三阶幻方1
有趣的数学游戏-三阶幻方

?
19 13
2倍角格=不相邻的两个边格之和 ?=(13+19)÷2=16
三条直线上的数字的和=幻方所有数字之和+2个?-(19+13) 幻和=一条直线上的三个数字之和 所有数字之和=3×幻和 所以:三条直线上的数字的和=幻方所有数字之和 则:?=(13+19)÷2
10
30
10
30
30
10
30
10
三阶幻方
风
子
编
辑
第一课 基础部分
幻方起源:大约两千多年前西汉时代,流传夏禹治水时,黄河中跃出一匹神马,马背上 驮着一幅图,人称「河图」;又洛水河中浮出一只神龟,龟背上有一张象征吉祥的图案 称为「洛书」.他们发现,这个图案每一列,每一行及对角线,加起来的数字和都是一样 的。
中国不仅拥有幻方的发明权,而且是对幻方进行深入研究的国家。公元13世纪的 数学家杨辉已经编制出3-10阶幻方。
30
5
30
5
5
30
5
30
原先每条边的和为:30+10+10=50 新的填法每条边的和为:50+15=65 总和减少,每边和增加,则应该把大数移到公共角的位置 则有:30+10+30=70 70-65=5 所以,四个10各减5,合计正好减了20.
22
30
26
22
30
26
22
30
26
22
30
26
30
26
2 9 31 20 27 22
7 32 3 25 23 21 6 1 35 24 19 26 29 36 4 11 18 13 34 5 30 16 14 12 33 28 8 15 10 17
三阶幻方

三阶幻方__________________________________________________________________________________ __________________________________________________________________________________能够根据三阶幻方的规律补充三阶幻方中的空格幻方起源于中国,传说在大禹治水时有神龟在洛水出现,背上有图,称为洛书.宋代学者朱熹在所著的《周易本义》卷首画出如下的洛书图,用现在的数字翻译出来,就是三阶幻方。
三阶幻方就是将九个自然数填在3×3(三行三列)的正方形内,使每一行、每一列以及每一条对角线上的三个数的和都相等.三阶幻方是一种特殊的数阵图。
【例1】将1~9这九个数填入下图,使它成为一个三阶幻方.分析:l+2+…+8+9=45所以,每行、每列、每条对角线的三个数的和是15(= 45÷3).从l到9中,三个不同的数相加等于15,只可能是9+5+1,9+4+2,8+6+1, 8+5+2,8+4+3,7+6+2,7+5+3, 6+5+4这八个式子.其中只有5出现四次,因此5一定在中心,在式子中出现三次的只有8、6、4、2这四个数,因此这四个数应当在四个角上.从而将三阶幻方完成,如图所示除了上图所示的答案外,如果8、6、4、2在四个角上的位置排得不同,9、7、3、1的位置也相应有所不同,那么还可以得到其他形式的三阶幻方.我们把这些只是形式不同而实质相同的结果看作是一个解,只要写出其中一个作为答案就可以了.【例2】.将1,3,5,7,…,1 7填入3×3的方格中,使它们成为一个三阶幻方.分析:将图9-2 中的1,2,3,…,9分别用l,3,5,…,17代替,得到下图.它就是所求的三阶幻方,每行、每列、每条对角线上的和都是27将2,4,6,…,18填入3×3的方格中,使它成为一个三阶幻方.【例3】如果1、4、7、10、13、16、19、22、25这9个数组成三阶幻方,那么每一行、每一列、每条对角线的和是多少?中央的那个数是多少?分析:总和是1+4+7+…+25=(1+25)×9÷2=117由于三行的和相等,所以每一行的和是117÷3=39.每一列、每一条对角线的和也是39两条对角线、第二列的总和是39×3,它也是第一行加第三行再加中央那个数的3倍,所以中央的那个数是(39×3-39×2)÷3=13一般地,三阶幻方中央的数,等于行(列)和除以3.行(列)和等于中央的数乘以3.【例4】下图是一个三阶幻方,已知3个数,请根据幻方性质填出其他的数.分析:由例3,每一行(每一列、每条对角线)的和是中央那个数的3倍,因此,现在每一行的和是15×3=45这样,就可以得出第三行第一个数是45 -6 –28=l1.第三行第三个数是45 -6 -15=24第三行第二个数是45 -11- 24 =10.同样,可得其他的数.最后得出三阶幻方如图所示.【例5】已知图中,每一行、每一列、每条对角线上3个数的乘积都相等.请填出其他的数.分析: 每一行、每一列、每条对角线的乘积都是3×6×12第一行的第一个数是3×6×12÷12÷1=18,第一列的第二个数是3×6×12÷18÷3 = 4.第二列的第三个数是3×6×12÷1÷6 = 36.第三列的第二个数是3×6×12÷4÷6=9.第三列的第三个数是3×6×12÷18÷6=2于是,得出下图【例6】已知下图是一个三阶幻方,每一行、每一列、每条对角线的和都等于2 037.求画有“?”的格子填的数是多少.分析:根据例3,中央的那个数是2 037÷3 = 679.第一行第二个数是2 037 - 679 –894=464第一行第三个数是?=2 037 - 447 - 464=1126.所以要填的数是l1261.用0到8这几个数构造个三阶幻方.2.将2,4,6,…,18填入3×3的方格中,使它成为一个三阶幻方.3.如果2、6、10、11、15、19、20、21、28可以组成一个三阶幻方,那么每一行、每一列、每条对角线的和是多少?中央的那个数是多少?4.下图是一个三阶幻方,请填出其他的数.5.已知图中,每一行、每一列、每条对角线上3个数的乘积都相等.请填出其他的数.1.用3、6、9、12、15、18、21、24、27这9个数作一个三阶幻方.2.用0、2、4、6、8、10、12、14、16这9个数作一个三阶幻方3.在空格中填数,使每一行、每一列、每条对角线的和都等于30.4.在空个格中填数,使每一行、每一列、每条对角线的和都等于30.5.用9个连续自然数组成三阶幻方,使每一行、每一列、每条对角线的和都是60._________________________________________________________________________________ _________________________________________________________________________________1.下图是一个三阶幻方.求“?”是多少.2.从1~13这13个数中选12个数填到下图,使每一横行的4个数的和相等,每一竖列的3个数的和也相等.这时所选的12个数是哪12个数?每一行的和是多少?每一列的和是多少?3.填好第7题的图4.在下图中,每个方格填一个数,使得每行、每列、每条对角线上的4个数都是1、3、5、7.带“☆”号的两个方格中的数的和是多少?5.将八个不同的数填入下图的空格中,使8个数的总和等于36.如果总和为37、38、39,你还能填吗?6.在3×3的正方形中,每个方格填一个自然数,使每一行、每一列、每条对角线上3个数的乘积都相等,并且其中有一个数是10.7.完成下图,使每一行、每一列、每条对角线上3个数的乘积都相等.。
三阶幻方的公式

三阶幻方的公式三阶幻方,又称“独一无二”,是人类最强大的数学游戏之一。
它被认为是世界上第一个数学游戏,因为它蕴含着各种解题技巧和深奥的数学原理。
三阶幻方的原理在欧洲最早由泰勒斯在1600年代提出,但他的原理不完整,所以无法用来解决此问题。
直到19世纪,在各个国家的探索和研究下,终于有了完整的解题公式。
三阶幻方的公式是其基本原理,也是整个游戏中最重要的部分。
三阶幻方用其特有的解题方法来求解,它是一种制定一定原则,通过利用计数、算法、图论等数学原理来求解问题的方法。
其关键在于要求填入每一个“盒子”中的数字符合一定的原则。
首先,每个盒子中应填入1至9的数字,每一行、每一列和每一个斜角方向的数字总和都必须相等,并且每个盒子中填入的数字都不能重复。
止匕外,还必须符合排布顺序的要求,即必须在上一个盒子中填入的数字按照设定的规则排列,以确保每一行、每一列和每一个斜角方向的数字总和相等。
有了公式,三阶幻方的游戏就变得容易多了,因为可以根据公式,快速算出每个盒子填入的数字,从而完成游戏。
公式可以分成几种方法,最典型的是“分解法”。
该法要求将一个三阶的幻方分解为三个二阶的幻方,然后分别求出每一个二阶的幻方的解。
止匕外,还有“重组法”、“树形法”、“枚举法”等,它们分别从不同的角度来研究三阶幻方,都有其独特的优势。
不同的方法会有不同的步骤,但它们的最终目的都是一致的:给定一系列数字,需要按照一定的规则来填入每个盒子,以得出图形最终结果。
数学家们的研究伴随着三阶幻方的公式的不断发展,使我们对其解题原理有了更深刻的理解。
从古代中国到当今的西方社会,三阶幻方都被人们所推崇,三阶幻方的公式成为研究者共同推展的一部分,也是我们认识数学原理的重要途径。
三阶幻方被称为“独一无二”,其本质就是要求结果独一无二,因此一定要认真按照一定的原则来完成每一个步骤,以确保游戏结果是唯一的。
三阶幻方的公式和原理,既可以用来解决数学问题,也可以用来训练人们的逻辑、思维能力。
三阶幻方的方法和其中的数字规律

三阶幻方的方法和其中的数字规律嘿,朋友们!今天咱来聊聊三阶幻方。
三阶幻方啊,就像是一个神秘的数字魔法阵。
你看哈,三阶幻方就是把九个数字填进一个3×3 的方格中,让每行、每列以及两条对角线上的数字之和都相等。
这听起来是不是挺神奇的?先来说说填三阶幻方的方法。
咱可以先把中间的数字确定下来,一般来说,中间这个数字就像是整个幻方的核心呐!那怎么确定呢?可以找这九个数字的中间数呀。
然后呢,再根据其他数字和中间数字的关系慢慢填。
这就好像是搭积木,一块一块地往上放,可有意思啦!再讲讲其中的数字规律。
你想想,九个数字在那方格中,怎么就能那么巧妙地达成那种神奇的平衡呢?这其中的规律可多着呢!每行、每列、对角线上的数字相互关联,就像一群小伙伴手牵手,谁也不能掉队。
比如说,相对的两个数字之和可能会相等,或者每行数字的间隔可能有某种规律。
咱举个例子哈,比如有这么一组数字1、2、3、4、5、6、7、8、9。
咱把 5 放在中间,然后试着填其他数字。
哎呀,你会发现,随着数字的填入,它们之间的关系越来越清晰,就像一幅神秘的画卷慢慢展开。
这感觉,就像在探索一个未知的宝藏一样刺激!三阶幻方可不只是个数学游戏哦,它在很多地方都有用呢!比如在一些谜题中,或者在设计图案的时候。
它就像是一把神奇的钥匙,可以打开很多奇妙的大门。
你说这三阶幻方是不是特别神奇?它就像一个小小的数字宇宙,充满了奥秘和惊喜。
咱可得好好研究研究,说不定能发现更多有趣的东西呢!所以啊,别小看了这小小的三阶幻方,它里面蕴含的智慧和乐趣可多着呢!大家都快来试试吧,感受一下数字魔法的魅力!。
巧求幻方—三阶幻方

规律1: 幻和=中间数×3
三 阶 幻 方
4
3 8
9
2
7 6
5
1
规律2:与中间数对应的上下、左右、 对角两个数字的和=中间数×2
三 阶 幻 方
4
3 8
9
2
7 6
5
1
练习1.
补全这个幻方。
9 4 11
10 8 6
5
12 7
练习2.
补全这个幻方。
7
4
12
16 11 6 10 18 15
三阶幻方怎么求呢?
ห้องสมุดไป่ตู้那我们就来一个“数字大换位”的游戏吧! 把1,2,3…9这9个数填入3×3的方格里,变成三阶幻方
1 4 7 5 2 3 3 4
9
2 5
8 1 三阶幻方有技巧,
8
9
6 换位
7 3数斜着先排好 7 , 8 6 上下左右要交换, 9 然后各自归位了 ! 1
归位
幻和=4+5+6=15
试一试(1)
• 把2、3、4、5、6、7、8、9、10 分别填入三阶方格中,每个数只用 一次,使每一横行、竖列、对角线 上三个数的和都相等.
试一试(1)
3 8 7
10
6 2
5
4
9
试一试(2)
• 把3、5、7、8、10、12、13、15、 17分别填入三阶方格中,每个数只 用一次,使每一横行、竖列、对角 线上三个数的和都相等.
试一试(2)
8 7 15
17
5
10 13 3 12
三阶幻方
如何把1、2、3、4、5、6、7、8、 9这9个不重复的数字填入下图,使每 一横行、竖列、对角线上的三个数字 的和都相等?
三阶幻方的解法最简单的口诀

三阶幻方的解法最简单的口诀三阶幻方是指一个 $3\\times 3$ 的矩阵,其中填入了 $1$ 至 $9$ 的数字,使得每个数字在该矩阵中出现且仅出现一次,并且每行、每列和两条对角线的数字和均相等。
解决三阶幻方问题最简单的口诀如下:1. 定义首先,我们需要明确一些基本的概念和定义。
矩阵:$m \\times n$ 的矩阵是一个由 $m$ 行、$n$ 列数字(称为元素)所组成的矩形数组,通常用方括号表示,如下所示:$$\\begin{bmatrix}a_{11} & a_{12} & \\cdots & a_{1n} \\\\a_{21} & a_{22} & \\cdots & a_{2n} \\\\\\vdots & \\vdots & \\ddots & \\vdots \\\\a_{m1} & a_{m2} & \\cdots & a_{mn}\\end{bmatrix}$$矩阵元素:矩阵中每一个数字称为矩阵元素。
对角线:矩阵中从左上角到右下角和从右上角到左下角的线称为对角线。
主对角线:从左上角到右下角的对角线称为主对角线。
副对角线:从右上角到左下角的对角线称为副对角线。
2. 解法接下来,我们将逐步介绍如何解决三阶幻方问题。
步骤 1:确定中间的数字由于每行、每列和两条对角线的数字和均相等,因此中间的数字必须是$5$。
$$\\begin{bmatrix}\\emptyset & \\emptyset & \\emptyset \\\\\\emptyset & 5 & \\emptyset \\\\\\emptyset & \\emptyset & \\emptyset\\end{bmatrix}$$步骤 2:填充四个角的数字要求每行、每列和两条对角线的数字和均相等,因此填充四个角的数字时需要保持对称。
三阶幻方

简单的三阶幻方1、什么是幻方?幻方起源于中国. 传说在大禹治水时,有只神龟在洛水中浮起,龟背上有奇特的图案,如右图. 人们称之为洛书.如果将龟背上的数字翻译出来,如下图.观察,你发现了什么?观察发现,上图的每行每列,斜着的三个数之和都是15. 像这样,将九个不同的自然数填在3×3(三行三列)的正方形内,使每行、每列以及每条对角线上的三个数和都相等,这样的图形就叫三阶幻方. 三阶幻方是一种特殊的数阵图.上面的三阶幻方中,15是这个幻方的和,简称幻和. 5是幻方最中心的数字,简称中心数. 罗伯法构造三阶幻方游戏:把1~9这9个数字按照要求填入下面的九宫格中?(1)把1~9依次按照从右上到左下的斜行顺序填入9个空白格中;(2)把最上面的“1”调到粗线框中第三行中间,最小面的“9”调到粗线框中第一行的中间。
最左边的“3”调到粗线框中第列的中间,最右边的“7”调到粗线框中第一列的中间。
(3)把粗线框中最后的结果填入右边的九宫格中算一算,九宫格中各行、各列及斜行的数字和,你有什么发现?三阶幻方的规律:1、幻和:各行、各列及斜行的和都是15,我们称它为幻和;幻和= 九个数之和 ÷3;2、中心数:幻和是中心数字的3倍;中间数=幻和÷3=(3+7)÷2=(1+9)÷2=(2+8)÷2=(6+4)÷23、左上角、右上角、左下角、右下角的四个数字依次是第2、第4、第6、第8个数字672159834四个角上的数字2=(3+1)÷2,8=(9+7)÷2;6=(3+9)÷2;4=(1+7)÷22、小试牛刀你能用上面的方法把2、4、6、8、10、12、、14、16、18这九个数字填入右面的九宫格中,使它构成三阶幻方吗?例1在图中填上合适的数,使每行、每列、每一条对角线的三个数的和都相等。
(1(2巩固练习:在下图的方格中填上适合的数,使每行、每列、每一条对角线的三个数的和都等于21。
三阶幻方公式简易口诀

三阶幻方公式简易口诀三阶幻方是指由1到9的九个数字组成的一个3x3的方阵,使得方阵中的每一行、每一列以及对角线上的数字之和都相等。
下面是一个简单的口诀来求解三阶幻方的公式:首先,我们需要把9个数字按照一定的规律填入到3x3的方阵中。
设置一个3x3的方阵如下:abcdefghi第一步:选取任意一个数字填入中间的位置,比如选取数字5,填入方阵的中心位置e:abcd5fghi第二步:根据魔方的特性,可以得出以下规律:1.真正的幻方中心位置的值将会是(n^2+1)/2,对于三阶幻方来说,中心位置的值为(3^2+1)/2=52.方阵的每个角的位置必须是n的倍数,对于三阶幻方来说,四个角的值即为1、3、7、9根据以上两个规律,我们可以进行以下步骤填充幻方:第三步:将数字1填入到方阵的上一个位置g(此处的上指的是在方阵中“上方”相对于中心位置e的方向):abc15fghi第四步:根据规律2,将数字9填入到方阵的下一个位置f(此处的下指的是在方阵中“下方”相对于中心位置e的方向):abc159ghi第五步:根据规律2,将数字3填入到方阵的下一个位置h(此处的下指的是在方阵中“下方”相对于中心位置e的方向):abc159g3i第六步:根据规律2,将数字7填入到方阵的下一个位置d(此处的下指的是在方阵中“下方”相对于中心位置e的方向):abc15973i第七步:根据规律1,将数字8填入到方阵的下一个位置b(此处的下指的是在方阵中“下方”相对于中心位置e的方向):a8c15973i第八步:根据规律1,将数字4填入到方阵的下一个位置f(此处的下指的是在方阵中“下方”相对于中心位置e的方向):a8c159734最终得到了一个三阶幻方。
利用以上口诀和规律,我们可以通过简单的步骤来构造三阶幻方。
通过这个口诀,我们可以快速而准确地创建出一个三阶幻方,仅需一些简单的数字填充操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 7 13 19 24
8 14 20 25 2
15 16 21 3 9
奇阶幻方的解法
我国数学家杨辉的《续古摘奇算经》对于 3 阶幻方 的构造方法是:“九子斜排,上下对易,左右相更,四 维挺进。”,具体操作如下图: 其结果为:“戴九履一,左七右三,二四为肩,六 八为足。” 1 4 7 5 2 3 3 4 5 9 2 7 4 9 2 7 5 3 8 1 6
幻方
8
3
1
5
6
7 幻方
4
9
2
幻方的定义
幻方:一般地, 把n2个不同数字 依次填入由n×n 个小方格构成的 正方形中。
使得横行、直 纵列以及两对 角线数字之和 都相等。
这样的一个图叫 做一个(n阶)幻 方。
各直线上各 数字之和叫 幻和。
幻方的历史
相传在公元前23世纪大 禹治水的时候,在黄河支 流洛水中,浮现出一个大 乌龟, 人们将乌甲上背有 9种花点的图案图案中的花 点数了一下 竟惊奇地发现9种花点数正巧 是1—9这9个数,各数位置的排 列也相当奇妙,后来人们就称 这个图案为洛书
我国汉朝的一本叫 《数术记遗》的书把 这样的图形叫“九宫 图”,宋朝数学家杨 辉把类似“九宫图” 的图形叫“纵横图”, 国外数学家把它叫做 “幻方”。
8 1 6 3 5 7 4 9 2
幻方有多少
3阶幻方只有1种
4阶幻方方有880种 5 阶 幻 方 有 275305224 种 ( 约 两 亿七千五百万) 7 阶幻方有 363916800 种(约三亿 六千四百万)
8阶幻方超过10亿种
分类
按照幻方阶数的奇偶性, 幻方可以分为奇数阶幻方 与偶数阶幻方
偶阶幻方
• 四阶幻方
16 5 9 4
2 11 7 14
3 10 6 15
13 8 12 1
•六阶幻方
10 1 34 33 5 28 29 23 22 11 18 8 30 12 17 24 21 7
2
9
26 19 14 15 35
例题2:
补 全 这 个 幻 方
15 3
12
7 10 13 8 17 5
9 5 1 2 7 6
13 11 9 7 5 15
6 8 18 12 14 4
8
4
10 16 2 12
17
12 15 9 19 5
5 25 0 35 10 15
17
13
19 25 11 21
11 5 8 23 2 17
•在图1所示的和方格表中填入合适的数,使得每行、 •每列以及每条对角线上的三个数的和相等。 8 •那么标有“☆”的方格内应填入的数是_______.
•在下面两幅图的每个空格中,填入7个自然数, •使得每行、每列、每条对角线上的三个数之和等于21
.
2 11 10 7 4 3 12 6
8
8
3
7
10
5
9
4
11
6
三阶质数幻方
下面介绍一个关于质数幻方的故事:有一次 某国的一个宫廷数学家领到了他一年的工资—— 1350 个银元后,一时来了灵感,竟然将这些银元 分成九堆,各堆银元的个数恰好组成一个很特别 的三阶幻方。他高兴地将得到的幻方给国王看了, 国王看后很是欣赏,但是他为其中没有一个数是 质数而深表遗憾(国王是一个对质数情有独钟的 人)。数学家胸有成竹地说:“如果您再给我九 个银元,我在每一堆中加一个,就能得到一个由 九个质数组成的三阶幻方。”
4
9
2
1.用3、6、9、12、15、18、21、24、27这9个数 作一个三阶幻方
24
3 18
9 15 21 12 27 6
1.请你将3~11这9个数字填入下面的方格中,使横、竖、斜行三个数的和相等。
10 3 8 5 7 9 6 11 4
三阶幻方的性质
规律1: 幻和=中间数×3
三 阶 幻 方
36 3 4 32 27
31 13 16 25 20 6
奇阶幻方
• 三阶幻方
• 特点:横的3行、纵的3列以及两对角线上各自的数 字之和都为15。
8 1 6 3 5 7 4 9 2
• 五阶幻方
特点:横的5行、 纵的5列以及两对 角线上各自的数 字之和都为65。
17 22 4 10 11
23 5 6 12 18
6
1
19
14
2
22
15
Merzirac法生成奇阶幻方(阶梯法) 在第一行居中的方格内放1,依次向右上 方填入2、3、4…,如果右上方已有数字, 则向下移一格继续填写。
1
1
3 2
1 2 1 5 6
1
1
3
4 1 3 4 5 2 6 7 2
3 4
8 3 4
5 2
1 5 6 7 2
3 4 8 3
2
1 5 6 7
8
9
6
8
1
6
类似的原理可以构造5阶、 7阶、9阶等奇数阶幻方。 下图给出了5阶幻方的构 造过程。
1 6
11 7
2
3
16
21 17
12
13
8
9
4
5
22
23
18
19 24 25
14
15 20
10
25子斜排
25 24 20
11
4 12
7
8
3
16
5
10
17
18 23 6
13
14 19 2 1
9
22 15
21
上下对易,左右相更
25 11 4 4 17 10 10 23 24 24 12 5 18 6 6 7 25 13 1 19 20 20 8 21 14 2 2 3 16 16 9 21 22 22 15
5
1
四维挺进
11 4 17
24 12 5
7 25 13
20 8 21
3 16 9
10
23
18
4
3 8
9
2
7 6
5
1
规律2:与中间数对应的上下、左右、 对角两个数字的和=中间数×2
三 阶 幻 方
4 3 8
9
2 7 6
5
1
规律3:角上的数字=对角相邻 的两数字和的一半
三 阶 幻 方
4 3
9 5
2 7
8
1
6
练习1:
17
4
12
6 11 16 10 18 5
练习2:
15
3 12 5
7 10 13 8 17
3 ☆ 7
64在空格Fra bibliotek填数,使每一行,每一列、每条对角线的和 都等于30.
13 5 12 9 10 11 8 15 7
用9个连续自然数组成三阶幻方, 使每一行、每一列、 每条对角线的和都是60
23 16 21 18 20 22 19 24 17
下图是一个三阶幻方。求“?”是多少
17 ?
19
13