2013年陕西省中考数学试题和答案
2013陕西中考数学试题及答案

2013陕西中考数学试题及答案2013年陕西省中考数学试题一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. -1B. 0C. 1D. 22. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 83. 以下哪个选项是二次方程 \( ax^2 + bx + c = 0 \) 的判别式?A. \( b^2 - 4ac \)B. \( b^2 + 4ac \)C. \( 4a^2 + b^2 \)D. \( a^2 - b^2 \)4. 一个圆的半径是5,那么它的面积是多少?A. 25B. 50C. 75D. 1005. 下列哪个是正比例函数?A. \( y = 3x^2 \)B. \( y = 2x \)C. \( y = x^2 \)D. \( y = x + 1 \)6. 一个数的平方根是4,这个数是多少?A. 16B. -16C. 8D. -87. 以下哪个选项是反比例函数?A. \( y = \frac{1}{x} \)B. \( y = x \)C. \( y = x^2 \)D. \( y = \frac{1}{x^2} \)8. 一个长方体的长、宽、高分别是10cm、8cm和6cm,那么它的体积是多少?A. 480B. 560C. 640D. 7209. 一个数的立方根是2,这个数是多少?A. 6B. 8C. 2D. 410. 以下哪个选项是指数函数?A. \( y = 2^x \)B. \( y = x^2 \)C. \( y = \log_2 x \)D. \( y = \sqrt{x} \)二、填空题(每题2分,共20分)11. 一个数的绝对值是5,这个数可以是________。
12. 一个数的相反数是-3,这个数是________。
13. 一个数的倒数是\( \frac{2}{3} \),这个数是________。
2013陕西西安中考数学(含解析)

15.如果一个正比例函数的图象与反比例函数 y
( x2 x1 )( y2 y1 ) 的值为__________.
6 的图象交于 A( x1 , y1 ) 、 B( x2 , y2 ) 两点,那么 x
5 / 13
23. (本题满分 8 分) 如图,直线 l 与⊙ O 相切于点 D .过圆心 O 作 EF∥l 交⊙ O 于 E 、 F 两点,点 A 是⊙ O 上一 点,连接 AE 、 AF .并分别延长交直线 l 于 B 、 C 两点. ( 1 )求证: ABC ACB 90 ; ( 2 )当⊙ O 的半径 R 5 , BD 12 时,求 tan ACB 的值.
3 8 3 5 AM 等于( MD
) .
2 3 4 5
B. D.
10.已知两点 A(5 , y1 ) 、 B(3 , y2 ) 均在抛物线 y ax2 bx c ( a 0 )上,点 C ( x0 , y0 ) 是该抛物 线的顶点,若 y1 y2≥y0 ,则 x0 的取值范围是( A. x0 5 C. 5 x0 1 B. x0 1 D. 2 x0 3 ) .
) .
1 x 0 4.不等式组 2 的解集为( 1 2 x 3
) .
1 2 1 2
A. x
1 2
B. x 1
C. 1 x
D. x
5. 我省某市五月份第二周连续七天的空气质量指数分别为:111 ,96 ,47 ,68 ,70 ,77 ,105 . 则 这七天空气质量指数的平均数是( A. 71.8 B. 77 ) . C. 82 D. 95.7 ) .
陕西省2013年中考数学试题(WORD版含答案)

陕西省2013年中考数学试题第Ⅰ卷(选择题 共30分)A 卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.下列四个数中最小的数是( ) A .-2B.0C.31-D.5 2.如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是( )3.如图,AB ∥CD ,∠CED=90°,∠AEC=35°,则∠D 的大小为( ) A.65° B.55° C.45° D.35°4.不等式组⎪⎩⎪⎨⎧--321021x x 的解集为( ) A. x >21B. x <-1C. -<x <21D. x >-215.我省某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105.则这七天空气质量指数的平均数是( ) A.71.8 B.77 C.82 D.95.7 6.如果一个正比例函数的图象经过不同..象限的两点A (2,m )、B (n ,3),那么一定有( ) A. m >0,n >0 B. m >0,n <0 C. m <0,n >0 D. m <0,n <0 7.如图,在四边形ABCD 中,AB=AD ,CD=CB.若连接AC 、BD 相交于点O ,则图中全等三角形共有( ) A.1对 B.2对 C.3对 D.4对8.x 与y 的对应值,可得P 的值为( )A.1 B .-1 C.3 D.-39.如图,在矩形ABCD 中,AD=2AB,点M 、N 分别在边AD、BC 上, 连接BM、DN.若四边形MBND 是菱形,则MDAM等于() A.83 B.32 C.53 D.54 EDB CA (第2题图) (第3题图)A B C D O DBCA(第7题图) NM DBCA (第9题图)10.已知两点A (-5,1y )、B (3,2y )均在抛物线()02≠++=a c bx ax y 上,点C (0x ,0y )是该抛物线的顶点,若1y >2y ≥0y ,则0x 的取值范围是( ) A. 0x >-5 B. 0x >-1 C .-5<0x <-1 D .-2<0x <3 B 卷第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,共18分) 11.计算:()()03132-+-= .12.一元二次方程032=-x x 的根是 .13.请从经以下两个小题中任选一个....作答,若多选,则按所选的第一题计分. A.在平面直角坐标系中,线段AB 的两个端点的坐标分别为A (-2,1)、B (1,3,)将线段AB 经过平移后得到线段A ′B ′.若点A 的对应点为A ′(3,2),则点B 的对应点B ′的坐标是 . B.比较8cos31.(填“>”、“=”若“<”)14.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,且BD 平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD 的面积为 .(结果保留根号) 15.如果一个正比例函数的图象与反比例函数xy 6=的图象交于A (1x ,1y )、B (2x ,2y )两点,那么(2x -1x )(2y -1y )的值为 .16.如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB=30°,点E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于G 、H 两点.若⊙O 的半径为7,则GE+FH 的最大值为 .三、解答题(共9小题,计72分.解答应写出过程) 17.(本题满分5分)解分式方程:12422=-+-x xx .OD B C AC (第14题图) (第16题图)18.(本题满分6分)如图,∠AOB=90°,OA=OB ,直线L 经过点O ,分别过A 、B 两点作AC ⊥L 交L 于点C ,BD ⊥L 交L 于点D. 求证:AC=OD19.(本题满分7分)我省教育厅下发了《在全省中小学幼儿园广泛深入开展节约教育的通知》通知中要求各学校全面持续开展“光盘行动”.某市教育局督导检查组为了调查学生对“节约教育”内容的了解程度(程度分为:“A —了解很多”,B —“了解较多”,“C —了解较少”,“D —不了解”),对本市一所中学的学生进行了抽样调查.我们将这次调查的结果绘制了以下两幅统计图.根据以上信息,解答下列问题:(1) 本次抽样调查了多少名学生? (2) 补全两幅统计图;(3) 若该中学共有1800名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?lO D B C A(第18题图) 45%30%D B CA 了解程度DBC A (第19题图) 被调查学生对“节约教育”内容了解程度的统计图一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D 的高度.如图,当李明走到点A 处时,张龙测得李明直立向高AM 与其影子长AE 正好相等;接着李明沿AC 方向继续向前走,走到点B 处时,李明直立时身高BN 的影子恰好是线段AB ,并测得AB=1.25m.已知李明直立时的身高为1.75m ,求路灯的高度CD 的长.(精确到0.1m )21.(本题满分8分)“五一节”期间,申老师一家自架游去了离家170千米的某地.下面是他们离家的距离y (千米)与汽车行驶时间x (小时)之间的函数图象.(1) 求他们出发半小时时,离家多少千米? (2) 求出AB 段图象的函数表达式;(3) 他们出发2小时时,离目的地还有多少千米?EAx/小时2.51.5O (第20题图) (第21题图)甲、乙两人用手指玩游戏,规则如下:ⅰ)每次游戏时,两人同时随机地各伸出一根手指:ⅱ)两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时. (1)求甲伸出小拇指取胜的概率; (2)求乙取胜的概率.23.(本题满分8分)如图,直线L 与⊙O 相切于点D.过圆心O 作EF ∥L 交⊙O 于E 、F 两点,点A 是⊙O 上一点,连接AE 、AF.并分别延长交直线L 于 B 、C 两点. (1) 求证:∠ABC+∠ACB=90°;(2) 当⊙O 的半径R=5,BD=12时,求tan ∠ABC 的值.24.(本题满分10分)在平面直角坐标系中,一个二次函数的图象经过A (1,0)、B (3,0)两点. (1) 写出这个二次函数图象的对称轴;(2) 设这个二次函数图象的顶点为D ,与y 轴交于点C ,它的对称轴与x 轴交于点E ,连接AC 、DE 和DB.当⊿AOC 与⊿DEB 相似时,求这个函数的表达式.lD(第23题图)(第24题图)问题探究(1) 请在图①中作出两条直线,使它们将圆面四等分;(2) 如图②,M 是正方形ABCD 内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M ),使它们将正方形ABCD 的面积四等分,并说明理由.问题解决(3)如图③,在四边形ABCD 中,AB ∥CD ,AB+CD=BC ,点P 是AD 的中点.如果AB=a ,CD=b ,且b >a ,那么在边BC 上是否存在一点Q ,使PQ 所在直线将四边形ABCD 的面积分成相等的两部分?若存在,求出BQ 的长;若不存在,说明理由.D BDB (第25题图) ① ② ③参考答案1.A;2.D;3.B;4.A;5.C;6.D;7.C;8.A;9.C;10.B11.-7;12.0,3;13.A:(6,4)B:>;14.123;15.24;16.10.5;。
【VIP专享】2013陕西中考数学试题及答案word版

9、如图,在矩形 ABCD 中,
AD=2AB,点 M,N 分别在 AD、BC
上,连接 BM、DN.若四边形பைடு நூலகம்MBDN
是菱形,则 AM 等于( )
MD
A. 3 B. 2
8
3
2
3
C. 3 D. 4
5
10、已知两点 A 5,y1 B 3, y2 均在抛物线 y ax2 bx c(a 0)
上,点 C x0, y0 是该抛物线的顶点.若 y1 y2 y0 ,则 x0 的取值范围
为( )
A. 650 B. 550 C. 450 D. 350
4、不等式组
A. x 1
2
x
1 2
1 2x 3
B.
0
,的解集为(
x 1
5、我省某市五月份第二周连续七天的空气质量指数分别为:
111,96,47,68,70,77,105.则这 7 天空气质量指数的平均数是( )
A. 71.8 B. 77 C. 82 D. 95.7
B
3
D. 5
A
C
)
C. 1 x 1 D. x 1
2
C
图 图 3图 图 图
E
2
D
D
B
AC、BD 相交于点 O,则图中全等三角形共有( )
A. 1 对 B. 2 对 C. 3 对 D. 4 对 B
8、根据下表中一次函数的自变量 x 与函数 y 的对应值,可得 p 的值为( )
x
y
A. 1 B. 1 C. 3 D. 3
2013 陕西中考数学
一、选择题(共 10 小题,每小题 3 分,计 30 分)
1、下列四个数中最小的数是( )
2013年陕西省中考数学试卷-答案

3AO︒=sin602113+2BD AE BD CF=⨯⨯22为O的直径时,∵O的半径为14.连接OA,OBACB∠=260∠=ACB30=,∴OA OB故答案为11.5为O的直径时,【考点】垂径定理,三角形中位线定理,圆周角定理x=-【答案】3补全统计图,如图所示:【提示】(1)先运用待定系数法求出OA 的解析式,再将0.5x =代入,求出y 的值即可;(2)设AB 段图象的函数表达式为+y k x b =',将A 、B 两点的坐标代入,运用待定系数法即可求解;【解析】解;(1)设A ,B ,C ,D ,E 分别表示大拇指、食指、中指、无名指、小拇指,列表如下:由表格可知,共有25种等可能的结果,甲伸出小拇指取胜只有一种可能,故1()25P=甲伸出小拇指获胜;(2)解:连接OD,则OD BD⊥,过E作EH BC⊥于H,11 / 11【提示】(1)画出互相垂直的两直径即可;(2)连接AC ,BD 交于O ,作直线OM ,分别交AD 于P ,交BC 于Q ,过O 作EF OM ⊥交DC 于F ,交AB 于E ,则直线EF 、OM 将正方形的面积四等份,根据三角形的面积公式和正方形的性质求出即可; (3)当BQ CD b ==时,PQ 将四边形ABCD 的面积二等份,连接BP 并延长交CD 的延长线于点E , 证ABP DEP △≌△求出BP EP =,连接CP ,求出BPC EPC S S =△△,作PF CD ⊥,PG BC ⊥,由++BC AB CD DE CD CE ===,求出++ABP BPC CQP CPE DEP CQP S S SS S S -=-△△△△△,即可得出ABQP CDPQ S S =四边形四边形即可.【考点】四边形综合题.。
最新2013陕西省中考数学试题及答案优秀名师资料

2013陕西省中考数学试题及答案陕西省2013年中考数学试题第?卷(选择题共30分)A卷一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.下列四个数中最小的数是( )1,A.,2B.0C.D.5 32.如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是( )A B C D (第2题图)3.如图,AB?CD,?CED=90?,?AEC=35?,则?D的大小为( ) A.65? B.55? C.45?D.35?,1Ex,,0,BA2,4.不等式组的解集为( ),x1,2,3,CD111(第3题图)A. xxxx ,B. ,,1C. ,,,D. ,, 2225.我省某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105.则这七天空气质量指数的平均数是( )A.71.8B.77C.82D.95.7 6.如果一个正比例函数的图象经过不同象限的两点A(2,m)、B(n,3),那么一定有( ) ((A. m,0,n,0B. m,0,n,0C. m,0,n,0D. m,0,n,0 7.如图,在四边形ABCD 中,AB=AD,CD=CB.若连接AC、BD相交于点O,则图中全等三角形共有( ) A.1对B.2对C.3对D.4对x8.根据下表中一次函数的自变量与的对应值,可得P的值为( ) yx 0 1 ,2y3 P 0 AA.1 B.,1 C.3 D.,3 AMD9.如图,在矩形ABCD中,AD=2AB,点M、N 分别在边AD、BC上,AMOBD连接BM、DN.若四边形MBND是菱形,则等于( ) CBNMDC2334(第7题图) (第9题图) A. B. C. D. 83552,,10.已知两点A(,5,)、B(3,)均在抛物线上,点C(,)是该y,ax,bx,ca,0yyyx1200抛物线的顶点,若,?,则的取值范围是( ) yyyx1200A. ,,5B. ,,1C.,5,,,1D.,2,,3 xxxx0000B卷第?卷(非选择题共90分)二、填空题(共6小题,每小题3分,共18分)03,,,,11.计算:= . ,2,3,1212.一元二次方程的根是 . x,3x,013.请从经以下两个小题中任选一个作答,若多选,则按所选的第一题计分. ((((A.在平面直角坐标系中,线段AB的两个端点的坐标分别为A(,2,1)、B(1,3,)将线段AB经过平移后得到线段A′B′.若点A的对应点为A′(3,2),则点B 的对应点B′的坐标是 .B.比较8cos31? .(填“,”、“=”若“,”) 3514.如图,四边形ABCD的对角线AC、BD相交于点O,且BD平分AC.若BD=8,AC=6,?BOC=120?,则四边形ABCD的面积为 .(结果保留根号)6y15.如果一个正比例函数的图象与反比例函数的图象交于A(,)、B(,)两点,那么yyxx,1212x(,)(,)的值为 . yyxx212116.如图,AB是?O的一条弦,点C是?O上一动点,且?ACB=30?,点E、F分别是AC、BC的中点,直线EF与?O交于G、H两点.若?O的半径为7,则GE+FH的最大值为 .AD CO OF HGBECBA(第14题图) (第16题图)三、解答题(共9小题,计72分.解答应写出过程)17.(本题满分5分)x2,,1解分式方程:. 2xx,2,418.(本题满分6分)如图,?AOB=90?,OA=OB,直线L经过点O,分别过A、B两点作AC?L交L于点C,BD?L交L于点D. 求证:AC=ODlBDACO(第18题图)19.(本题满分7分)我省教育厅下发了《在全省中小学幼儿园广泛深入开展节约教育的通知》通知中要求各学校全面持续开展“光盘行动”.某市教育局督导检查组为了调查学生对“节约教育”内容的了解程度(程度分为:“A—了解很多”,B—“了解较多”,“C—了解较少”,“D—不了解”),对本市一所中学的学生进行了抽样调查.我们将这次调查的结果绘制了以下两幅统计图.根据以上信息,解答下列问题:(1) 本次抽样调查了多少名学生,(2) 补全两幅统计图;(3) 若该中学共有1800名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名,被调查学生对“节约教育”内容了解程度的统计图人数6050 3640 C 3024 D45%20B 610A30% 0 了解程度DABC(第19题图)20.(本题满分8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立向高AM与其影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m.已知李明直立时的身高为1.75m,求路灯的高度CD的长.(精确到0.1m)DNMEBCA(第20题图)21.(本题满分8分)“五一节”期间,申老师一家自架游去了离家170千米的某地.下面是他们离家的距离(千米)与汽车行y驶时间(小时)之间的函数图象. x(1) 求他们出发半小时时,离家多少千米,(2) 求出AB段图象的函数表达式;(3) 他们出发2小时时,离目的地还有多少千米,y/千米 B170A90O1.52.5x/小时(第21题图)22.(本题满分8分)甲、乙两人用手指玩游戏,规则如下:?)每次游戏时,两人同时随机地各伸出一根手指:?)两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指,小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时.(1)求甲伸出小拇指取胜的概率;(2)求乙取胜的概率.23.(本题满分8分)如图,直线L与?O相切于点D.过圆心O作EF?L交?O于E、F两点,点A是?O 上一点,连接AE、AF.并分别延长交直线L于 B、C两点.(1) 求证:?ABC+?ACB=90?;(2) 当?O的半径R=5,BD=12时,求tan?ABC的值.AEF Ol CBD(第23题图)24.(本题满分10分)在平面直角坐标系中,一个二次函数的图象经过A(1,0)、B(3,0)两点. (1) 写出这个二次函数图象的对称轴;(2) 设这个二次函数图象的顶点为D,与轴交于点C,它的对称轴与x轴交于点E,连接AC、DE和DB.y当?AOC与?DEB相似时,求这个函数的表达式.y4321x–4–3–2–11234O–1–2–3–4(第24题图)25.(本题满分12分)问题探究(1) 请在图?中作出两条直线,使它们将圆面四等分;(2) 如图?,M是正方形ABCD内一定点,请在图?中作出两条直线(要求其中一条直线必须过点M),使它们将正方形ABCD的面积四等分,并说明理由.问题解决abba(3)如图?,在四边形ABCD中,AB?CD,AB+CD=BC,点P是AD的中点.如果AB=,CD=,且,,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分,若存在,求出BQ的长;若不存在,说明理由.AD MDP AB CBC?? ?(第25题图)参考答案1. A;2.D;3.B;4.A;5.C;6.D;7.C;8.A;9.C;10.B 11.-7;12.0,3;13.A:(6,4)B:,;14.12;15.24;16.10.5; 3。
2013年陕西省中考数学试卷

2013年陕西省中考数学试卷一、选择题(共10小题,每小题3分,共30分,每小题只有一个选项最符合题意的)1.(3分)下列四个数中最小的数是()A.-2 B.01C.-3 D.52.(3分)如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是()A. B.C. D.3.(3分)如图,AB ⎳CD ,∠CED =90°,∠AEC =35°,则∠D 的大小为()A .65°B .55°C .45°D .35°1-2>1-4.(3分)不等式组x 2< x 0的解集为(3)1A.x >2 B.x <-11C.-1<x <21D.x >-25.(3分)我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是()A.71.8 B.77 C.82 D.95.76.(3分)如果一个正比例函数的图象经过不同象限的两点A (2,m ),B (n ,3),那么一定有()A.m >0,n >0 B.m >0,n <0 C.m <0,n >0 D.m <0,n <07.(3分)如图,在四边形ABCD 中,AB =AD ,CB =CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有()A.1对B.2对C.3对D.4对8.(3分)根据表中一次函数的自变量x与函数y的对应值,可得p的值为()x201-y3p0C.33A.11 D.-B.-9.(3分)如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则AMMD等于()A.38B.23C.35D.4510.(3分)已知两点A(-5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>-5B.x0>-1C.-5<x0<-1D.-2<x0<3二、填空题(共6小题,计18分)11.(3分)计算:(-2)3+(3-1)0= .12.(3分)一元二次方程x2-3x=0的解是.13.(3分)请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A、在平面直角坐标系中,线段AB的两个端点的坐标分别为A(-2,1)、B(1,3),将线段AB通过平移后得到线段A′B′,若点A的对应点为A′(3,2),则点B的对应点B′的坐标是.B、比较大小:8cos31°35(填“>”,“=”或“<”)14.(3分)如图,四边形ABCD的对角线AC,BD相交于点O,且BD平分AC.若BD=8,AC=6,.)∠BOC=120°,则四边形ABCD的面积为(结果保留根号15.(3分)如果一个正比例函数的图象与反比例函数y=x6的图象交于A(x1,y1),B(x2,y2)两点,那么(x2-x1)(y2-y1)的值为.16.(3分)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为7,则GE+FH的最大值为.三、解答题(共9小题,计72分,解答应写出过程)217.(5分)解分式方程:x 2x -4+x -2=1.18.(6分)如图,∠AOB =90°,OA =OB ,直线l 经过点O ,分别过A 、B 两点作AC ⊥l 交l 于点C ,BD ⊥l 交l 于点D .求证:AC =OD .19.(7分)我省教育厅下发了《在全省中小学幼儿园广泛开展节约教育的通知》,通知中要求各学校全面持续开展“光盘行动”.某市教育局督导组为了调查学生对“节约教育”内容的了解程度(程度分为:“A --了解很多”、“B --了解较多”,“C --了解较少”,“D --不了解”),对本市一所中学的学生进行了抽样调查.我们将这次调查的结果绘制了以下两幅统计图.根据以上信息,解答下列问题:(1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该中学共有1800名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?20.(8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯CD的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).21.(8分)“五一节”期间,申老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)求出AB段图象的函数表达式;(3)他们出发2小时时,离目的地还有多少千米?22.(8分)甲、乙两人用手指玩游戏,规则如下:①每次游戏时,两人同时随机地各伸出一根手指;②两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指、小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,(1)求甲伸出小拇指取胜的概率;(2)求乙取胜的概率.23.(8分)如图,直线l与⊙O相切于点D,过圆心O作EF⎳l交⊙O于E、F两点,点A是⊙O上一点,连接AE、AF,并分别延长交直线l于B、C两点.(1)求证:∠ABC+∠ACB=90°;(2)当⊙O的半径R=5,BD=12时,求tan∠ACB的值.24.(10分)在平面直角坐标系中,一个二次函数的图象经过点A(1,0)、B(3,0)两点.(1)写出这个二次函数图象的对称轴;(2)设这个二次函数图象的顶点为D,与y轴交于点C,它的对称轴与x轴交于点E,连接AC、DE和DB,当ΔAOC与ΔDEB相似时,求这个二次函数的表达式.[提示:如果一个二次函数的图象与x轴的交点为A(x1,0)、B(x2,0),那么它的表达式可表示为y=a(x -x1)(x-x2)].25.(12分)问题探究:(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.问题解决:(3)如图③,在四边形ABCD中,AB⎳CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.。
2013年陕西省中考数学试卷(含解析)

2013年陕西省中考数学试卷一、选择题1、下列四个数中最小的数是( )A .-2B .0C .-D .52、如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是( )A .B .C .D .3、如图,AB∥CD,∠CED=90°,∠AEC=35°,则∠D 的大小为( )A .65°B .55°C .45°D .35°4、不等式组的解集为( ) A .x > B .x <-1 C .-1<x < D .x >-5、我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是( )A .71.8B .77C .82D .95.76、如果一个正比例函数的图象经过不同象限的两点A (2,m ),B (n ,3),那么一定有( )A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<0 7、如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对8、根据表中一次函数的自变量x与函数y的对应值,可得p的值为()A.1B.-1C.3D.-39、如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于()A.B.C.D.10、已知两点A(-5,y1),B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y)是该抛物线的顶点.若y1>y2≥y,则x的取值范围是()A.x0>-5B.x>-1C.-5<x<-1D.-2<x<3二、填空题11、计算:(-2)3+(-1)0= __________ .12、一元二次方程x2-3x=0的根是__________ .13、请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A、在平面直角坐标系中,线段AB的两个端点的坐标分别为A(-2,1)、B(1,3),将线段AB通过平移后得到线段A′B′,若点A的对应点为A′(3,2),则点B的对应点B′的坐标是 __________ .B、比较大小:8cos31°__________(填“>”,“=”或“<”)14、如图,四边形ABCD的对角线AC,BD相交于点O,且BD平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD的面积为 __________ .(结果保留根号)15、如果一个正比例函数的图象与反比例函数y=的图象交于A(x1,y1),B(x2,y2)两点,那么(x2-x1)(y2-y1)的值为 __________ .16、如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为7,则GE+FH的最大值为__________ .三、解答题17、解分式方程:+=1.18、如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l交l于点C,BD⊥l交l于点D.求证:AC=OD.19、我省教育厅下发了《在全省中小学幼儿园广泛开展节约教育的通知》,通知中要求各学校全面持续开展“光盘行动”.某市教育局督导组为了调查学生对“节约教育”内容的了解程度(程度分为:“A--了解很多”、“B--了解较多”,“C--了解较少”,“D--不了解”),对本市一所中学的学生进行了抽样调查.我们将这次调查的结果绘制了以下两幅统计图.根据以上信息,解答下列问题:(1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该中学共有1800名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?20、一天晚上,李明和张龙利用灯光下的影子长来测量一路灯CD的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).21、“五一节”期间,申老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)求出AB段图象的函数表达式;(3)他们出发2小时时,离目的地还有多少千米?22、甲、乙两人用手指玩游戏,规则如下:①每次游戏时,两人同时随机地各伸出一根手指;②两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指、小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,(1)求甲伸出小拇指取胜的概率;(2)求乙取胜的概率.23、如图,直线l与⊙O相切于点D,过圆心O作EF∥l交⊙O于E、F两点,点A是⊙O 上一点,连接AE、AF,并分别延长交直线l于B、C两点.(1)求证:∠ABC+∠ACB=90°;(2)当⊙O的半径R=5,BD=12时,求tan∠ACB的值.24、在平面直角坐标系中,一个二次函数的图象经过点A(1,0)、B(3,0)两点.(1)写出这个二次函数图象的对称轴;(2)设这个二次函数图象的顶点为D,与y轴交于点C,它的对称轴与x轴交于点E,连接AC、DE和DB,当△AOC与△DEB相似时,求这个二次函数的表达式.[提示:如果一个二次函数的图象与x轴的交点为A(x1,0)、B(x2,0),那么它的表达式可表示为y=a(x-x1)(x-x2)].25、问题探究:(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.问题解决:(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.2013年陕西省中考数学试卷的答案和解析一、选择题1、答案:A试题分析:根据有理数的大小比较方法,找出最小的数即可.试题解析:∵-2<-<0<5,∴四个数中最小的数是-2;故选A.2、答案:D试题分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.试题解析:从上面看所得到的图形是一个长方形,中间有一个没有圆心的圆,与长方形的两边相切.故选:D.3、答案:B试题分析:根据平角等于180°求出∠BED,再根据两直线平行,内错角相等解答.试题解析:∵∠CED=90°,∠AEC=35°,∴∠BED=180°-∠CED-∠AEC=180°-90°-35°=55°,∵AB∥CD,∴∠D=∠BED=55°.故选B.4、答案:A试题分析:分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可.试题解析:,由①得:x>,由②得:x>-1,不等式组的解集为:x>,故选:A.5、答案:C试题分析:根据平均数的计算公式列出算式,再进行计算即可.试题解析:根据题意得:(111+96+47+68+70+77+105)÷7=82;故选C.6、答案:D试题分析:根据正比例函数图象所在象限,可判断出m、n的正负.试题解析:A、m>0,n>0,A、B两点在同一象限,故A错误;B、m>0,n<0,A、B两点不在同一个正比例函数,故B错误;C、m<0,n>0,A、B两点不在同一个正比例函数,故C错误;D、m<0,n<0,A、B两点在同一个正比例函数的不同象限,故D正确.故选:D.7、答案:C试题分析:首先证明△ABC≌△ADC,根据全等三角形的性质可得∠BAC=∠DAC,∠BCA=∠DCA,再证明△ABO≌△ADO,△BOC≌△DOC.∵在△ABC和△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∠BCA=∠DCA,∵在△ABO和△ADO中,∴△ABO≌△ADO(SAS),∵在△BOC和△DOC中,∴△BOC≌△DOC(SAS),故选:C.8、答案:A试题分析:设一次函数的解析式为y=kx+b(k≠0),再把x=-2,y=3;x=1时,y=0代入即可得出k、b 的值,故可得出一次函数的解析式,再把x=0代入即可求出p的值.试题解析:一次函数的解析式为y=kx+b(k≠0),∵x=-2时y=3;x=1时y=0,∴,解得,∴一次函数的解析式为y=-x+1,∴当x=0时,y=1,即p=1.故选A.9、答案:C试题分析:首先由菱形的四条边都相等与矩形的四个角是直角,即可得到直角△ABM中三边的关系.试题解析:∵四边形MBND是菱形,∴MD=MB.∵四边形ABCD是矩形,∴∠A=90°.设AB=x,AM=y,则MB=2x-y,(x、y均为正数).在Rt△ABM中,AB2+AM2=BM2,即x2+y2=(2x-y)2,解得x=y,∴MD=MB=2x-y=y,∴==.故选:C.10、答案:B试题分析:先判断出抛物线开口方向上,进而求出对称轴即可求解.试题解析:∵点C(x0,y)是抛物线的顶点,y1>y2≥y,∴抛物线有最小值,函数图象开口向上,∴a>0;∴25a-5b+c>9a+3b+c,∴<1,∴->-1,∴x>-1∴x0的取值范围是x>-1.故选:B.二、填空题11、答案:试题分析:先分别根据有理数乘方的法则及0指数幂的计算法则计算出各数,再根据实数混合运算的法则进行计算即可.试题解析:原式=-8+1=-7.故答案为:-7.12、答案:试题分析:首先利用提取公因式法分解因式,由此即可求出方程的解.试题解析:x2-3x=0,x(x-3)=0,∴x1=0,x2=3.故答案为:x1=0,x2=3.13、答案:试题分析:(1)比较A(-2,1)与A′(3,2)的横坐标、纵坐标,可知平移后横坐标加5,纵坐标加1,由于点A、B平移规律相同,坐标变化也相同,即可得B′的坐标;(2)8cos31°很接近4,再比较即可.试题解析:(1)由于图形平移过程中,对应点的平移规律相同,由点A到点A′可知,点的横坐标加5,纵坐标加1,故点B′的坐标为(1+5,3+1),即(6,4);(2)∵8cos31°≈4,∴4>.故答案为:(6,4);>.14、答案:试题分析:如图,过点A作AE⊥BD于点E,过点C作CF⊥BD于点F.则通过解直角△AEO和直角△CFO求得AE=CF=,所以易求四边形ABCD的面积.试题解析:如图,过点A作AE⊥BD于点E,过点C作CF⊥BD于点F.∵BD平分AC,AC=6,∴AO=CO=3.∵∠BOC=120°,∴∠AOE=60°,∴AE=AO•sin60°=.同理求得CF=,∴S四边形ABCD =S△ABD+S△CBD=BD•AE+BD•CF=2×××8=12.故答案是:12.15、答案:试题分析:正比例函数与反比例函数y=的两交点坐标关于原点对称,依此可得x1=-x2,y1=-y2,将(x2-x 1)(y2-y1)展开,依此关系即可求解.试题解析:∵正比例函数的图象与反比例函数y=的图象交于A(x1,y1),B(x2,y2)两点,关于原点对称,依此可得x1=-x2,y1=-y 2,∴(x2-x1)(y2-y1)=x2y2-x2y1-x1y2+x1y1=x2y2+x2y2+x1y1+x1y1=6×4=24.故答案为:24.16、答案:试题分析:由点E、F分别是AC、BC的中点,根据三角形中位线定理得出EF=AB=3.5为定值,则GE+FH=GH-EF=GH-3.5,所以当GH取最大值时,GE+FH有最大值.而直径是圆中最长的弦,故当GH为⊙O的直径时,GE+FH有最大值14-3.5=10.5.试题解析:当GH为⊙O的直径时,GE+FH有最大值.当GH为直径时,E点与O点重合,∴AC也是直径,AC=14.∵∠ABC是直径上的圆周角,∴∠ABC=90°,∵∠C=30°,∴AB=AC=7.∵点E、F分别为AC、BC的中点,∴EF=AB=3.5,∴GE+FH=GH-EF=14-3.5=10.5.故答案为:10.5.三、解答题17、答案:试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.试题解析:去分母得:2+x(x+2)=x2-4,解得:x=-3,经检验x=-3是分式方程的解.18、答案:试题分析:根据同角的余角相等求出∠A=∠BOD,然后利用“角角边”证明△AOC和△OBD全等,根据全等三角形对应边相等证明即可.证明:∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵AC⊥l,BD⊥l,∴∠ACO=∠BDO=90°,∴∠A+∠AOC=90°,∴∠A=∠BOD,在△AOC和△OBD中,,∴△AOC≌△OBD(AAS),∴AC=OD.19、答案:试题分析:(1)由等级A的人数除以所占的百分比,即可求出调查的学生人数;(2)根据总人数减去A、C、D等级的人数求出等级B的人数,补全条形统计图;由C的人数除以总人数求出C的百分比,进而求出D的百分比,补全扇形统计图即可;(3)由1800乘以B的百分比,即可求出对“节约教育”内容“了解较多”的人数.试题解析:(1)抽样调查的学生人数为36÷30%=120(名);(2)B的人数为120×45%=54(名),C的百分比为×100%=20%,D的百分比为×100%=5%;补全统计图,如图所示:(3)对“节约教育”内容“了解较多”的有1800×45%=810(名).20、答案:试题分析:根据AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,从而得到△ABN∽△ACD,利用相似三角形对应边的比相等列出比例式求解即可.试题解析:设CD长为x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA∴MA∥CD∥BN∴EC=CD=x∴△ABN∽△ACD,∴即解得:x=6.125≈6.1.经检验,x=6.125是原方程的解,∴路灯高CD约为6.1米.21、答案:试题分析:(1)先运用待定系数法求出OA的解析式,再将x=0.5代入,求出y的值即可;(2)设AB段图象的函数表达式为y=k′x+b,将A、B两点的坐标代入,运用待定系数法即可求解;(3)先将x=2代入AB段图象的函数表达式,求出对应的y 值,再用170减去y即可求解.试题解析:(1)设OA段图象的函数表达式为y=kx.∵当x=1.5时,y=90,∴1.5k=90,∴k=60.∴y=60x(0≤x≤1.5),∴当x=0.5时,y=60×0.5=30.故他们出发半小时时,离家30千米;(2)设AB段图象的函数表达式为y=k′x+b.∵A(1.5,90),B(2.5,170)在AB上,∴,解得,∴y=80x-30(1.5≤x≤2.5);(3)∵当x=2时,y=80×2-30=130,∴170-130=40.故他们出发2小时,离目的地还有40千米.22、答案:试题分析:(1)首先根据题意画出表格,由表格求得所有等可能的结果,即可求出甲伸出小拇指取胜的概率;(2)由(1)中所求即可得出乙取胜的概率;试题解析:解;(1)设A,B,C,D,E分别表示大拇指、食指、中指、无名指、小拇指,列表如下:出小拇指获胜)=,;(2)又上表可知,乙取胜有5种可能,故P(乙获胜)==.23、答案:试题分析:(1)由题意可知EF是圆的直径,所以∠EAF=90°,即∠ABC+∠ACB=90°;(2)连接OD,则OD⊥BD,过E作EH⊥BC于H,则四边形EODH是正方形,易求tan∠BEH==,再证明∠ACB=∠BEH即可.试题解析:(1)证明:∵EF是圆的直径,∴∠EAF=90°,∴∠ABC+∠ACB=90°;(2)连接OD,则OD⊥BD,过E作EH⊥BC于H,∴EH∥OD,又∵EO∥HD,∴四边形OEHD是矩形,又∵OE=OD,∴四边形EODH是正方形,∴EH=HD=OD=5,又∵BD=12,∴BH=7,在Rt△BEH中,tan∠BEH==,∵∠ABC+∠BEH=90°,∠ABC+∠ACB=90°,∴∠ACB=∠BEH,∴tan∠ACB=.24、答案:试题分析:(1)根据二次函数对称性得出对称轴即可;(2)首先求出C,D点坐标,进而得出CO的长,利用当△AOC与△DEB 相似时,根据①假设∠OCA=∠EBD,②假设∠OCA=∠EDB,分别求出即可.试题解析:解;(1)∵二次函数的图象经过点A(1,0)、B(3,0)两点,∴二次函数图象的对称轴为直线x=2;(2)设二次函数的表达式为:y=a(x-1)(x-3)(a≠0),当x=0时,y=3a,当x=2时,y=-a,∴点C坐标为:(0,3a),顶点D坐标为:(2,-a),∴OC=|3a|,又∵A(1,0),E(2,0),∴AO=1,EB=1,DE=|-a|=|a|,当△AOC与△DEB相似时,①假设∠OCA=∠EBD,可得=,即=,∴a=或a=-,②假设∠OCA=∠EDB,可得=,∴=,此方程无解,综上所述,所得二次函数的表达式为:y=x2-x+或y=-x2+x-.25、答案:试题分析:(1)画出互相垂直的两直径即可;(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,则直线EF、OM将正方形的面积四等份,根据三角形的面积公式和正方形的性质求出即可;(3)当BQ=CD=b时,PQ将四边形ABCD的面积二等份,连接BP并延长交CD的延长线于点E,证△ABP≌△DEP求出BP=EP,连接CP,求出S△BPC =S△EPC,作PF⊥CD,PG⊥BC,由BC=AB+CD=DE+CD=CE,求出S△BPC -S△CQP+S△ABP=S△CPE-S△DEP+S△CQP,即可得出S四边形ABQP=S四边形CDPQ即可.试题解析:(1)如图1所示,(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,则直线EF、OM将正方形的面积四等份,理由是:∵点O是正方形ABCD的对称中心,∴AP=CQ,EB=DF,在△AOP和△EOB中∵∠AOP=90°-∠AOE,∠BOE=90°-∠AOE,∴∠AOP=∠BOE,∵OA=OB,∠OAP=∠EBO=45°,∴△AOP≌△EOB,∴AP=BE=DF=CQ,设O到正方形ABCD一边的距离是d,则(AP+AE)d=(BE+BQ)d=(CQ+CF)d=(PD+DF)d,∴S四边形AEOP =S四边形BEOQ=S四边形CQOF=S四边形DPOF,直线EF、OM将正方形ABCD面积四等份;(3)存在,当BQ=CD=b时,PQ将四边形ABCD的面积二等份,理由是:如图③,连接BP并延长交CD的延长线于点E,∵AB∥CD,∴∠A=∠EDP,∵在△ABP和△DEP 中∴△ABP≌△DEP(ASA ),∴BP=EP,连接CP ,∵△BPC 的边BP 和△EPC 的边EP 上的高相等,又∵BP=EP,∴S △BPC =S △EPC ,作PF⊥CD,PG⊥BC,则BC=AB+CD=DE+CD=CE ,由三角形面积公式得:PF=PG ,在CB 上截取CQ=DE=AB=a ,则S △CQP =S △DEP =S △ABP ∴S △BPC -S △CQP +S △ABP =S △CPE -S △DEP +S △CQP 即:S 四边形ABQP =S 四边形CDPQ ,∵BC=AB+CD=a+b,∴BQ=b,∴当BQ=b 时,直线PQ 将四边形ABCD 的面积分成相等的两部分.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年陕西中考数学试卷一、选择题(共10小题,每小题3分,计30分) 1 下列四个数中最小的数是( )A.2-B.0C.31-D.5 2 如图,下面几何体是由一个圆柱和一个长方体组成的,则它的俯视图是( )AB C D3 如图,AB//CD ,∠CED=90°,∠AEC=35°,则∠D 的大小是( ) A.65° B.55° C.45° D.35°4 不等式组⎪⎩⎪⎨⎧<->-321021x x 的解集为( ) A.21>x B.1-<x C.211<<-x D.21->x 5 我省某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105.则这七天空气质量指数的平均数是( )A.71.8B.77 C .82 D.95.76 如果一个正比例函数的图象经过不同象限的两点,3)B()A(2,n m 、,那么一定用( )A.0,0>>n mB.0,0<>n mC.0,0><n mD.0,0<<n m 7 如图,在四边形ABCD 中,AB=AD,CB=CD,若连接AC ,BD 相交于点O ,则图中全等三角形共有( )A.1对B.2对C.3对D.4对8 根据下表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( )x -2 0 1 y 3 p 0 A.1 B.-1 C.3 D.-39.如图,在矩形ABCD 中,AD=2AB,点M 、N 分别在AD 、BC 上,连接BM 、DN.若四边形MBND 是菱形,则MDAM等于( ) A.83 B.32 C.53 D.54 10 已知两点),5(1y A -、),3(1y B 均在抛物线)0(2≠++=a c bx ax y 上,点),(00y x C 是该抛物线的顶点,若021y y y ≥>,则0x 的取值范围是( )E DB CAA 50->xB 10->xC 150-<<-xD 320<<-x 第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分)11.计算:=-+-03)13()2( .12.一元二次方程032=-x x 的根是 .13.请从以下两个小题中任选一个....作答,若多选,则按所选的第一题计分. A 在平面直角坐标系中,线段AB 的两个端点的坐标分别为)3,1()1,2(B A 、-,将线段AB 经过平移后得到线段B A ''.若点A 的对应点(3,2)A ',则点B 的对应点B '的坐标为是 . B 比较大小:︒31cos 835(填“>”、“=”或“<”).14.如图,四边形ABCD 的对角线AC 、BD 相交于点O,且BD 平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD 的面积为 .(结果保留号)第14题图 第16题图15.如果一个正比例函数的图象与反比例函数xy 6=的图象交于),(),(2211y x B y x A 、两点,那么))((1212y y x x --的值为 .16.如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB=30°,点E 、F 分别是AC 、BC 的中点,直线EF 与⊙O 交于G 、H 两点,若⊙O 的半径为7,则CE+FH 的最大值为 . 三、解答题(共9小题,计72分.解答应写过程) 17.(本题满分5分)解分式方程:12422=-+-x xx 18.(本题满分6分)如图,∠AOB=90°,OA=OB,直线l 经过点O ,分别过A 、B 两点作AC ⊥l 交l 于点C ,BD ⊥l 交l 于点D 。
求证:AC=OD 19.(本题满分7分)我省教育厅下发了《在全省中小学幼儿园广泛深入开展节约教育的通知》,通知中要求各学校全面持续开展“光盘行动”.某市教育局督导检查组为了调查学生对“节约教育”内容的了解程度(程度分为:“A—了解很多”,“B—了解较多”,“C—了解较少”,“D—不了解”),对本市一所中学的学生进行了抽样调查。
我们将这次调查的结果绘制了以下两幅统计图。
根据以上信息,解答下列问题: (1) 本次抽样调查了多少名学生? (2) 补全两幅统计图;(3) 若该中学共有1800名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”有多少名?20. (本题满分8分)一天晚上,李明和张龙利用灯光下影子的长来测量一路灯D 高度,如图,当李明走到点A 处时,张龙测得李明直立时身高AM 与其影子长AE 正好相等;接着李明沿AC 方向继续向前走,走到点B 处时,李明直立时身高BN 的影子是线段AB ,并测得AB=1.25m,已知李明直立时的身高为1.75m.求路灯的高CD 的长.(结果精确到0.1m )21. (本题满分8分)了解程度人数624060504030201036D B CA N ME D B C A“五一节”期间,申老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y (千米)与汽车行驶时间x (小时)之间的函数图象.(1) 求他们出发半小时时,离家多少千米?(2) 求出AB 段图象的函数表达式;(3) 他们出发2小时时,离目的地还有多少千米?22. (本题满分8分)甲、乙两人用手指玩游戏。
规则如下:ⅰ)每次游戏时,两人同时随机地各伸出一根手指;ⅱ)两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小指、小指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,(1)求甲伸出小拇指取胜的概率 (2)求乙取胜的概率23. (本题满分8分)如图,直线l 与⊙O 相切于点D ,过圆心O 作EF//l 交⊙O 于E 、F 两点,点A 是⊙O 上一点,连接AE 、AF ,并分别延长交直线l 于B 、C 两点,(1)求证:∠ABC+∠ABC=90°(2)当⊙O 的半径5 R ,BD=12时,求tan ∠ACB 的值。
24. (本题满分10分)在平面直角坐标系中,一个二次函数的图象经过)0,3()3,1(B A 、两点。
(1)写出这个二次函数图象的对称轴;(2)设这个二次函数图象的顶点为D ,与y 轴交于点C ,它的对称轴与x 轴交于点E ,连接AC 、DE 和DB ,当AOC ∆与DEB ∆相似时,求这个二次函数的表达式。
25. (本题满分12分) 问题探究(1)请在图①中,作出两条直线,使它们将圆面四等分;(2)如图②,M 是正方形ABCD 内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M ),使它们将正方形ABCD 的面积四等分,并说明理由。
问题解决(3)如图③,在四边形ABCD 中,AB//CD,AB +CD=BC ,点P 是AD 的中点,如果AB=a ,CD=b ,且a b >,那么在边BC 上是否存在一点Q,使PQ 所在的直线将四边形ABCD 的面积分成相等的两部分?若存在,求出BQ 的长;若不存在,说明理由。
图① 图② 图③xy –1–2–3–41234–1–2–3–41234O参考答案一、选择题:ADBAC DCADB 二、填空题 11:7 12:0,3 13题:A :(6,4),B :> 14:312 15: 24 16: 10.5 三、简答题 17、解:2222(2)4(2)2243(4)3x x x x x x x x ++=-++=-=-=-分分经检验,是原分式方程的根.(5分)18、证明: 00009090.(1),,90.90..(3),.(5).(6)AOB AOC BOD AC l BD l ACO BDO A AOC A BOD OA OB AOC OBD AC OD ∠=∴∠+∠=⊥⊥∴∠=∠=∴∠+∠=∴∠=∠=∴≅∴=,分分又分分19、解:(1)抽样调查的学生人数为:36÷30%=120(名)…(2分) (2)B 的人数:120×45%=54(名)C 的百分比:24100%=20%120⨯, D 的百分比:6100%=5%.120⨯ 补全两幅统计图如图所示。
………………………………(5分)(略)(1) 对“节约教育”内容“了解较多”的学生人数为: 1800×45%=810(名)………………………(7分) 20、解:.CD xm 设长为,,,,//,//....(5)AM EC CD EC BN EC EA MA MA CD BN CD EC CD x ABN ACD BN ABCD AC⊥⊥⊥=∴∴==∴∴=分即1.75 1.25.1.75x x =-解之,得 6.125 6.1.x =≈∴路灯高CD 约为6.1m .………………………(8分) 21、解:设OA 段图像的函数表达式为.y kx = ∵当x =1.5时,y =90; ∴1.5k =90. ∴k =60.∴60,(0 1.5)y x x =≤≤ ∴当x =0.5时,y =60×0.5=30.∴行驶半小时时,他们离家30千米,………(3分)(2)设AB 段图像的函数表达式为',y k x b =+ ………………(4分)∴A(1.5,90),B(2.5,170)在AB 上,∴90 1.5'170 2.5'.k b k b =+⎧⎨=+⎩解之,得'80,30.k b ==-8030.(1.5 2.5)y x x ∴=-≤≤ ………………………………(6分)(3)当x =2时,y =80×2-30=130.∴170-130=40.∴他们出发2小时后,离目的地还有40千米。
…………(8分)22、解:设A,B,C,D,E 分别表示大拇指,食指,中指,无名指,小拇指,列表如下:乙甲ABCDEA AA AB AC AD AE B BA BB BC BD BE C CA CB CC CD CE D DA DB DC DD DE EEAEBECEDEE由表格可知,共有25种等可能的结果。
(1)由上表可知,甲伸出小拇指取胜有1种可能。
∴P (甲伸出小拇指取胜)=125………………………………(3分)(2)由上表可知,乙取胜有5种可能。
∴P(乙取胜)=51=255……………………………………………(8分) 23、(1)证明:∵EF 是⊙O 的直径, ∴∠EAF=090 ,∴∠ABC+∠ACB=090.…………………(3分)(2)解:连接OD,则OD ⊥BD 。