,在力F 2作用t =ls 后撤去,要使物块不从木板上滑下,求木板的最小长度L【答案】(1)f = 1N ,方向水平向右;(2)F m = 10N 。
(3)木板的最小长度L 是0.7m 。
【解析】 【详解】(1)对AB 整体分析,由牛顿第二定律得:F 1=(M +m )a 1 对B ,由牛顿第二定律得:f =ma 1联立解得f =1N ,方向水平向右;(2)对AB 整体,由牛顿第二定律得:F m =(M +m )a 2对B ,有:μmg =ma 2联立解得:F m =10N(3)因为F 2>F m ,所以AB 间发生了相对滑动,木块B 加速度为:a 2=μg =2m/s 2。
木板A 加速度为a 3,则:F 2-μmg =Ma 3解得:a 3=3m/s 2。
1s 末A 的速度为:v A =a 3t =3m/s B 的速度为:v B =a 2t =2m/s 1s 末A 、B 相对位移为:△l 1=2A Bv v t -=0.5m 撤去F 2后,t ′s 后A 、B 共速 对A :-μmg =Ma 4可得:a 4=-0.5m/s 2。
共速时有:v A +a 4t ′=v B +a 2t ′可得:t ′=0.4s 撤去F 2后A 、B 相对位移为:△l 2='2A Bv v t -=0.2m 为使物块不从木板上滑下,木板的最小长度为:L =△l 1+△l 2=0.7m 。
(物理)物理牛顿运动定律的应用练习题含答案

(物理)物理牛顿运动定律的应用练习题含答案一、高中物理精讲专题测试牛顿运动定律的应用1.如图,有一质量为M =2kg 的平板车静止在光滑的水平地面上,现有质量均为m =1kg 的小物块A 和B (均可视为质点),由车上P 处开始,A 以初速度=2m/s 向左运动,同时B 以=4m/s 向右运动,最终A 、B 两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求:(1)开始时B 离小车右端的距离;(2)从A 、B 开始运动计时,经t=6s 小车离原位置的距离。
【答案】(1)B 离右端距离(2)小车在6s 内向右走的总距离:【解析】(1)设最后达到共同速度v ,整个系统动量守恒,能量守恒解得:,A 离左端距离,运动到左端历时,在A 运动至左端前,木板静止,,解得B 离右端距离(2)从开始到达共速历时,,,解得小车在前静止,在至之间以a 向右加速:小车向右走位移接下来三个物体组成的系统以v 共同匀速运动了小车在6s 内向右走的总距离:【点睛】本题主要考查了运动学基本公式、动量守恒定律、牛顿第二定律、功能关系的直接应用,关键是正确分析物体的受力情况,从而判断物体的运动情况,过程较为复杂.2.一个弹簧测力计放在水平地面上,Q 为与轻弹簧上端连在一起的秤盘,P 为一重物,已知P 的质量M 10.5kg =,Q 的质量m 1.5kg =,弹簧的质量不计,劲度系数k 800/N m =,系统处于静止.如图所示,现给P 施加一个方向竖直向上的力F ,使它从静止开始向上做匀加速运动,已知在前0.2s 内,F 为变力,0.2s 以后,F 为恒力.求力F 的最大值与最小值.(取g 210/)m s =【答案】max 168N F =min 72N F = 【解析】试题分析:由于重物向上做匀加速直线运动,故合外力不变,弹力减小,拉力增大,所以一开始有最小拉力,最后物体离开秤盘时有最大拉力 静止时由()M m g kX += 物体离开秤盘时212x at =()k X x mg ma --= max F Mg Ma -=以上各式代如数据联立解得max 168N F =该开始向上拉时有最小拉力则min ()()F kX M m g M m a +-+=+解得min 72N F =考点:牛顿第二定律的应用点评:难题.本题难点在于确定最大拉力和最小拉力的位置以及在最大拉力位置时如何列出牛顿第二定律的方程,此时的弹簧的压缩量也是一个难点.3.如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6m/s 的速度运动,运动方向如图所示.一个质量为2kg 的物体(物体可以视为质点),从h=3.2m 高处由静止沿斜面下滑,物体经过A 点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,重力加速度g=10m/s 2,求:(1)物体第一次到达A 点时速度为多大?(2)要使物体不从传送带上滑落,传送带AB 间的距离至少多大?(3)物体随传送带向右运动,最后沿斜面上滑的最大高度为多少? 【答案】(1)8m/s (2)6.4m (3)1.8m 【解析】 【分析】(1)本题中物体由光滑斜面下滑的过程,只有重力做功,根据机械能守恒求解物体到斜面末端的速度大小;(2)当物体滑到传送带最左端速度为零时,AB 间的距离L 最小,根据动能定理列式求解;(3)物体在到达A 点前速度与传送带相等,最后以6m/s 的速度冲上斜面时沿斜面上滑达到的高度最大,根据动能定理求解即可. 【详解】(1)物体由光滑斜面下滑的过程中,只有重力做功,机械能守恒,则得:212mgh mv =解得:8m/s v ==(2)当物体滑动到传送带最左端速度为零时,AB 间的距离L 最小,由动能能力得:2102mgL mv μ-=-解得:228m 6.4m 220.510v L g μ===⨯⨯ (3)因为滑上传送带的速度是8m/s 大于传送带的速度6m/s ,物体在到达A 点前速度与传送带相等,最后以6m/s v =带的速度冲上斜面,根据动能定理得:2102mgh mv '-=-带得:226m 1.8m 2210v h g '===⨯带【点睛】该题要认真分析物体的受力情况和运动情况,选择恰当的过程,运用机械能守恒和动能定理解题.4.如图所示,质量为m=5kg 的长木板B 放在水平地面上,在木板的最右端放一质量也为m=5kg 的物块A (可视为质点).木板与地面间的动摩擦因数μ1=0.3,物块与木板间的动摩擦因数μ2.=0.2,现用一水平力F=60N 作用在木板上,使木板由静止开始匀加速运动,经过t=1s ,撤去拉力,设物块与木板间的最大静摩擦力等于滑动摩擦力,210/g m s =,求:(1)拉力撤去时,木板的速度v B ;(2)要使物块不从木板上掉下,木板的长度L 至少为多大; (3)在满足(2)的条件下,物块最终将停在右端多远处.【答案】(1)V B =4m/s ;(2)L=1.2m ;(3)d=0.48m 【解析】【分析】对整体运用牛顿第二定律,求出加速度,判断物块与木板是否相对滑动,对物块和系统分别运用动量定理求出拉力撤去时,长木板的速度;从撤去拉力到达到共同速度过程,对物块和长木板分别运用动量定理求出撤去拉力后到达到共同速度的时间t 1,分别求出撤去拉力前后物块相对木板的位移,从而求出木板的长度对木板和物块,根据动能定理求出物块和木板的相对位移,再由几何关系求出最终停止的位置. (1)若相对滑动,对木板有:212B F mg mg ma μμ--⋅=,得:24/B a m s =对木块有2A mg ma μ=,22/A a m s =所以木块相对木板滑动撤去拉力时,木板的速度4/B B v a t m s ==,2/A A v a t m s == (2)撤去F 后,经时间t 2达到共同速度v ;由动量定理22B mgt mv mv μ=-22122B mgt mgt mv mv μμ--=-,可得20.2t s =,v=2.4m/s在撤掉F 之前,二者的相对位移11122B A v v x t t ∆=- 撤去F 之后,二者的相对位移22222B A v v v v x t t ++∆=- 木板长度12 1.2L x x m =∆+∆=(3)获得共同速度后,对木块,有22102A mgx mv μ-=-, 对木板有()2211202B mg mg x mv μμ-=- 二者的相对位移3A B x x x ∆=-木块最终离木板右端的距离1230.48d x x x m =∆+∆-∆=【点睛】本题综合性很强,涉及到物理学中重要考点,如牛顿第二定律、动能定理、动量定理、运动学公式,关键是明确木板和木块的运动规律和受力特点.5.如图所示,一质量M =40kg 、长L =2.5m 的平板车静止在光滑的水平地面上. 一质量m =10kg 可视为质点的滑块,以v 0=5m/s 的初速度从左端滑上平板车,滑块与平板车间的动摩擦因数μ=0.4,取g =10m/s 2.(1)分别求出滑块在平板车上滑行时,滑块与平板车的加速度大小;(2)计算说明滑块能否从平板车的右端滑出.【答案】(1),(2)恰好不会从平板车的右端滑出.【解析】根据牛顿第二定律得对滑块,有,解得对平板车,有,解得.设经过t时间滑块从平板车上滑出滑块的位移为:.平板车的位移为:.而且有解得:此时,所以,滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.答:滑块与平板车的加速度大小分别为和.滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.点睛:对滑块受力分析,由牛顿第二定律可求得滑块的加速度,同理可求得平板车的加速度;由位移关系可得出两物体位移间相差L时的表达式,则可解出经过的时间,由速度公式可求得两车的速度,则可判断能否滑出.6.如图所示,质量M=8kg的小车放在光滑水平面上,在小车左端加一水平推力F=8N,当小车向右运动的速度达到1.5m/s时,在小车前端轻轻地放上一个大小不计,质量为m=2kg 的小物块,物块与小车间的动摩擦因数为0.2,小车足够长.求:(1)小物块刚放上小车时,小物块及小车的加速度各为多大?(2)经多长时间两者达到相同的速度?共同速度是多大?(3)从小物块放上小车开始,经过t=1.5s小物块通过的位移大小为多少?(取g=10m/s2).【答案】(1)2m/s2,0.5m/s2(2)1s,2m/s(3)2.1m【解析】【分析】(1)利用牛顿第二定律求的各自的加速度;(2)根据匀变速直线运动的速度时间公式以及两物体的速度相等列式子求出速度相等时的时间,在将时间代入速度时间的公式求出共同的速度;(3) 根据先求出小物块在达到与小车速度相同时的位移,再求出小物块与小车一体运动时的位移即可.【详解】(1) 根据牛顿第二定律可得小物块的加速度:m/s2小车的加速度:m/s2(2)令两则的速度相等所用时间为t,则有:解得达到共同速度的时间:t=1s共同速度为:m/s(3) 在开始1s内小物块的位移m此时其速度:m/s在接下来的0.5s小物块与小车相对静止,一起做加速运动且加速度:m/s2这0.5s内的位移:m则小物块通过的总位移:m【点睛】本题考查牛顿第二定律的应用,解决本题的关键理清小车和物块在整个过程中的运动情况,然后运用运动学公式求解.同时注意在研究过程中正确选择研究对象进行分析求解.7.如图所示,水平传送带长为L=11.5m,以速度v=7.5m/s沿顺时针方向匀速转动.在传送带的A 端无初速释放一个质量为m =1kg 的滑块(可视为质点),在将滑块放到传送带的同时,对滑块施加一个大小为F =5N 、方向与水平面成θ=370的拉力,滑块与传送带间的动摩擦因数为μ=0.5,重力加速度大小为g =10m/s 2,sin37°=0.6,cos37°=0.8.求滑块从A 端运动到B 端的过程中:(1)滑块运动的时间;(2)滑块相对传送带滑过的路程. 【答案】(1)2s (2)4m 【解析】 【分析】(1)滑块滑上传送带后,先向左匀减速运动至速度为零,以后向右匀加速运动.根据牛顿第二定律可求得加速度,再根据速度公式可求出滑块刚滑上传送带时的速度以及速度相同时所用的时间; 再对共速之后的过程进行分析,明确滑块可能的运动情况,再由动力学公式即可求得滑块滑到B 端所用的时间,从而求出总时间.(2)先求出滑块相对传送带向左的位移,再求出滑块相对传送带向右的位移,即可求出滑块相对于传送带的位移. 【详解】(1)滑块与传送带达到共同速度前 , 设滑块加速度为1a ,由牛顿第二定律:()13737Fcos mg Fsin ma μ︒+-︒=解得:217.5/a m s =滑块与传送带达到共同速度的时间:111vt s a == 此过程中滑块向右运动的位移:11 3.752vs t m == 共速后 , 因 ()3737Fcos mg Fsin μ︒>-︒ ,滑块继续向右加速运动, 由牛顿第二定律:()23737Fcos mg Fsin ma μ︒--︒=解得:220.5/a m s =根据速度位移关系可得:()22212Bvv a L s -=- 滑块到达 B 端的速度:8/B v m s = 滑块从共速位置到 B 端所用的时间:221B v vt s a -== 滑块从 A 端到 B 端的时间:122t t t s =+=(2)0∼1s 内滑块相对传送带向左的位移:111 3.75s vt s m =-=V ,1s ∼2s 内滑块相对传送带向右的位移: ()2120.25s L s vt m =--=V, 0∼2s 内滑块相对传送带的路程: 124s s s m =+=V V V8.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。
(物理)物理牛顿运动定律的应用练习题及答案及解析

(物理)物理牛顿运动定律的应用练习题及答案及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图,有一质量为M=2kg的平板车静止在光滑的水平地面上,现有质量均为m=1kg的小物块A和B(均可视为质点),由车上P处开始,A以初速度=2m/s向左运动,同时B 以=4m/s向右运动,最终A、B两物块恰好停在小车两端没有脱离小车,两物块与小车间的动摩擦因数都为μ=0.1,取,求:(1)开始时B离小车右端的距离;(2)从A、B开始运动计时,经t=6s小车离原位置的距离。
【答案】(1)B离右端距离(2)小车在6s内向右走的总距离:【解析】(1)设最后达到共同速度v,整个系统动量守恒,能量守恒解得:,A离左端距离,运动到左端历时,在A运动至左端前,木板静止,,解得B离右端距离(2)从开始到达共速历时,,,解得小车在前静止,在至之间以a向右加速:小车向右走位移接下来三个物体组成的系统以v共同匀速运动了小车在6s内向右走的总距离:【点睛】本题主要考查了运动学基本公式、动量守恒定律、牛顿第二定律、功能关系的直接应用,关键是正确分析物体的受力情况,从而判断物体的运动情况,过程较为复杂.2.如图所示,长木板质量M=3 kg,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg的物块A,右端放着一个质量也为m=1 kg的物块B,两物块与木板间的动摩擦因数均为μ=0.4,AB之间的距离L=6 m,开始时物块与木板都处于静止状态,现对物块A施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.(1).为使物块A 与木板发生相对滑动,F 至少为多少?(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mga m s mμ-==∕ 木板和B 的加速度大小为:B mga M m=+μ=1m/s 2设物块滑到木板右端所需时间为t ,则:x A -x B =L即221122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/sAB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '机械能守恒:12mv a 2+12mv B 2=12mv a '2+12mv B '2 解得:v A '=2m/s v B '=8m/s3.如图所示,有1、2、3三个质量均为m =1kg 的物体,物体2与物体3通过不可伸长轻绳连接,跨过光滑的定滑轮,设长板2到定滑轮足够远,物体3离地面高H =5.75m , 物体1与长板2之间的动摩擦因数μ=O .2.长板2在光滑的桌面上从静止开始释放,同时物体1(视为质点)在长板2的左端以v =4m/s 的初速度开始运动,运动过程中恰好没有从长板2的右端掉下.(取g =10m/s²)求: (1)长板2开始运动时的加速度大小;(2)长板2的长度0L ;(3)当物体3落地时,物体1在长板2的位置.【答案】(1)26m /s (2)1m (3)1m 【解析】 【分析】 【详解】 设向右为正方向(1)物体1: -μmg = ma 1 a 1=–μg = -2m/s 2 物体2:T +μmg = ma 2 物体3:mg –T = ma 3 且a 2= a 3由以上两式可得:22g ga μ+==6m/s 2 (2)设经过时间t 1二者速度相等v 1=v +a 1t=a 2t 代入数据解t 1=0.5s v 1=3m/s112v v x t +==1.75m 122v tx ==0.75m 所以木板2的长度L 0=x 1-x 2=1m(3)此后,假设物体123相对静止一起加速 T =2m a mg —T =ma 即mg =3m a 得3g a =对1分析:f 静=ma =3.3N >F f =μmg =2N ,故假设不成立,物体1和物体2相对滑动 物体1: a 3=μg =2m/s 2 物体2:T —μmg = ma 4 物体3:mg –T = ma 5 且a 4= a 5 得:42g ga μ-==4m/s 2 整体下落高度h =H —x 2=5m 根据2124212h v t a t =+解得t 2=1s物体1的位移23123212x v t a t =+=4m h -x 3=1m 物体1在长木板2的最左端 【点睛】本题是牛顿第二定律和运动学公式结合,解题时要边计算边分析物理过程,抓住临界状态:速度相等是一个关键点.4.如图所示,从A 点以v 0=4m/s 的水平速度抛出一质量m =1kg 的小物块(可视为质点),当物块运动至B 点时,恰好沿切线方向进入固定在地面上的光滑圆弧轨道BC ,其中轨道C 端切线水平。
高中物理牛顿运动定律的应用试题(有答案和解析)及解析

高中物理牛顿运动定律的应用试题(有答案和解析)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.质量为m =0.5 kg 、长L =1 m 的平板车B 静止在光滑水平面上,某时刻质量M =l kg 的物体A (视为质点)以v 0=4 m/s 向右的初速度滑上平板车B 的上表面,在A 滑上B 的同时,给B 施加一个水平向右的拉力.已知A 与B 之间的动摩擦因数μ=0.2,重力加速度g 取10 m/s 2.试求:(1)如果要使A 不至于从B 上滑落,拉力F 大小应满足的条件; (2)若F =5 N ,物体A 在平板车上运动时相对平板车滑行的最大距离. 【答案】(1)1N 3N F ≤≤ (2)0.5m x ∆= 【解析】 【分析】物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度,结合牛顿第二定律和运动学公式求出拉力的最小值.另一种临界情况是A 、B 速度相同后,一起做匀加速直线运动,根据牛顿第二定律求出拉力的最大值,从而得出拉力F 的大小范围. 【详解】(1)物体A 不滑落的临界条件是A 到达B 的右端时,A 、B 具有共同的速度v 1,则:222011-22A Bv v v L a a =+ 又: 011-=A Bv v v a a 解得:a B =6m/s 2再代入F +μMg =ma B 得:F =1N若F <1N ,则A 滑到B 的右端时,速度仍大于B 的速度,于是将从B 上滑落,所以F 必须大于等于1N当F 较大时,在A 到达B 的右端之前,就与B 具有相同的速度,之后,A 必须相对B 静止,才不会从B 的左端滑落,则由牛顿第二定律得: 对整体:F =(m +M )a 对物体A :μMg =Ma 解得:F =3N若F 大于3N ,A 就会相对B 向左滑下 综上所述,力F 应满足的条件是1N≤F ≤3N(2)物体A 滑上平板车B 以后,做匀减速运动,由牛顿第二定律得:μMg =Ma A 解得:a A =μg =2m/s 2平板车B 做匀加速直线运动,由牛顿第二定律得:F +μMg =ma B 解得:a B =14m/s 2两者速度相同时物体相对小车滑行最远,有:v 0-a A t =a B t 解得:t =0.25s A 滑行距离 x A =v 0t -12a A t 2=1516m B 滑行距离:x B =12a B t 2=716m 最大距离:Δx =x A -x B =0.5m 【点睛】解决本题的关键理清物块在小车上的运动情况,抓住临界状态,结合牛顿第二定律和运动学公式进行求解.2.如图所示为货场使用的传送带的模型,传送带倾斜放置,与水平面夹角为37θ=︒,传送带AB 足够长,传送带以大小为2m/s υ=的恒定速率顺时针转动。
物理牛顿运动定律的应用练习题20篇及解析

对
B: a2' /
s2
经分析,B 先停止运动,A 最后恰滑至 B 的最右端时速度减为零,故 v2 v2 L 2a1 2a2 ' 2
【详解】
(1)A、B 间恰要相对滑动的临界条件是二者间达到最大静摩擦力,
对 A,由牛顿第二定律可知,加速度 a 1g 2m / s2 ;
对 B,由牛顿第二定律可知, Fmin 2 m M g 1mg Ma ,
/
解得 Fmin 18N
(2)F=20N>18N,二者间会相对滑动,对 B,由牛顿第二定律;
(1)若 A、B 间相对滑动,F 的最小值;
(2)当 F=20N 时,若 F 的作用时间为 2s,此时 B 的速度大小;
/
(3)当 F=16N 时,若使 A 从 B 上滑下,F 的最短作用时间.
【答案】(1) Fmin 18N (2) v2 20m / s (3) t2 1.73s
【解析】
【分析】
(1)对铅块、木板根据牛顿第二定律求解加速度大小;(2)从开始到滑落过程,铅块和 木板的位移之差等于 L,求解时间;(3)根据两种临界态:到右端恰好共速以及共速后不 能从左侧滑下求解力 F 的范围; 【详解】
(1)铅块: 1mg ma1
解得 a1=4m/s2; 对木板: 1mg 2 (M m)g Ma2 解得 a2=2m/s2
1 2
a1t12
1 2
a2t12
1.25m
撤掉 F 后:物块相对于木板上滑,加速度仍未 a1=8m/s2,减速上滑
而木板: Mg sin 2 (M m)g cos 1mg cos Ma2
则: a2 12m/s2 ,方向沿斜面向下,减速上滑
由于: Mg sin 1mg cos 2 (M m)g cos
高三物理牛顿运动定律试题答案及解析

高三物理牛顿运动定律试题答案及解析1.某兴趣小组对一辆自制遥控小车的性能进行研究。
他们让这辆小车在水平的直轨道上由静止开始运动,并将小车运动的全过程记录下来,通过处理转化为v―t图象,如图所示(除2s―10s时间段图象为曲线外,其余时间段图象均为直线)。
已知在小车运动的过程中,2s―14s时间段内小车的功率保持不变,在14s末停止遥控而让小车自由滑行。
小车的质量为1.0kg,可认为在整个运动过程中小车所受到的阻力大小不变。
则A.小车所受到的阻力大小为1.5NB.小车匀速行驶阶段发动机的功率为9WC.小车在加速运动过程中位移的大小为48mD.小车在加速运动过程中位移的大小为39m【答案】AB【解析】小车在14s-18s内在阻力作用下做匀减速运动,加速度由牛顿定律可知,小车所受到的阻力大小为f=ma=1.5N,选项A 正确;小车匀速行驶阶段发动机的功率为P=Fv=fv=1.5×6W=9W,选项B正确;在0-2s匀加速阶段的位移为,在2-10s 内由动能定理:,解得x2=39m所以小车在加速运动过程中位移的大小为3m+39m=42m,选项CD 错误。
【考点】v-t图线;牛顿定律的应用及动能定理。
2.洗车档的内、外地面均水平,门口的斜坡倾角为θ 。
质量为m的Jeep洗完车出来,空挡滑行经历了如图所示的三个位置。
忽略车轮的滚动摩擦,下列说法正确的是A.在三个位置Jeep都正在做加速运动B.在乙位置Jeep正在做匀速运动C.在甲位置Jeep受到的合力等于mgsinθD.在丙位置Jeep的加速度小于gsinθ【答案】BD【解析】甲图和丙图中Jeep的前轮和后轮分别在斜坡上,所以是加速运动,而乙图中Jeep的前后轮均在水平面上,所以做运动运动,选项B正确,A错误;在甲位置和丙位置Jeep受到的合力均小于mgsinθ ,加速度均小于gsinθ, D正确,C错误。
【考点】牛顿定律的应用。
3.如图1所示,质量为m=2kg的小滑块放在质量为M=1kg的长木板上,已知小滑块与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数为μ2,开始小滑块和长木板均处于静止状态,现对小滑块施加向右的水平拉力F,水平拉力F随时间的变化规律如图2所示,已知小滑块始终未从长木板上滑下且μ1=0.2,μ2=0.1,g=10m/s2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.素有“陆地冲浪”之称的滑板运动已深受广大青少年喜爱。如图所示是由足够长的斜直轨 道,半径 R1=2m 的凹形圆弧轨道和半径 R2=3.6m 的凸形圆弧轨道三部分组成的模拟滑板组 合轨道,这三部分轨道依次平滑连接,且处于同一竖直平面内.其中 M 点为凹形圆弧轨道 的最低点,N 点为凸形圆弧轨道的最高点,凸形圆弧轨道的圆心 O 与 M 点在同一水平面 上,一可视为质点、质量为 m=1kg 的滑板从斜直轨道上的 P 点无初速度滑下,经 M 点滑 向 N 点,P 点距水平面的高度 h=3.2m,不计一切阻力,g 取 10m/s2.求:
(1)甲沿斜面下滑的加速度; (2)乙从顶端滑到底端所用的时间; (3)甲、乙在整个运动过程发生的位移大小之比.
2h
【答案】(1) g(sin α-μcos α) (2) g sin sin cos (3)1:1
【解析】 【详解】 (1) 由牛顿第二定律可得 F 合=Ma 甲 Mgsin α-μ·Mgcos α=Ma 甲 a 甲=g(sin α-μcos α) (2) 设小物块乙沿斜面下滑到底端时的速度为 v,根据动能定理得 W 合=ΔEk
P 的加速度 a2 gsin gcos 2m / s2
后段运动有:
L
s
vt2
1 2
a2t22
,
解得: t2 1s ,
到达 A 端的速度 vA v a2t2 6mห้องสมุดไป่ตู้/ s
动能
EkA
1 2
mvA2
900J
【点睛】
传送带问题中,需要注意的是传送带的速度与物体受到之间的关系,当二者速度相等时,
(3)撤去 F 后,根据动能定理得:-Wf=0- 1 mv2 2
可得物块克服摩擦力做的功为:Wf=7.2J 【点睛】 本题考查了牛顿第二定律和运动学公式的综合运用,知道加速度是联系力学和运动学的桥 梁,要注意撤去 F 前后摩擦力的大小是变化的,但动摩擦因数不变.
7.如图所示,水平传送带长 L=5m,以速度 v=2m/s 沿图示方向匀速运动现将一质量为 1kg 的小物块轻轻地放上传送带的左端,已知小物块与传送带间的动摩擦因数为
(1)物块运动 2s 时速度最大.由运动学公式有:x= v t 2
可得物块运动的最大速度为: v 2x 2 6 6m / s t2
(2)物块匀加速直线运动的加速度为:a= v 6 =3m/s2. t2
设物块所受的支持力为 N,摩擦力为 f,根据牛顿第二定律得:F-f=ma N-mg=0,又 f=μN 联立解得:F=3.2N
所以 vM=8 m/s. (1 分)
(2)对滑板滑至 M 点时受力分析,由牛顿第二定律得 FN-mg=m (2 分)
所以 FN=42 N. (1 分)
(3)滑板滑至 N 点时对轨道恰好无压力,则有 mg=m (2 分)
得 vN=6 m/s (1 分) 滑板从 P 点到 N 点机械能守恒,则有 mgh′=mgR2+ mv (3 分) 解得 h′=5.4 m. (2 分) 考点:机械能守恒定律 【名师点睛】本题考查的是牛顿第二定律和机械能守恒结合的问题。滑板由 P 点滑至 M 点,只有重力做功,机械能守恒。然后分别对 M 和 N 两点进行受力分析,运用牛顿第二定 律。此题便可很快解出。
传送带 .已知某传送带与水平面成 37 角,皮带的 AB 部分长 L 5.8m,皮带以恒定的 速率 v 4m / s 按图示方向传送,若在 B 端无初速度地放置一个质量 m 50kg 的救灾物资 P( 可视为质点 ) ,P 与皮带之间的动摩擦因数 0.5( 取 g 10m / s2 , sin37 0.6) ,
(1)物体与斜面间的动摩擦因数 μ (2)拉力 F 的大小 (3)物体沿斜面向上滑行的最大距离 s. 【答案】(1)μ=0.5 (2) F=15N (3)s=7.5m 【解析】 【分析】 由速度的斜率求出加速度,根据牛顿第二定律分别对拉力撤去前、后过程列式,可拉力和 物块与斜面的动摩擦因数为 μ.根据 v-t 图象面积求解位移. 【详解】
(物理)物理牛顿运动定律练习题含答案含解析 一、高中物理精讲专题测试牛顿运动定律
1.如图甲所示,一倾角为 37°,长 L=3.75 m 的斜面 AB 上端和一个竖直圆弧形光滑轨道 BC 相连,斜面与圆轨道相切于 B 处,C 为圆弧轨道的最高点。t=0 时刻有一质量 m=1 kg 的物 块沿斜面上滑,其在斜面上运动的 v–t 图象如图乙所示。已知圆轨道的半径 R=0.5 m。(取 g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:
即保持相对静止 .属于中档题目.
3.如图所示,水平地面上固定着一个高为 h 的三角形斜面体,质量为 M 的小物块甲和质 量为 m 的小物块乙均静止在斜面体的顶端.现同时释放甲、乙两小物块,使其分别从倾角 为 α、θ 的斜面下滑,且分别在图中 P 处和 Q 处停下.甲、乙两小物块与斜面、水平面间 的动摩擦因数均为 μ.设两小物块在转弯处均不弹起且不损耗机械能,重力加速度取 g.求: 小物块
s in
sin
OP=OQ
根据几何关系得 x甲 =
h2 OP2 1 =
x乙 h2 OQ2 1
4.如图甲所示,质量为 m=2kg 的物体置于倾角为 θ=37°的足够长的固定斜面上,t=0 时刻 对物体施以平行于斜面向上的拉力 F,t1=0.5s 时撤去该拉力,整个过程中物体运动的速度 与时间的部分图象如图乙所示,不计空气阻力,g=10m/s2,sin37°=0.6,cos37°=0.8.求:
μ=0.2,g=10m/s2。求:
①物块从左端传送到右端需要的时间 ②物体在传送带上因摩擦而产生的热量 【答案】①3s ②2J 【解析】 【详解】 ①物体在传送带上开始做加速运动,共速后做匀速运动,开始的加速度为
;
加速的时间
加速的位移:
;
匀速的时间: 则物块从左端传送到右端需要的时间 t=t1+t2=3s; ②物体在传送带上因摩擦而产生的热量:
(1)由图象可知,物体向上匀减速时加速度大小为: a2
10 5 1 0.5
10m
/
s2
此过程有:mgsinθ+μmgcosθ=ma2 代入数据解得:μ=0.5
(2)由图象可知,物体向上匀加速时加速度大小为:a1= 10 m / s2 =20m/s2 0.5
此过程有:F-mgsinθ-μmgcosθ=ma1 代入数据解得:F=60N
(1)物块与斜面间的动摩擦因数 μ; (2)物块到达 C 点时对轨道的压力 FN 的大小; (3)试通过计算分析是否可能存在物块以一定的初速度从 A 点滑上轨道,通过 C 点后恰好能 落在 A 点。如果能,请计算出物块从 A 点滑出的初速度;如不能请说明理由。
【答案】(1)μ=0.5 (2) F'N=4 N (3) 【解析】 【分析】 由图乙的斜率求出物块在斜面上滑时的加速度,由牛顿第二定律求动摩擦因数;由动能定 理得物块到达 C 点时的速度,根据牛顿第二定律和牛顿第三定律求出)物块到达 C 点时对轨 道的压力 FN 的大小;物块从 C 到 A,做平抛运动,根据平抛运动求出物块到达 C 点时的速 度,物块从 A 到 C,由动能定律可求物块从 A 点滑出的初速度; 【详解】 解:(1)由图乙可知物块上滑时的加速度大小为 根据牛顿第二定律有: 解得 (2)设物块到达 C 点时的速度大小为 vC,由动能定理得:
求:
1 物资 P 从 B 端开始运动时的加速度.
2 物资 P 到达 A 端时的动能.
【答案】 1 物资 P 从 B 端开始运动时的加速度是10m / s2.2 物资 P 到达 A 端时的动能
是 900J. 【解析】
【分析】
(1)选取物体 P 为研究的对象,对 P 进行受力分析,求得合外力,然后根据牛顿第三定 律即可求出加速度;
v2 (2)解法一:P 达到与传送带有相同速度的位移 s 0.8m
2a1
以后物资 P 受到沿传送带向上的滑动摩擦力作用
根据动能定理:
mgsin
F
L
s
1 2
mvA2
1 2
mv2
到
A
端时的动能
EkA
1 2
mvA2
900J
解法二:P 达到与传送带有相同速度的位移 s v2 0.8m 2a1
以后物资 P 受到沿传送带向上的滑动摩擦力作用,
在最高点,根据牛顿第二定律则有: 解得: 由根据牛顿第三定律得: 物体在 C 点对轨道的压力大小为 4 N (3)设物块以初速度 v1 上滑,最后恰好落到 A 点
物块从 C 到 A,做平抛运动,竖直方向:
水平方向:
解得
,所以能通过 C 点落到 A 点
物块从 A 到 C,由动能定律可得:
解得:
2.地震发生后,需要向灾区运送大量救灾物资,在物资转运过程中大量使用了如图所示的
(1)滑板滑至 M 点时的速度大小; (2)滑板滑至 M 点时,轨道对滑板的支持力大小; (3)若滑板滑至 N 点时对轨道恰好无压力,求滑板的下滑点 P 距水平面的高度. 【答案】(1)8 m/s (2)42 N (3)5.4 m 【解析】
试题分析:(1)对滑板由 P 点滑至 M 点,由机械能守恒得 mgh= mv (2 分)
(3)由图象可知,物体向上滑行时间 1.5s,向上滑行过程位移为:
s= 1 ×10×1.5=7.5m 2
【点睛】
本题首先挖掘速度图象的物理意义,由斜率求出加速度,其次求得加速度后,由牛顿第二
定律求解物体的受力情况.
5.如图所示,斜面体 ABC 放在粗糙的水平地面上,滑块在斜面地端以初速度0 ,沿斜面 上滑。斜面倾角 370 ,滑块与斜面的动摩擦因数 。整个过程斜面体保持静止不动,
【解析】
【详解】
(1)若 0.8,滑块上滑过程中,由牛顿第二定律有: mgsin+mgcos=ma0 ,