层次分析法例题(1)

合集下载

(完整word版)层次分析法例题

(完整word版)层次分析法例题

某物流企业需要采买一台设备,在采买设备时需要从功能、价格与可保护性三个角度进行议论,考虑应用层次解析法对 3 个不同样品牌的设备进行综合解析议论和排序,从中选出能实现物流规划总目标的最优设备,其层次构造以以下列图所示。

以 A 表示系统的总目标,判断层中B1表示功能,B2表示价格, B3表示可保护性。

C1,C2,C3表示备选的3种品牌的设备。

目A判断功能 B1价格B2性B3方案品 C1品C2品C3采次构解题步骤:1、标度及描述人们定性区分事物的能力习惯用 5个属性来表示,即同样重要、稍微重要、较强重要、强烈重要、绝对重要,当需要较高精度时,可以取两个相邻属性之间的值,这样就获取 9个数值,即 9个标度。

为了便于将比较判判断量化,引入1~9比率标度方法,规定用1、3、5、7、9分别表示依照经验判断,要素 i 与要素 j对照:同样重要、稍微重要、较强重要、强烈重要、绝对重要,而 2、4、6、8表示上述两判断级之间的折衷值。

度13579 2、4、6、8倒数定〔比要素i 与 j 〕要素 i 与 j 同重要要素 i 与 j 稍微重要要素 i 与 j 重要要素 i 与 j 烈重要要素 i 与 j 重要两个相判断要素的中要素 i 与 j 比得判断矩 a ij,要素j与i对照的判断 a ji=1/a ij注: a ij表示要素 i与要素 j 相重要度之比,且有下述关系:a ij =1/a ji; a ii=1 ; i,j=1 , 2,⋯,n然,比越大,要素 i 的重要度就越高。

2、成立判断矩阵A判断矩 是 次解析法的根本信息,也是 行 重 算的重要依照。

依照 构模型,将 中各要素两两 行判断与比 ,构造判断矩 :●判断矩 A比 )如表 1所示;●判断矩 B 1 ●判断矩 B 2 ●判断矩 B 3示。

B (即相 于物流系 目 ,判断 各要素相 重要性C (相 功能,各方案的相 重要性比 )如表 2 所示; C(相 价格,各方案的相 重要性比 )如表 3 所示;C(相 可 性,各方案的相 重要性比)如表 4 所表1判断矩 A BAB 1B 2 B 3B 1 1 1/3 2 B 2 3 1 5 B 31/21/51表 2 判断矩B1CB 1C 1C 2 C 3C 1 1 l/3 1/5 C 2 3 1 1/3 C 35 3 1表 3 判断矩 B 2-CB 2C 1C 2C3C 1 1 27 C 2 1/2 1 5 C 31/71/51表4 判断矩 B3CB 3C 1C 2 C 3C 1 1 3 l/7 C 2l/3 1 1/9 C 379 13、 算各判断矩 的特色 、特色向量及一致性 指一般来 ,在AHP 法中 算判断矩 的最大特色 与特色向量, 必不需要 高的精度,用求和法或求根法可以 算特色 的近似 。

(完整版)层次分析法例题

(完整版)层次分析法例题

(完整版)层次分析法例题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN实验目的:熟悉有关层次分析法模型的建立与计算,熟悉Matlab 的相关命令。

实验准备:1. 在开始本实验之前,请回顾教科书的相关内容;2. 需要一台准备安装Windows XP Professional 操作系统和装有Matlab 的计算机。

实验内容及要求试用层次分析法解决一个实际问题。

问题可参考教材P296第4大题。

实验过程:某物流企业需要采购一台设备,在采购设备时需要从功能、价格与可维护性三个角度进行评价,考虑应用层次分析法对3个不同品牌的设备进行综合分析评价和排序,从中选出能实现物流规划总目标的最优设备,其层次结构如下图所示。

以A 表示系统的总目标,判断层中1B 表示功能,2B 表示价格,3B 表示可维护性。

1C ,2C ,3C 表示备选的3种品牌的设备。

解题步骤:1、标度及描述人们定性区分事物的能力习惯用5个属性来表示,即同样重要、稍微重要、较强重要、强烈重要、绝对重要,当需要较高精度时,可以取两个相邻属性之间的值,这样就得到9个数值,即9个标度。

为了便于将比较判断定量化,引入1~9比率标度方法,规定用1、3、5、7、9分别表示根据经验判断,要素i 与要素j 相比:同样重要、稍微重要、较强重要、强烈重要、绝对重要,而2、4、6、8表示上述两判断级之间的折衷值。

5 因素i 与j 较强重要设备采购层次结构图2、4、6、8两个相邻判断因素的中间值倒数 因素i 与j 比较得判断矩阵a ij ,则因素j 与i 相比的判断为a ji =1/a ij注:a ij 表示要素i 与要素j 相对重要度之比,且有下述关系:a ij =1/a ji ;a ii =1; i ,j=1,2,…,n显然,比值越大,则要素i 的重要度就越高。

2、构建判断矩阵A判断矩阵是层次分析法的基本信息,也是进行权重计算的重要依据。

层次分析法现代汉语例题

层次分析法现代汉语例题

层次分析法是一种决策分析方法,通常用于多个方案或因素之间进行比较和排序。

以下是一个使用层次分析法的现代汉语例题:
假设你是一名公司的采购主管,你需要从三个供应商(A、B、C)中选择一家供应商品质最好、价格最优、售后服务最好的供应商。

你将使用层次分析法来进行决策。

解题步骤:
制定目标层次:选择最优供应商
确定判断准则:商品质量、价格、售后服务
构建层次结构模型:将目标层次下的判断准则放在下一层,形成层次结构模型
刻画判断矩阵:采用1~9的比较尺度,对每两个判断准则进行比较,得到判断矩阵
求出权重向量:对判断矩阵进行归一化处理,计算出每个判断准则的权重
计算一致性指标:检查矩阵的一致性程度,得出一致性指标
计算最终权重:根据层次结构模型和权重向量,计算出每个供应商的最终权重
进行灵敏度分析:分析每个判断准则的变化对结果的影响程度
得出决策结果:综合考虑判断准则的权重和灵敏度分析的结果,得出选择最优供应商的决策结果
以上是一个基本的层次分析法的应用例题,具体细节需要根据实际情况进行调整和处理。

层次分析法例题详解

层次分析法例题详解

层次分析法例题详解
例题:假设一家公司想要改善客户满意度,以下是几项建议:
A. 增加客户服务
B. 提高产品质量
C. 提高客户服务质量
层次分析法:
1.首先,将上述三项建议放入一个表格中,比较它们之间的关系。

建议 | 增加客户服务 | 提高产品质量 | 提高客户服务质量
------|-----------------|------------------|------------------------
关系 | 相关 | 相关 | 直接相关
2.然后,根据上表的关系,将建议分类:
A. 增加客户服务和提高客户服务质量:这两项建议直接相关,可以归为一类,即增加客户服务和提高客户服务质量。

B. 提高产品质量:这一项建议与其他两项建议相关,但不属
于同一类别,可以独立归类。

3.最后,根据分类的结果,提出有效的解决方案:
A. 增加客户服务和提高客户服务质量:可以采取措施增加客
户服务人员的数量,同时提高客户服务质量,如培训客服人员,
提升服务水平。

B. 提高产品质量:可以采取措施改善产品质量,如改进生产流程,提高材料质量,以及实施质量控制等。

层次分析法例题

层次分析法例题

某物流企业需要采购一台设备,在采购设备时需要从功能、价格与可维护性三个角度进行评价,考虑应用层次分析法对3个不同品牌的设备进行综合分析评价和排序,从中选出能实现物流规划总目标的最优设备,其层次结构如下图所示;以A 表示系统的总目标,判断层中1B 表示功能,2B 表示价格,3B 表示可维护性;1C ,2C ,3C 表示备选的3种品牌的设备;解题步骤:1、标度及描述人们定性区分事物的能力习惯用5个属性来表示,即同样重要、稍微重要、较强重要、强烈重要、绝对重要,当需要较高精度时,可以取两个相邻属性之间的值,这样就得到9个数值,即9个标度;为了便于将比较判断定量化,引入1~9比率标度方法,规定用1、3、5、7、9分别表示根据经验判断,要素i 与要素j 相比:同样重要、稍微重要、较强重ij a ij =1/a ji ;a ii =1; i,j=1,2,…,n目标层判断层 方案层 图 设备采购层次结构图显然,比值越大,则要素i 的重要度就越高;2、构建判断矩阵A判断矩阵是层次分析法的基本信息,也是进行权重计算的重要依据; 根据结构模型,将图中各因素两两进行判断与比较,构造判断矩阵:●判断矩阵B A -即相对于物流系统总目标,判断层各因素相对重要性比较如表1所示;●判断矩阵C B -1相对功能,各方案的相对重要性比较如表2所示; ●判断矩阵C B -2相对价格,各方案的相对重要性比较如表3所示; ●判断矩阵C B -3相对可维护性,各方案的相对重要性比较如表4所 示;B A -C B -1C B -3一般来讲,在AHP 法中计算判断矩阵的最大特征值与特征向量,必不需要较高的精度,用求和法或求根法可以计算特征值的近似值;●求和法1将判断矩阵A 按列归一化即列元素之和为1:b ij = a ij /Σa ij ; 2将归一化的矩阵按行求和:c i =Σb ij i=1,2,3….n ; 3将c i 归一化:得到特征向量W =w 1,w 2,…w n T ,w i =c i /Σc i ,W 即为A 的特征向量的近似值; 4求特征向量W 对应的最大特征值: ●求根法1计算判断矩阵A 每行元素乘积的n 次方根;nnj iji aw ∏==1i =1, 2, …,n2将i w 归一化,得到∑==ni iii ww w 1;W =w 1,w 2,…w n T 即为A 的特征向量的近似值;3求特征向量W 对应的最大特征值:1判断矩阵B A -的特征根、特征向量与一致性检验 ①计算矩阵B A -的特征向量;计算判断矩阵B A -各行元素的乘积i M ,并求其n 次方根,如3223111=⨯⨯=M ,874.0311==M W ,类似地有,466.2322==M W ,464.0333==M W ;对向量Tn W W W W ],,,[21 =规范化,有类似地有684.02=W ,122.03=W ;所求得的特征向量即为: ②计算矩阵B A -的特征根类似地可以得到948.12=AW ,3666.03=AW ; 按照公式计算判断矩阵最大特征根: ③一致性检验;实际评价中评价者只能对A 进行粗略判断,这样有时会犯不一致的错误;如,已判断C 1比C 2重要,C 2比C 3较重要,那么,C 1应该比C 3更重要;如果又判断C 1比C 3较重要或同等重要,这就犯了逻辑错误;这就需要进行一致性检验;根据层次法原理,利用A 的理论最大特征值λmax 与n 之差检验一致性; 一致性指标:计算002.0133004.31max =--=--=n nCI λ<,1.0003.0<==RI CI CR ,查同阶平均随机一致性指标表5所示知58.0=RI ,一般认为CI<、 CR<时,判断矩阵的一致性可以接受,否则重新两两进行比较;1类似于第1步的计算过程,可以得到矩阵C B -1的特征根、特征向量与一致性检验如下:T W ]637.0,258.0,105.0[=,039.3max =λ,1.0033.0<=CR3判断矩阵C B -2的特征根、特征向量与一致性检验类似于第1步的计算过程,可以得到矩阵刀:—C 的特征根、特征向量与一致性检验如下:T W ]075.0,333.0,592.0[=,014.3max =λ,1.0012.0<=CR 4判断矩阵C B -3的特征根、特征向量与一致性检验类似于第1步的计算过程,可以得到矩阵C B -3的特征根、特征向量与一致性检验如下:T W ]785.0,066.0,149.0[=,08.3max =λ,1.0069.0<=CR 4、层次总排序获得同一层次各要素之间的相对重要度后,就可以自上而下地计算各级要素对总体的综合重要度;设二级共有m 个要素c 1, c 2,…,c m ,它们对总值的重要度为w 1, w 2,…, w m ;她的下一层次三级有p 1, p 2,…,p n 共n 个要素,令要素p i 对c j 的重要度权重为v ij ,则三级要素p i 的综合重要度为:方案C 1的重要度权重=×+×+×= 方案C 2的重要度权重=×+×+×=方案C 3的重要度权重=×+×0. 075+×=依据各方案综合重要度的大小,可对方案进行排序、决策; 层次总排序如表6所示;由表5可以看出,3种品牌设备的优劣顺序为:1C ,3C ,2C ,且品牌1明显优于其他两种品牌的设备;。

层次分析法练习参考标准答案

层次分析法练习参考标准答案

层次分析法练习参考答案————————————————————————————————作者:————————————————————————————————日期:2page3层次分析法练习练习一、市政工程项目建设决策问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。

除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,试运用层次分析法建模解决。

1、建立递阶层次结构在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。

为了实现这一目标,需要考虑的主要准则有三个,即经济效益、社会效益和环境效益。

但问题绝不这么简单。

通过深入思考,决策人员认为还必须考虑直接经济效益、间接经济效益、方便日常出行、方便假日出行、减少环境污染、改善城市面貌等因素(准则),从相互关系上分析,这些因素隶属于主要准则,因此放在下一层次考虑,并且分属于不同准则。

假设本问题只考虑这些准则,接下来需要明确为了实现决策目标、在上述准则下可以有哪些方案。

根据题中所述,本问题有两个解决方案,即建高速路或建地铁,这两个因素作为措施层元素放在递阶层次结构的最下层。

很明显,这两个方案于所有准则都相关。

将各个层次的因素按其上下关系摆放好位置,并将它们之间的关系用连线连接起来。

同时,为了方便后面的定量表示,一般从上到下用A 、B 、C 、D 。

代表不同层次,同一层次从左到右用1、2、3、4。

代表不同因素。

这样构成的递阶层次结构如下图。

目标层A准则层B准则层C合理建设市政工程,经济效社会效环境效直接经济效益 (C1)间接带动效益(C2)方便日常出行(C3)方便假日出行(C4)减少环境污染(C5)改善城市面貌(C6)page4措施层D图1 递阶层次结构示意图2、构造判断矩阵并请专家填写征求专家意见,填写后的判断矩阵如下:表2 判断矩阵表A B1 B2 B3 B1 C1 C2 B2 C3 C4 B3 C5 C6 B1 1 1/3 1/3C1 1 1 C3 1 3 C5 1 3 B2 1 1 C2 1 C4 1 C6 1 B3 1 C1 D1 D2 C2 D1 D2 C3 D1 D2 C4 D1 D2D1 1 5 D1 1 3 D1 1 1/5 D1 1 7 D2 1 D2 1 D2 1 D2 1 C5 D1 D2 C6 D1 D2D1 1 1/5 D1 1 1/3 D21D213、计算权向量及检验计算所得的权向量及检验结果见下:表4 层次计算权向量及检验结果表A 单(总)排序权值B1 单排序权值 B2 单排序权值 B3 单排序权值 B1 0.1429 C1 0.5000 C3 0.7500 C5 0.7500 B2 0.4286 C2 0.5000 C4 0.2500 C6 0.2500 B3 0.4286 CR 0.0000CR 0.0000CR 0.0000CR0.0000建高速建地铁page5C1 单排序权值 C2 单排序权值 C3 单排序权值 C4 单排序权值 D1 0.8333 D1 0.7500 D1 0.1667 D1 0.8750 D2 0.1667 D2 0.2500 D2 0.8333 D2 0.1250 CR 0.0000CR 0.0000CR 0.0000CR 0.0000C5 单排序权值 C6 单排序权值 D1 0.1667 D1 0.2500 D2 0.8333 D2 0.7500 CR 0.0000CR0.0000可以看出,所有单排序的C.R.<0.1,认为每个判断矩阵的一致性都是可以接受的。

层次分析法(1)

层次分析法(1)

综上,层次分析法的基本步骤
1)建立层次分析结构模型 (建立层次结构图)
深入分析实际问题,将有关因素自上而下分层(目标— 准则或指标—方案或对象),上层受下层影响,而层内 各因素基本上相对独立。
2)构造成对比较阵
用成对比较法和1~9尺度,构造各层对上一层每一因素的 成对比较阵。
3)计算权向量并作一致性检验
对每一成对比较阵计算最大特征根和特征向量,作一致性 检验,若通过,则特征向量为权向量。
4)计算组合权向量(作组合一致性检验*)
组合权向量可作为决策的定量依据。
五 判断矩阵的近似计算方法
通过前面的介绍,我们知道,在层次分析方法 中,最根本的计算任务是求解判断矩阵的最大特征根 及其所对应的特征向量。这些问题当然可以用线性代 数知识去求解,并且能够利用计算机求得任意高精度 的结果。但事实上,在层次分析法中,判断矩阵的最 大特征根及其对应的特征向量的计算,并不需要追求 太高的精度。这是因为判断矩阵本身就是将定性问题 定量化的结果,允许存在一定的误差范围。因此,我 们常常用近似算法求解判断矩阵的最大特征根及其所 对应的特征向量。 三种方法:幂法、和积法和方根法
(3)科学考察和实践表明,1~9的比例标度已完全能区分 引起人们感觉差别的事物的各种属性。
显然,任何判断矩阵都应满足:
bij>0 ,bii = 1,bij = 1/bji,i,j = 1,2,…,n
因此,对于这样的判断矩阵来说, 作n(n-1)/2 次
两两判断就可以了。
判断过程中的问题
1、合理选择咨询对象;(专长及熟悉的领域)
=
=nW
即n是A的一个特征根,每只西瓜的重量是A对应于特 征根n的特征向量的各个分量。
很自然,我们会提出一个相反的问题,如果事先不知道 每只西瓜的重量,也没有衡器去称量,我们如能设法得到 判断矩阵(比较每两只西瓜的重量是最容易的),能否导 出西瓜的重量呢?显然是可以的,在判断矩阵具有完全一 致的条件下,我们可以通过解特征值问题

经典层次分析法分析及实例教程

经典层次分析法分析及实例教程

当CR 0.1 时,认为层次总排序通过一致性检验。到
此,根据最下层(决策层)的层次总排序做出最后决策。
层次分析法的基本步骤归纳如下
1.建立层次结构模型 该结构图包括目标层,准则层,方案层。
2.构造成对比较矩阵 从第二层开始用成对比较矩阵和1~9尺度。
3.计算单排序权向量并做一致性检验 对每个成对比较矩阵计算最大特征值及其对应的特征向量, 利用一致性指标、随机一致性指标和一致性比率做一致性 检验。若检验通过,特征向量(归一化后)即为权向量; 若不通过,需要重新构造成对比较矩阵。
一般分为三层,最上面为目标层,最下面为方案层,中 间是准则层或指标层。 例1 的层次结构模型
买钢笔
目标层
质颜价外实 量色格形用
准则层
可供选择的笔
方案层
例2 层次结构模型
选择 旅游地










苏州、杭州、 桂林
目标层Z 准则层A 方案层B
若上层的每个因素都支配着下一层的所有因素,或被下一层所 有因素影响,称为完全层次结构,否则称为不完全层次结构。
A 4 7
2 3
1 3
1 5
2
1
1
1
1
3
1
1
3 5
1 2 5
B1
1 2
1
2
1 5
1 2
1
1
B2
3
1 3 1
1 18 3
8 3 1
1 1 3
B3
1 1
1 1
3
3 3 1
1 3 4
B4
1 3
1
1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

层次分析法在最优生鲜农产品流通中的应用
班级
(一)、建立递阶层次结构
目标层:最优生鲜农产品流通模式。

准则层:方案的影响因素有:1c 自然属性、2c 经济价值、3c 基础设施、5c 政府政策。

方案层:设三个方案分别为:1A 农产品产地一产地批发市场一销地批发市场一消费者、2A 农产品产地一产地批发市场一销地批发市场一农贸市场一消费者、3A 农业合作社一第三方物流企业一超市一消费者(本文假设农产品的生产地和销地不在同一个地区)。

图3—1 递阶层次结构
(二)、构造判断(成对比较)矩阵
所谓判断矩阵昰以矩阵的形式来表述每一层次中各要素相对其上层要素的相对重要程度。


目标层:
准则层:
方案层:
了使各因素之间进行两两比较得到量化的判断矩阵,引入1~9的标度,见表
为了构造判断矩阵,作者对6个专家进行了咨询,根据专家和作者的经验,四个准则下的两两比较矩阵分别为:
(三)、层次单排序及其一致性检验
层次单排序就是把本层所有要素针对上一层某一要素,排出评比的次序,这种次序以相对的数值大小来表示。

对应于判断矩阵最大特征根λmax的特征向量,经归一化(使向量中各元素之和等于1)后记为W。

W的元素为同一层次因素对于上一层次因素某因素相对重要性的排序权值,这一过程称为层次单排序。

能否确认层次单排序,需要进行一致性检验,所谓一致性检验是指对A确定不一致的允许范围。

a,则λ比n 大的越多,A 的不一致性越严重。

用最大特征值对由于λ连续的依赖于
ij
应的特征向量作为被比较因素对上层某因素影响程度的权向量,其不一致程度越大,引起的判断误差越大。

因而可以用λ―n数值的大小来衡量 A 的不一致程度。

用一致性指标进行检验:max 1
n
CI n λ-=
-。

其中max λ是比较矩阵的最大特征值,n 是比较矩
阵的阶数。

CI 的值越小,判断矩阵越接近于完全一致。

反之,判断矩阵偏离完全一致的程度越大。

(四)、层次总排序及其一致性检验
)0(273.0104.0056.0567.0092.1418.0224.0266.2222.0316.0353.0201
.0074.0105.0118.0121
.0037.0053.0059.0075
.0667.0526.0470.0603
.0136131121121113581
W
A =⎪⎪⎭⎪⎪
⎬⎫⎪⎪⎩⎪⎪⎨⎧−−−→−⎪⎪


⎪⎬

⎪⎪⎩⎪⎪⎨⎧−−−−→−⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨
⎧−−−−−−→−⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨
⎧=归一化按行求和列向量归一化
()T
AW 273.0,104.0,056.0,567.0073
.4273.0110.1104.0422.0056.0225.0567.0354.241110.1422.0225.0354.2273.0104.0056.0567.0136311121612118135
81)0(max )0()
0(==⎪⎭

⎝⎛+++=⎪⎪⎭⎪⎪⎬
⎫⎪⎪⎩⎪⎪⎨⎧=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧=ωλ
同理可计算出判断矩阵
⎪⎭⎪⎬

⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=179711391111117121921,1811811931,189811313114321B B B B ,
对应的最大特征值与特征向量依次为:
.
776.0155.0069.0,083.3;
058.0347.0595.0,024.3;054.0306.0640.0,216.3;786.0146.0068.0,111.34)1(max )4(3)1(max )3(2)1(max )2(1)1(max )1(⎪⎭

⎬⎫⎪⎩⎪⎨⎧==⎪⎭⎪
⎬⎫
⎪⎩⎪⎨⎧==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==ωλωλωλωλ用一致性指标进行检验:max 1
n
CI n λ-=
-,
RI CI
CR =
(1)对于判断矩阵A ,λmax =4.073,RI=0.90
1
.0027.090.0024.0024.0144
073.4<====--=
RI CI CR CI 表示A 的不一致程度在容许范围内,此时可用A 的特征向量代替权向量。

(2)同理,对于判断矩阵B 1,B 2,B 3,B 4利用上述原理均通过一致性检验。

利用层次结构图绘出从目标层到方案层的计算结果:
⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭
⎪⎬⎫
⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧776.0155.0069.0,058.0347.0595.0,054.0306.0640.0,786.0146.0068.0
目标层:
准则层:
()
⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==776.0058.0054.0786.0155.0347.0306.0146.0069.0595.0640.0068.0,,,4)1(3)1(2)1(1)1()1(ωωωωω
⎪⎭
⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎪⎭⎪⎪⎬⎫
⎪⎪⎩⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==667.0178.0155.0273.0104.0056.0567.0776.0058.0054.0786.0155.0347.0306.0146.0069.0595.0640.0068.0)
0()1(ωωω
决策结果:是首选方案A 3,其次是方案A 2,再次是方案A 1.。

相关文档
最新文档