2013年高考真题——文科数学(广东卷A)解析版(1) Word版含答案
2013年高考文科数学广东卷word解析版

2013年普通高等学校招生全国统一考试数学文史类(广东卷)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013广东,文1)设集合S ={x |x 2+2x =0,x ∈R },T ={x |x 2-2x =0,x ∈R },则S ∩T =( ).A .{0}B .{0,2}C .{-2,0}D .{-2,0,2} 答案:A解析:∵S ={-2,0},T ={0,2},∴S ∩T ={0}. 2.(2013广东,文2)函数lg 11x y x (+)=-的定义域是( ). A .(-1,+∞) B .[-1,+∞)C .(-1,1)∪(1,+∞)D .[-1,1)∪(1,+∞) 答案:C解析:要使函数有意义,则10,10,x x +>⎧⎨-≠⎩解得x >-1且x ≠1,故函数的定义域为(-1,1)∪(1,+∞).3.(2013广东,文3)若i(x +y i)=3+4i ,x ,y ∈R ,则复数x +y i 的模是( ).A .2B .3C .4D .5 答案:D解析:∵i(x +y i)=-y +x i =3+4i , ∴4,3.x y =⎧⎨=-⎩∴x +y i =4-3i.∴|x +y i| 5. 4.(2013广东,文4)已知5π1sin 25α⎛⎫+=⎪⎝⎭,那么cos α=( ). A .25- B .15- C .15 D .25答案:C解析:∵5ππsin sin 2π22αα⎛⎫⎛⎫+=++⎪ ⎪⎝⎭⎝⎭=πsin 2α⎛⎫+ ⎪⎝⎭=cos α=15,∴cos α=15.5.(2013广东,文5)执行如图所示的程序框图,若输入n 的值为3,则输出s 的值是( ).A .1B .2C .4D .7 答案:C解析:i =1,s =1,i ≤3,s =1+0=1,i =2; i ≤3,s =1+1=2,i =3; i ≤3,s =2+2=4,i =4;i >3,s =4.6.(2013广东,文6)某三棱锥的三视图如图所示,则该三棱锥的体积是( ).A .16 B .13 C .23D .1 答案:B解析:由俯视图知底面为直角三角形,又由正视图及侧视图知底面两直角边长都是1,且三棱锥的高为2,故V 三棱锥=13×12×1×1×2=13.7.(2013广东,文7)垂直于直线y =x +1且与圆x 2+y 2=1相切于第Ⅰ象限的直线方程是( ).A .x +y =0B .x +y +1=0C .x +y -1=0D .x +y =0 答案:A解析:由于所求切线垂直于直线y =x +1,可设所求切线方程为x +y +m=0.1=,解得m =.又由于与圆相切于第Ⅰ象限,则m =.8.(2013广东,文8)设l 为直线,α,β是两个不同的平面.下列命题中正确的是( ).A .若l ∥α,l ∥β,则α∥βB .若l ⊥α,l ⊥β,则α∥βC .若l ⊥α,l ∥β,则α∥βD .若α⊥β,l ∥α,则l ⊥β 答案:B解析:如图,在正方体A 1B 1C 1D 1-ABCD 中,对于A ,设l 为AA 1,平面B 1BCC 1,平面DCC 1D 1为α,β. A 1A ∥平面B 1BCC 1,A 1A ∥平面DCC 1D 1, 而平面B 1BCC 1∩平面DCC 1D 1=C 1C ;对于C ,设l 为A 1A ,平面ABCD 为α,平面DCC 1D 1为β.A 1A ⊥平面ABCD , A 1A ∥平面DCC 1D 1,而平面ABCD ∩平面DCC 1D 1=DC ;对于D ,设平面A 1ABB 1为α,平面ABCD 为β,直线D 1C 1为l ,平面A 1ABB 1⊥平面ABCD ,D 1C 1∥平面A 1ABB 1,而D 1C 1∥平面ABCD . 故A ,C ,D 都是错误的.而对于B ,根据垂直于同一直线的两平面平行,知B 正确.9.(2013广东,文9)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( ). A .22134x y += B .2214x += C .22142x y += D .22143x y += 答案:D解析:由中心在原点的椭圆C 的右焦点F (1,0)知,c =1.又离心率等于12,则12ca=,得a=2.由b2=a2-c2=3,故椭圆C的方程为221 43x y+=.10.(2013广东,文10)设a是已知的平面向量且a≠0.关于向量a的分解,有如下四个命题:①给定向量b,总存在向量c,使a=b+c;②给定向量b和c,总存在实数λ和μ,使a=λb+μc;③给定单位向量b和正数μ,总存在单位向量c和实数λ,使a=λb+μc;④给定正数λ和μ,总存在单位向量b和单位向量c,使a=λb+μc.上述命题中的向量b,c和a在同一平面内且两两不共线,则真命题的个数是().A.1 B.2 C.3 D.4答案:B解析:对于①,由向量加法的三角形法则知正确;对于②,由平面向量基本定理知正确;对于③,以a的终点作长度为μ的圆,这个圆必须和向量λb有交点,这个不一定能满足,故③不正确;对于④,利用向量加法的三角形法则,结合三角形两边之和大于第三边,即必须|λb|+|μc|=λ+μ≥|a|,故④不正确.二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)11.(2013广东,文11)设数列{a n}是首项为1,公比为-2的等比数列,则a1+|a2|+a3+|a4|=__________.答案:15解析:由数列{a n}首项为1,公比q=-2,则a n=(-2)n-1,a1=1,a2=-2,a3=4,a4=-8,则a1+|a2|+a3+|a4|=1+2+4+8=15.12.(2013广东,文12)若曲线y=ax2-ln x在(1,a)处的切线平行于x轴,则a=__________.答案:1 2解析:由曲线在点(1,a)处的切线平行于x轴得切线的斜率为0,由y′=2ax-1x及导数的几何意义得y′|x=1=2a-1=0,解得a=1 2.13.(2013广东,文13)已知变量x,y满足约束条件30,11,1,x yxy-+≥⎧⎪-≤≤⎨⎪≥⎩则z=x+y的最大值是__________.答案:5解析:由线性约束条件画出可行域如下图,平移直线l0,当l过点A(1,4),即当x=1,y=4时,z max=5.(二)选做题(14~15题,考生只能从中选做一题)14.(2013广东,文14)(坐标系与参数方程选做题)已知曲线C 的极坐标方程为ρ=2cos θ.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为__________.答案:1cos ,sin x y ϕϕ=+⎧⎨=⎩(φ为参数)解析:由曲线C 的极坐标方程ρ=2cos θ知以极点为原点,极轴为x 轴的正半轴建立直角坐标系知曲线C 是以(1,0)为圆心,半径为1的圆,其方程为(x -1)2+y 2=1,故参数方程为1cos ,sin x y ϕϕ=+⎧⎨=⎩(φ为参数).15.(2013广东,文15)(几何证明选讲选做题)如图,在矩形ABCD 中,AB ,BC =3,BE ⊥AC ,垂足为E ,则ED =__________.答案:2解析:在Rt △ABC 中,AB ,BC =3,tan ∠BAC =BCAB=则∠BAC =60°,AE =12AB 在△AED 中,∠EAD =30°,AD =3, ED 2=AE 2+AD 2-2AE ·AD cos ∠EAD=22⎛⎫ ⎪ ⎪⎝⎭+32-2×2×3×cos 30°=34+9-23=214.∴ED.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(2013广东,文16)(本小题满分12分)已知函数π()12f x x⎛⎫=-⎪⎝⎭,x∈R.(1)求π3f⎛⎫⎪⎝⎭的值;(2)若cos θ=35,θ∈3π,2π2⎛⎫⎪⎝⎭,求π6fθ⎛⎫-⎪⎝⎭.解:(1)ππππ1 33124f⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭.(2)∵cos θ=35,θ∈3π,2π2⎛⎫⎪⎝⎭,sin θ=45 =-,∴ππ64fθθ⎛⎫⎛⎫-=-⎪ ⎪⎝⎭⎝⎭ππ1 cos cos sin sin445θθ⎫+=-⎪⎭.17.(2013广东,文17)(本小题满分12分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1)(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.解:(1)苹果的重量在[90,95)的频率为2050=0.4;(2)重量在[80,85)的有4×5515+=1个;(3)设这4个苹果中[80,85)分段的为1,[95,100)分段的为2,3,4,从中任取两个,可能的情况有:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种.任取2个,重量在[80,85)和[95,100)中各有1个记为事件A,则事件A包含有(1,2),(1,3),(1,4),共3种,所以P(A)=3162=.18.(2013广东,文18)(本小题满分14分)如图(1),在边长为1的等边三角形ABC中,D,E分别是AB,AC上的点,AD=AE,F是BC的中点,AF与DE交于点G.将△ABF沿AF折起,得到如图(2)所示的三棱锥A-BCF,其中BC.图(1)图(2)(1)证明:DE ∥平面BCF ; (2)证明:CF ⊥平面ABF ; (3)当AD =23时,求三棱锥F -DEG 的体积V F -DEG . (1)证明:在等边三角形ABC 中, ∵AD =AE ,∴AD AEDB EC=. 又AD AEDB EC=,在折叠后的三棱锥A -BCF 中也成立, ∴DE ∥BC .∵DE ⊄平面BCF ,BC ⊂平面BCF , ∴DE ∥平面BCF .(2)证明:在等边三角形ABC 中,∵F 是BC 的中点,BC =1,∴AF ⊥CF ,BF =CF =12. ∵在三棱锥A -BCF 中,BC=2, ∴BC 2=BF 2+CF 2.∴CF ⊥BF . ∵BF ∩AF =F ,∴CF ⊥平面ABF .(3)解:由(1)可知GE ∥CF ,结合(2)可得GE ⊥平面DFG . ∴V F -DEG =V E -DFG =13×12·DG ·FG ·GE=11111323323324⎛⨯⨯⨯⨯⨯= ⎝⎭. 19.(2013广东,文19)(本小题满分14分)设各项均为正数的数列{a n }的前n 项和为S n ,满足4S n =a n +12-4n -1,n ∈N *,且a 2,a 5,a 14构成等比数列.(1)证明:2a =(2)求数列{a n }的通项公式; (3)证明:对一切正整数n ,有1223111112n n a a a a a a ++++<.(1)证明:当n =1时,4a 1=a 22-5,∴a 22=4a 1+5. ∵a n >0,∴2a =(2)解:当n ≥2时,4S n -1=a n 2-4(n -1)-1,① 4S n =a n +12-4n -1,②由②-①,得4a n =4S n -4S n -1=a n +12-a n 2-4, ∴a n +12=a n 2+4a n +4=(a n +2)2. ∵a n >0,∴a n +1=a n +2,∴当n ≥2时,{a n }是公差d =2的等差数列. ∵a 2,a 5,a 14构成等比数列,∴a 52=a 2·a 14,(a 2+6)2=a 2·(a 2+24),解得a 2=3. 由(1)可知,4a 1=a 22-5=4,∴a 1=1. ∵a 2-a 1=3-1=2,∴{a n }是首项a 1=1,公差d =2的等差数列. ∴数列{a n }的通项公式为a n =2n -1.(3)证明:12231111n n a a a a a a ++++=11111335572121n n ++++⨯⨯⨯(-)⋅(+) =1111111112335572121n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⨯-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦=11112212n ⎛⎫⨯-< ⎪+⎝⎭. 20.(2013广东,文20)(本小题满分14分)已知抛物线C 的顶点为原点,其焦点F (0,c )(c >0)到直线l :x -y -2=0的距离为2.设P 为直线l 上的点,过点P 作抛物线C 的两条切线P A ,PB,其中A ,B 为切点.(1)求抛物线C 的方程;(2)当点P (x 0,y 0)为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求|AF |·|BF |的最小值.解:(1)依题意d ==c =1(负根舍去). ∴抛物线C 的方程为x 2=4y . (2)设点A (x 1,y 1),B (x 2,y 2). 由x 2=4y ,即y =14x 2,得y ′=12x . ∴抛物线C 在点A 处的切线P A 的方程为y -y 1=12x (x -x 1), 即y =12x x +y 1-12x 12. ∵y 1=14x 12,∴y =12x x -y 1.∵点P (x 0,y 0)在切线P A 上,∴y 0=12x x 0-y 1.① 同理,y 0=22xx 0-y 2.②综合①,②得,点A (x 1,y 1),B (x 2,y 2)的坐标都满足方程y 0=2xx 0-y . ∵经过A (x 1,y 1),B (x 2,y 2)两点的直线是唯一的, ∴直线AB 的方程为y 0=2xx 0-y ,即x 0x -2y -2y 0=0. (3)由抛物线的定义可知|AF |=y 1+1,|BF |=y 2+1, ∴|AF |·|BF |=(y 1+1)(y 2+1) =y 1+y 2+y 1y 2+1.联立2004,220,x y x x y y ⎧=⎨--=⎩消去x 得y 2+(2y 0-x 02)y +y 02=0, ∴y 1+y 2=x 02-2y 0,y 1y 2=y 02.∵点P (x 0,y 0)在直线l 上,∴x 0-y 0-2=0. ∴|AF |·|BF |=x 02-2y 0+y 02+1 =y 02-2y 0+(y 0+2)2+1=2y 02+2y 0+5=2019222y ⎛⎫++ ⎪⎝⎭.∴当y 0=12-时,|AF |·|BF |取得最小值为92.21.(2013广东,文21)(本小题满分14分)设函数f (x )=x 3-kx 2+x (k ∈R ).(1)当k =1时,求函数f (x )的单调区间;(2)当k <0时,求函数f (x )在[k ,-k ]上的最小值m 和最大值M .解:f ′(x )=3x 2-2kx +1, (1)当k =1时,f ′(x )=3x 2-2x +1,Δ=4-12=-8<0, ∴f ′(x )>0,即f (x )的单调递增区间为R .(2)(方法一)当k <0时,f ′(x )=3x 2-2kx +1,其开口向上,对称轴3kx =,且过(0,1).①当Δ=4k 2-12=4(k k -≤0,即k <0时,f ′(x )≥0,f (x )在[k ,-k ]上单调递增. 从而当x =k 时,f (x )取得最小值m =f (k )=k ;当x =-k 时,f (x )取得最大值M =f (-k )=-k 3-k 3-k =-2k 3-k .②当Δ=4k 2-12=4(k k ->0,即k < 令f ′(x )=3x 2-2kx +1=0,解得:13k x =,23k x =,注意到k <x 2<x 1<0.(注:可用韦达定理判断x 1·x 2=13,x 1+x 2=23k>k ,从而k <x 2<x 1<0;或者由对称结合图象判断)∴m =min{f (k ),f (x 1)},M =max{f (-k ),f (x 2)}. ∵f (x 1)-f (k )=x 13-kx 12+x 1-k=(x 1-k )(x 12+1)>0, ∴f (x )的最小值m =f (k )=k .∵f (x 2)-f (-k )=x 23-kx 22+x 2-(-k 3-k ·k 2-k )=(x 2+k )[(x 2-k )2+k 2+1]<0,∴f (x )的最大值M =f (-k )=-2k 3-k .综上所述,当k <0时,f (x )的最小值m =f (k )=k ,最大值M =f (-k )=-2k 3-k . (方法2)当k <0时,对∀x ∈[k ,-k ],都有f (x )-f (k )=x 3-kx 2+x -k 3+k 3-k =(x 2+1)(x -k )≥0,故f (x )≥f (k ).f (x )-f (-k )=x 3-kx 2+x +k 3+k 3+k =(x +k )(x 2-2kx +2k 2+1)=(x +k )[(x -k )2+k 2+1]≤0. 故f (x )≤f (-k ).∵f (k )=k <0,f (-k )=-2k 3-k >0, ∴f (x )max =f (-k )=-2k 3-k ,f (x )min =f (k )=k .。
2013年高考真题——文科数学(广东卷A)解析 Word版含答案

图2俯视图侧视图正视图2013年普通高等学校招生全国统一考试(广东卷)数学(文科A 卷)解析本试卷共4页,21小题,满分150分.考试用时120分钟. 锥体的体积公式:13V S h =.其中S 表示锥体的底面积,h 表示锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T = A .{0} B .{0,2} C .{2,0}- D .{2,0,2}- 【解析】:先解两个一元二次方程,再取交集,选A ,5分到手,妙! 2.函数lg (1)()1x f x x +=-的定义域是A .(1,)-+∞B .[1,)-+∞C .(1,1)(1,)-+∞ D .[1,1)(1,)-+∞ 【解析】:对数真数大于零,分母不等于零,目测C ! 3.若()34i x yi i +=+,,x y R ∈,则复数x yi +的模是 A .2 B .3 C .4 D .5【解析】:复数的运算、复数相等,目测4,3x y ==-,模为5,选D . 4.已知51sin ()25πα+=,那么cos α=A .25-B .15- C .15D .25【解析】:考查三角函数诱导公式,51sin ()sin (2+)sin co s 2225πππαπααα⎛⎫+=+=+== ⎪⎝⎭,选C. 5.执行如图1所示的程序框图,若输入n 的值为3,则输出s 的值是 A .1 B .2 C .4 D .7 【解析】选C.本题只需细心按程序框图运行一下即可. 6.某三棱锥的三视图如图2所示,则该三棱锥的体积是 A .16B .13C .23D .1【解析】由三视图判断底面为等腰直角三角形,三棱锥的高为2,则111=112=323V ⋅⋅⋅⋅,选B. 7.垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是图 1A .0x y +-=B .10x y ++=C .10x y +-=D .0x y ++=【解析】本题考查直线与圆的位置关系,直接由选项判断很快,圆心到直线的距离等于1r =,排除B 、C ;相切于第一象限排除D ,选A.直接法可设所求的直线方程为:()0y x k k =-+>,再利用圆心到直线的距离等于1r =,求得k =8.设l 为直线,,αβ是两个不同的平面,下列命题中正确的是A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥ 【解析】基础题,在脑海里把线面可能性一想,就知道选B 了. 9.已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是A .14322=+yxB .13422=+yxC .12422=+yxD .13422=+yx【解析】基础题,1,2,c a b === D.10.设 a 是已知的平面向量且≠0 a ,关于向量a 的分解,有如下四个命题:①给定向量 b ,总存在向量c ,使=+ a b c ;②给定向量 b 和 c ,总存在实数λ和μ,使λμ=+a b c ;③给定单位向量 b 和正数μ,总存在单位向量 c 和实数λ,使λμ=+a b c ;④给定正数λ和μ,总存在单位向量 b 和单位向量 c ,使λμ=+a b c ;上述命题中的向量 b , c 和a 在同一平面内且两两不共线,则真命题的个数是A .1B .2C .3D .4【解析】本题是选择题中的压轴题,主要考查平面向量的基本定理和向量加法的三角形法则. 利用向量加法的三角形法则,易的①是对的;利用平面向量的基本定理,易的②是对的;以a 的终点作长度为μ的圆,这个圆必须和向量λb 有交点,这个不一定能满足,③是错的;利用向量加法的三角形法则,结合三角形两边的和大于第三边,即必须=+λμλμ+≥b c a ,所以④是假命题.综上,本题选B.平面向量的基本定理考前还强调过,不懂学生做得如何.【品味选择题】文科选择题答案:ACDCC BABDB.选择题3322再次出现!今年的选择题很基础,希望以后高考年年出基础题!二、填空题:本大题共5小题.考生作答4小题.每小题5分,满分20分. (一)必做题(11~13题)11.设数列{}n a 是首项为1,公比为2-的等比数列,则1234||||a a a a +++= 【解析】这题相当于直接给出答案了1512.若曲线2ln y ax x =-在点(1,)a 处的切线平行于x 轴,则a = . 【解析】本题考查切线方程、方程的思想.依题意''1112,210,2x y a x ya a x==-=-=∴=13.已知变量,x y 满足约束条件⎪⎩⎪⎨⎧≥≤≤-≥+-11103y x y x ,则z x y =+的最大值是 .【解析】画出可行域如图,最优解为()1,4,故填 5 ; (二)选做题(14、15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)已知曲线C 的极坐标方程为2cos ρθ=.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为 .【解析】本题考了备考弱点.讲参数方程的时候,参数的意义要理解清楚.先化成直角坐标方程()2211x y -+=,易的则曲线C 的参数方程为1co s sin x y θθ=+⎧⎨=⎩(θ为参数)15.(几何证明选讲选做题) 如图3,在矩形A B C D中,A B =3B C =,B E A C ⊥,垂足为E ,则E D = .【解析】本题对数值要敏感,由A B =3B C =,可知60B A C ∠=从而302A E C A D =∠=,2D E ==【品味填空题】选做题还是难了点,比理科还难些.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)图 3已知函数()s ,12f x x x R π⎛⎫=-∈ ⎪⎝⎭.(1) 求3f π⎛⎫⎪⎝⎭的值; (2) 若33co s ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭.【解析】(1)s s 133124f ππππ⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)33co s ,,252πθθπ⎛⎫=∈⎪⎝⎭,4sin 5θ==-,1s co s co s sin sin 64445f ππππθθθθ⎛⎫⎛⎫⎫∴--=+=- ⎪ ⎪⎪⎝⎭⎝⎭⎭. 【解析】这个题实在是太简单,两角差的余弦公式不要记错了.17.(本小题满分13分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1) 根据频数分布表计算苹果的重量在[90,95)的频率;(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率. 【解析】(1)苹果的重量在[)95,90的频率为20=0.450;(2)重量在[)85,80的有54=15+15⋅个;(3)设这4个苹果中[)85,80分段的为1,[)100,95分段的为2、3、4,从中任取两个,可能的情况有: (1,2)(1,3)(1,4)(2,3)(2,4)(3,4)共6种;设任取2个,重量在[)85,80和[)100,95中各有1个的事件为A ,则事件A 包含有(1,2)(1,3)(1,4)共3种,所以31(A )62P ==.图 4【解析】这个基础题,我只强调:注意格式!18.(本小题满分13分)如图4,在边长为1的等边三角形A B C 中,,D E 分别是,A B A C 边上的点,A D A E =,F 是B C 的中点,A F 与D E 交于点G ,将ABF ∆沿AF 折起,得到如图5所示的三棱锥A B C F -,其中2B C =.(1) 证明:D E //平面B C F ; (2) 证明:C F ⊥平面A B F ; (3) 当23A D =时,求三棱锥F D E G -的体积F V -【解析】(1)在等边三角形A B C 中,A D A E =A D A E D BE C∴=,在折叠后的三棱锥A B C F -中也成立,//D E B C ∴ ,D E ⊄ 平面B C F ,B C ⊂平面B C F ,//D E ∴平面B C F ;(2)在等边三角形A B C 中,F 是B C 的中点,所以A F B C ⊥①,12B FC F ==.在三棱锥A B C F -中,2B C =,222B C B F C F C F B F ∴=+∴⊥②B FC F F C F A B F ⋂=∴⊥ 平面;(3)由(1)可知//G E C F ,结合(2)可得G E D F G⊥平面.111111132323323324F D E G E D F G V V D G F G G F --⎛∴==⋅⋅⋅⋅=⋅⋅⋅⋅⋅= ⎝⎭【解析】这个题是入门级的题,除了立体几何的内容,还考查了平行线分线段成比例这个平面几何的内容.19.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441,,n n S a n n N *+=--∈且2514,,a a a 构成等比数列.(1)证明:2a =(2) 求数列{}n a 的通项公式; (3) 证明:对一切正整数n ,有1223111112n n a a a a a a ++++< .【解析】(1)当1n =时,22122145,45a a a a =-=+,20n a a >∴=(2)当2n ≥时,()214411n n S a n -=---,22114444n n n n n a S S a a -+=-=--()2221442n n n n a a a a +=++=+,102n n n a a a +>∴=+ ∴当2n ≥时,{}n a 是公差2d =的等差数列.2514,,a a a 构成等比数列,25214a a a ∴=⋅,()()2222824a a a +=⋅+,解得23a =,由(1)可知,212145=4,1a a a =-∴=21312a a -=-= ∴{}n a 是首项11a =,公差2d =的等差数列.∴数列{}n a 的通项公式为21n a n =-. (3)()()1223111111111335572121n n a a a a a a n n ++++=++++⋅⋅⋅-+11111111123355721211111.2212n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⋅-+-+-+- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎡⎤=⋅-<⎢⎥+⎣⎦【解析】本题考查很常规,第(1)(2)两问是已知n S 求n a ,{}n a 是等差数列,第(3)问只需裂项求和即可,估计不少学生猜出通项公式,跳过第(2)问,作出第(3)问.本题易错点在分成1n =,2n ≥来做后,不会求1a ,没有证明1a 也满足通项公式.20.(本小题满分14分)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线:20l x y --=2.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,P A P B ,其中,A B 为切点. (1) 求抛物线C 的方程;(2) 当点()00,P x y 为直线l 上的定点时,求直线A B 的方程; (3) 当点P 在直线l 上移动时,求A F B F ⋅的最小值.【解析】(1)依题意2d ==1c =(负根舍去)∴抛物线C 的方程为24x y =;(2)设点11(,)A x y ,22(,)B x y ,),(00y x P ,由24xy =,即214y x ,=得y '=12x .∴抛物线C 在点A 处的切线P A 的方程为)(2111x x x y y -=-,即2111212x y x x y -+=.∵21141x y =, ∴112y x x y -=.∵点),(00y x P 在切线1l 上, ∴10102y x x y -=. ①同理, 20202y x x y -=. ②综合①、②得,点1122(,),(,)A x y B x y 的坐标都满足方程 y x x y -=002.∵经过1122(,),(,)A x y B x y 两点的直线是唯一的, ∴直线A B 的方程为y x x y -=002,即00220x x y y --=;(3)由抛物线的定义可知121,1A F y B F y =+=+, 所以()()121212111A F B F y y y y y y ⋅=++=+++联立2004220x y x x y y ⎧=⎨--=⎩,消去x 得()22200020y y x y y +-+=,2212001202,y y x y y y y ∴+=-=0020x y --=()222200000021=221A F B F y y x y y y ∴⋅=-++-+++2200019=22+5=2+22y y y ⎛⎫++ ⎪⎝⎭∴当012y =-时,A FB F ⋅取得最小值为92【解析】2013广州模直接命中了这一题,广一模20题解法2正是本科第(2)问的解法,并且广一模大题结构和高考完全一致. 紫霞仙子:我的意中人是个盖世英雄,有一天他会踩着七色云彩来娶我,我只猜中了前头,可是我却猜不中这结局……形容这次高考,妙极!21.(本小题满分14分) 设函数x kxx x f +-=23)( ()R k ∈.(1) 当1=k 时,求函数)(x f 的单调区间;(2) 当0<k 时,求函数)(x f 在[]k k -,上的最小值m 和最大值M . 【解析】:()'2321f x x kx =-+(1)当1k =时()'2321,41280f x x x =-+∆=-=-<()'0fx ∴>,()f x 在R 上单调递增.(2)当0k <时,()'2321f x x kx =-+,其开口向上,对称轴3k x = ,且过()01,(i)当(241240k k k ∆=-=+-≤,即0k ≤<时,()'0fx ≥,()f x 在[],k k -上单调递增,从而当x k =时,()f x 取得最小值()m f k k == , 当x k =-时,()f x 取得最大值()3332M fk k k k k k =-=---=--.(ii)当(241240k k k ∆=-=+->,即k <()'23210fx xkx =-+=解得:1233k k x x +-==,注意到210k x x <<<,(注:可用韦达定理判断1213x x ⋅=,1223k x x k +=>,从而210k x x <<<;或者由对称结合图像判断)()(){}()(){}12m in ,,m ax ,m f k f x Mf k f x ∴==-()()()()32211111110fx fk x kx x k x kx -=-+-=-+>()f x ∴的最小值()m fk k ==,()()()()()232322222222=[1]0fx fk x kx x k k k k x k x k k --=-+---⋅-+-++< ()fx ∴的最大值()32M fk k k =-=--综上所述,当0k <时,()f x 的最小值()m f k k ==,最大值()32M f k k k =-=-- 解法2(2)当0k <时,对[],x k k ∀∈-,都有32332()()(1)()0f x f k x kx x k k k x x k -=-+-+-=+-≥,故()()fx fk ≥32332222()()()(221)()[()1]0f x f k x kx x k k k x k x kx k x k x k k --=-++++=+-++=+-++≤故()()f x f k ≤-,而 ()0f k k =<,3()20f k k k -=-->所以 3m ax ()()2f x f k k k =-=--,m in ()()f x f k k ==【解析】:看着容易,做着难!常规解法完成后,发现不用分类讨论,奇思妙解也出现了:结合图像感知x k = 时最小,x k =-时最大,只需证()()()f k f x f k ≤≤-即可,避免分类讨论.本题第二问关键在求最大值,需要因式分解比较深的功力,这也正符合了2012年高考年报的“对中学教学的要求——重视高一教学与初中课堂衔接课”.。
2013年高考文科数学广东卷-答案

2013年普通高等学校招生全国统一考试(广东卷)数学(文科)答案解析一、选择题 1.【答案】A【解析】由题意知{0,2}S =-,{0,2}T =,故{0}S T =I ,故选A . 【提示】先求一元二次方程的根,再用列举法求交集元素. 【考点】集合的交集运算. 2.【答案】C【解析】由题意知1010x x +>⎧⎨-≠⎩,解得1x >-且1x ≠,所以定义域为(1,1)(1,)-+∞U 【提示】从函数有意义的角度分析求解定义域,再由各个集合的交集得出定义域. 【考点】函数的定义域和集合的交集运算. 3.【答案】D【解析】因为i(i)34i x y +=+,所以i 34i x y -=+,根据两个复数相等的条件得:3y -=即3y =-,4x =,所以x yi +43i =-,i x y +的模5=;【提示】通过等式两边增添、通分等手段化简求出复数的代数形式,进而求出复数的模.【解析】由三视图可看出该三棱锥的底面为直角边为1的等腰直角三角形,高为2,所以该三棱锥的体积111112323V ==g ggg; 【提示】由三视图还原出直观图,根据“长对正、高对齐、宽相等”寻找出三棱锥的相关数据,代入棱锥的体积公式进行计算.【考点】平面图形的三视图的和棱锥的体积. 7.【答案】A【解析】设所求直线为l ,因为l 垂直直线1y x =+,故l 的斜率为1-,设直线l 的方程为y x b =-+,化为一般式为0x y b +-=;因为l 与圆相切221x y +=相切,所以圆心(0,0)到直线l 的距离1==,所以b =0b >,故b ,所以l 的方程为0x y +=;【提示】给定所求直线与已知直线垂直和已知圆相切的位置关系,利用待定系数法求出直线方程,再利用数形结合法对所求参数值进行取舍.【考点】直线与圆的位置关系,直线的方程. 8.【答案】B【解析】若α与β相交,且l 平行于交线,则也符合A ,显然A 错;若l l αβ⊥,∥,则αβ⊥,故C 错;l αβα⊥,∥,若l 平行交线,则l β∥,故D 错;【提示】由线面平行或垂直的某些给定条件来判断相关线面的位置关系. 【考点】空间中直线、平面之间的位置关系.9.【答案】由线面平行或垂直的某些给定条件来判断相关线面的位置关系.【解析】由焦点可知(1,0F )可知椭圆焦点在x 轴上,由题意知1c =,12ca =,所以2a b ===,故椭圆标准方程为22143x y +=;【提示】给定椭圆的离心率和焦点,求出各参数从而确定其标准方程. 【考点】椭圆的标准方程和椭圆的几何性质. 10.【答案】C【解析】对于①,若向量a ,b 确定,因为a b -是确定的,故总存在向量c ,满足c a b =-,即a b c =+,故正确.对于②,因为c 和b 不共线,由平面向量基本定理可知,总存在唯一的一对实数λ,μ,满足a b c λμ=+,故正确;对于③,如果a b c λμ=+,则以||a ,||b λ,||c μ为三边长可以构成一个三角形,如果单位向量b 和正数μ确定,则一定存在单位向量c 和实数λ,使a b c λμ=+,故正确;对于④,如果给定的正数λ和μ不能满足“以||a ,||b λ,||c μ为三边长可以构成一个三角形”,这时单位向量b 和c 就不存在,故错误.因此选C【提示】给定某些向量,利用平行四边形或三角形法则及平面向量基本定理来进行判断. 【考点】平面向量基本定理. 二、填空题 11.【答案】15【解析】由题意知11a =,22a =-,34a =,48a =-,所以;1234a a a a +++124815=+++=;【解析】因为2ln y ax x =-,所以12y ax x'=-,因为曲线2ln y ax x =-在点(1,)a 处的切线平行于x 轴,所以1210x y a ='=-=,所以12a =; 【提示】给定曲线上某点切线在坐标轴上的位置关系,利用该点导数的几何意义求解原方程,从而求出待定系数.【考点】曲线的切线与导数的联系,导数的几何意义. 13.【答案】5【解析】作出可行域可得直角梯形的四个顶点分别为(1,1)-,(1,2)-,(1,1),(1,4)代入可知z 的最大值为145z =+=;【提示】画出线性约束条件表示的平面区域,用图解法求最值. 【考点】线性规划问题的最值求解. 14.【答案】cos 1sin x y αα=+⎧⎨=⎩,(α为参数)【解析】因为曲线C 的极坐标方程为2cos ρθ=;所以2cos 2cos 1cos2x ρθθθ===+①,sin 2sin cos sin 2y ρθθθθ===②;①可变形得:cos21x θ=-③,②可变形得:sin 2y θ=;由22sin 2cos 21θθ+=得:22(1)1x y -+=;【解析】因为在矩形ABCD 中,AB =,3BC =,BE AC ⊥,所以30BCA ∠=︒,所以cos30CE CB =︒=g CDE △中,因为60ECD ∠=︒,由余弦定理得: 2222021212cos60224DE CE CD CE CD =+-=+-=⎝⎭g g g ,所以CD ;(2)因为3cos 5θ=,3π,2π2θ⎛⎫∈ ⎪⎝⎭,所以4sin 5θ=-; ππππππcos cos sin sin 6612333f θθθθθ⎛⎫⎛⎫⎛⎫⎫-=--=-=+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎭314525⨯-=⎭;(2)若采用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,则重量在[80,85)的个数541515=⨯=+; (3)设在[80,85)中抽取的一个苹果为x ,在[95,100)中抽取的三个苹果分别为a b c ,,,从抽出的4个苹果中,任取2个共有(,)x a ,(,)x b ,(,)x c ,(,)a b ,(,)a c ,(,)b c 66种情况,其中符合“重量在[80,85)和[95,100)中各有一个”的情况共有(,)x a ,(,)x b ,(,)x c 种;设“抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有一个”为事件A ,则事件A 的概率31()62P A ==; 【提示】由频数分布表找出相应范围内的频数,由分层抽样确定在某范围内的个体数目,用列举法求解古典图5中,因为DG BF ∥,//GE FC ,所以平面DGE ∥平面BCF ,所以DE BCF ∥平面; (2)证明:在图4中,因为因为ABC 是等边三角形,且F 是BC 的中点,所以AF BC ⊥;在图5中,因为在BFC △中,12BF FC BC ===,,所以222BF FC BC +=,BF CF ⊥,又因为AF CF ⊥,所以CF ABF ⊥平面(3)因为AF CF AF BF ⊥⊥,,所以AF ⊥平面BCF ,又因为平面DGE ∥平面BCF ,所以AF ⊥平面DGE ;所以11111113323233F DEG DGE V S FG DG GE FG -====g g g g g g g g g △; 【提示】通过折叠问题来分析折叠前后变化的元素和不变化的元素,从而得出线面平行或垂直关系以及三(2)当2n ≥时,2211444(41)4(1)1n n n n n a S S a n a n -+⎡⎤=-=------⎣⎦2214n n a a +=--, 所以221(2)n n a a +=+,因为{}n a 各项均为正数,所以12n n a a +=+;因为2a ,5a ,14a 构成等比数列,所以22145a a a =g ,即2222(24)(6)a a a +=+,解得23a =,因为2a =,所以11a =,212a a =+,符合12n n a a +=+,所以12n n a a +=+对1n =也符合,所以数列{}n a 是一个以11a =为首项,2d =为公差的等差数列,1(1)221n a n n =+-=-g; (3)因为111111(21)(21)22121n n a a n n n n +⎛⎫==- ⎪+--+⎝⎭, 所以1223111111111111121323522121n n a a a a a a n n +⎛⎫⎛⎫⎛⎫+++=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭L 111111111112133521212121212n n n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅-=-=< ⎪ ⎪-+++⎝⎭⎝⎭; 所以对一切正整数n ,有1223111112n n a a a a a a ++++<L . 【提示】把等式、不等式、等差数列和等比数列等知识结合在一起来考查,考查了递推公式、等比中项、等差数列的概念和通项公式,会用列项相消法求数列的前n 项和,放缩法证明不等式的知识. 【考点】等差数列、等比数列的定义及应用,函数与方程的思想以及不等式的证明.所以2d=,又因为0c>,所以解得1c=,抛物线的焦点坐标为(0,1),所以抛物线C的方程为24x y=;(2)因为抛物线的方程为24x y=,即214y x=,所以12y x'=,设过00(,)P x y点的切线l'与抛物线的切点坐标为21,4m m⎛⎫⎪⎝⎭,所以直线l'的斜率210412y mk mx m-==-,解得10m x=+或20m x=;不妨设A点坐标为2111,4m m⎛⎫⎪⎝⎭,B点坐标为2221,4m m⎛⎫⎪⎝⎭,==>,所以12m m≠;221112441201211()42ABm mk m m xm m-==+=-;所以直线AB的方程为210111()42y m x x m-=-,代入整理得:12y x=;(3)A点坐标为2111,4m m⎛⎫⎪⎝⎭,B点坐标为2221,4m m⎛⎫⎪⎝⎭,F点坐标为(0,1),因为0020x y--=;所以10m x x=+=+200m x x==,1202m mx+=,12048m mx=-;因此=||AF BFg22222222121212121212 11111111()1()[()2]1 44164164m m m m m m m m m m m m⎛⎫⎛⎫=++=+++=++-+⎪⎪⎝⎭⎝⎭22220000001139(48)[(2)2(48)]1269216422x x x x x x⎛⎫=-+--+=-+=-+⎪⎝⎭,所以当32x=时,||||AF BFg取最小值92;【提示】由点到直线的距离公式建立关于c的方程,从而确定c并写出抛物线的标准方程;设出点坐标并求出切线方程从而得到所求直线方程;利用抛物线的定义转化为点到准线的距离,建立关于y的目标函数,从而确定函数的最小值.【考点】点到直线的距离公式,直线的点斜式方程,抛物线的定义和标准方程,导数的几何意义,直线与抛物线的交点,二次函数的最值以及待定系数法的应用.①当0∆≤时,即0k <时,()0f x '≥,()f x 在R 上单调递增,此时无最小值和最大值;②当0∆>时,即k <时,令()0f x '=,解得x =或x =()0f x '>,解得x <或x ;令()0f x '<,解得x <0k <=<-23kk >=>作()f x 的最值表如下:【提示】由抛物线与直线方程的位置关系来求解方程,通过导数来求函数及函数的单调区间;对于导数中含有未知数,需要讨论判别式∆的符号,然后比较区间端点的函数值与极值的大小从而确定最值. 【考点】导数的计算和导数在研究函数中的应用,利用导数来求函数的单调区间和最值.。
2013年广东高考数学文科试卷带详解

2013年普通高等学校招生全国统一考试(广东卷)数学(文科)一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|20,}S x x x x =+=∈R ,2{|20,}T x x x x =-=∈R ,则S T = ( ) A .{0} B .{0,2} C .{2,0}- D .{2,0,2}- 【测量目标】集合的交集运算.【考查方式】先求一元二次方程的根,再用列举法求交集元素. 【参考答案】A【试题解析】集合S ={0,2-},T ={0,2},故S T ={0},故选A. 2.函数lg(1)()1x f x x +=-的定义域是 ( ) A .(1,)-+∞ B .[1,)-+∞ C .(1,1)(1,)-+∞ D .[1,1)(1,)-+∞ 【测量目标】函数的定义域和集合的交集运算.【考查方式】从函数有意义的角度分析求解定义域,再由各个集合的交集得出定义域. 【参考答案】C【试题解析】要使函数有意义,需1010x x +>⎧⎨-≠⎩,解得11x x >-≠且,(步骤1)故函数的定义域为1,11+∞ (-)(,),故选C. (步骤2)3.若i(i)34i x y +=+,,x y ∈R ,则复数i x y +的模是 ( ) A .2 B .3 C .4 D .5 【测量目标】复数的四则运算及复数的模.【考查方式】通过等式两边增添、通分等手段化简求出复数的代数形式,进而求出复数的模. 【参考答案】D【试题解析】方法一:因为i(i)34i x y +=+,所以()()()34i i 34i i ==43i i i i x y +-++=--,(步骤1)故22i =43i =4+(3)5x y +--=,故选D. (步骤2)方法二:因为i(i)34i x y +=+,所以+i=3+4i y x -,所以4x =,3y =-,(步骤1) 故22i =43i =4+(3)5x y +--=,故选D. (步骤2)方法三:因为i(i)34i x y +=+,所以(i)i(+i)=(i)(34i)=43i x y --⋅+-,(步骤1)即i=43i x y +-,故22i =43i =4+(3)5x y +--=,故选D. (步骤2)4.已知5π1sin()25α+=,那么cos α= ( ) A .25- B .15- C .15 D .25【测量目标】诱导公式.【考查方式】通过三角函数的化简变形,正弦和与余弦互化. 【参考答案】C【试题解析】因为5πππ1sin()sin(2π+)sin()2225ααα+=+=+=,故1cos =5α,故选C. 5.执行如图所示的程序框图,若输入n 的值为3,则输出s 的值是 ( )A .1B .2C .4D .7【测量目标】程序框图和流程图.【考查方式】给定带有循环结构的算法程序框图,分析每一次执行的结果并判断是否满足条件,最后得出答案. 【参考答案】C【试题解析】根据初始化条件,顺序执行程序就可以得到结果. 第一次执行循环:12s i ==,(23…成立);(步骤1)第二次执行循环:23s i ==,(33…成立);(步骤2)第三次执行循环:44s i ==,(43…不成立),结束循环,故输出4s =,故选C. (步骤3)6.某三棱锥的三视图如图所示,则该三棱锥的体积是 ()A .16 B .13 C .23D .1 第5题图第6题图【测量目标】平面图形的三视图的和棱锥的体积.【考查方式】由三视图还原出直观图,根据“长对正,高对齐,宽相等”寻找出三棱锥的相关数据,代入棱锥的体积公式进行计算. 【参考答案】B【试题解析】如图,三棱锥的底面是一个直角边长为1的等腰直角三角形,有一条侧棱和底面垂直,且其长度为2,故三棱锥的高为2,(步骤1) 故其体积为111112323V =⨯⨯⨯⨯=,故选B. (步骤2) 7.垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是 ( ) A .20x y +-= B .10x y ++= C .10x y +-= D .20x y ++= 【测量目标】直线与圆的位置关系、直线的方程.【考查方式】给定所求直线与已知直线垂直和已知圆相切的位置关系,利用待定系数法求出直线方程,再利用数形结合法对所求参数值进行取舍. 【参考答案】A【试题解析】与直线1y x =+垂直的直线方程可设为0x y b ++=,(步骤1) 由0x y b ++=与圆221x y +=相切,可得22||111b =+,得2b =±.(步骤2)由于两者相切于第一象限,则可知2b =-,故直线方程为20x y +-=,故选A. (步骤3)8.设l 为直线,,αβ是两个不同的平面,下列命题中正确的是. ( )A .若l α∥,l β∥,则αβ∥ B .若l α⊥,l β⊥,则αβ∥ C .若l α⊥,l β∥,则αβ∥ D .若αβ⊥,l α∥,则l β⊥ 【测量目标】空间中直线、平面之间的位置关系.【考查方式】由线面平行或垂直的某些给定条件来判断相关线面的位置关系. 【参考答案】B【试题解析】选项A ,若l α∥,l β∥,则α和β可能平行也可能相交,故错误;选项B ,若l l αβαβ⊥⊥,,则∥,故正确;选项C ,若l l αβαβ⊥⊥,∥,则,故错误;选项D ,若,l αβα⊥∥,则l 与β的位置关系有三种可能:l l l βββ⊥⊂,∥,,故错误.故选B. 9.已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是 () 第6题图A .14322=+y xB .13422=+y x C .12422=+y x D .13422=+y x【测量目标】椭圆的标准方程和椭圆的几何性质.【考查方式】给定椭圆的离心率和焦点,求出各参数从而确定其标准方程. 【参考答案】D【试题解析】右焦点为(1,0)F 说明有两层含义:椭圆的焦点在x 轴上和1c =.又离心率为12c a =,故2a =,222413b a c =-=-=,(步骤1) 故椭圆的方程为13422=+y x .(步骤2)10.设a 是已知的平面向量且≠0a ,关于向量a 的分解,有如下四个命题: ①给定向量b ,总存在向量c ,使=+a b c ;②给定向量b 和c ,总存在实数λ和μ,使λμ=+a b c ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使λμ=+a b c ; ④给定正数λ和μ,总存在单位向量b 和单位向量c ,使λμ=+a b c ;上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是 ( ) A .1B .2C .3D .4【测量目标】平面向量基本定理.【考查方式】给定某些向量,利用平行四边形或三角形法则及平面向量基本定理来进行判断. 【参考答案】C【试题解析】对于①,若向量a ,b 确定,因为-a b 是确定的,故总存在向量c ,满足=-c a b ,即=+a b c ,故正确.对于②,因为c 和b 不共线,由平面向量基本定理可知,总存在唯一的一对实数λ,μ,满足λμ=+a b c ,故正确;对于③,如果λμ=+a b c ,则以||a ,||λb ,||μc 为三边长可以构成一个三角形,如果单位向量b 和正数μ确定,则一定存在单位向量c 和实数λ,使λμ=+a b c ,故正确;对于④,如果给定的正数λ和μ不能满足“以||a ,||λb ,||μc 为三边长可以构成一个三角形”,这时单位向量b 和c 就不存在,故错误. 因此选C二、填空题:本大题共5小题.考生作答4小题.每小题5分,满分20分. (一)必做题(11~13题)11.设数列{}n a 是首项为1,公比为2-的等比数列,则1234||||a a a a +++=________ 【测量目标】等比数列的通项与性质.【考查方式】给定等比数列的首项和公比,求出通项公式,再构造新数列,求解新数列的部分和. 【参考答案】15【试题解析】由首项和公比写出等比数列的前四项,然后代入1234||||a a a a +++求值. 也可以构造新数列,利用其前n 项和公式求解.方法一:1234||||a a a a +++=()()()231|12||12||12|15+⨯-+⨯-+⨯-=.方法二:因为1234||||a a a a +++=1234||||||||a a a a +++,数列{||}n a 是首项为1,公比为2的等比数列,故所求代数式的值为4121512-=-.12.若曲线2ln y ax x =-在点(1,)a 处的切线平行于x 轴,则a =________ . 【测量目标】曲线的切线与导数的联系,导数的几何意义【考查方式】给定曲线上某点切线在坐标轴上的位置关系,利用该点导数的几何意义求解原方程,从而求出待定系数. 【参考答案】12【试题解析】计算出函数2ln y ax x =-在点(1,)a 处的导数,利用导数的几何意义求a 的值. 因为12y ax x'=-,所以1|2 1.x y a ='=-(步骤1) 因为曲线在点(1,)a 处的切线平行于x 轴,故其斜率为0,故210a -=,12a =.(步骤2) 13.已知变量,x y 满足约束条件30111x y x y -+⎧⎪-⎨⎪⎩…剟…,则z x y =+的最大值是 ________【测量目标】线性规划问题的最值求解.【考查方式】画出线性约束条件表示的平面区域,用图解法求最值. 【参考答案】5【试题解析】画出平面区域如图阴影部分所示,由z x y =+,得y x z =-+,z 表示直线y x z =-+在y 轴上的截距,(步骤1)由图知,当直线y x z =-+经过点(1,4)B 时,目标函数取得最大值,为145z =+=.(步骤2)(二)选做题(14、15题,考生只能从中选做一题)第13题图14.(坐标系与参数方程选做题)已知曲线C 的极坐标方程为2cos ρθ=.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为________ .【测量目标】极坐标方程、普通方程和参数方程的互化.【考查方式】已知极坐标方程,通过建立直角坐标系将其化为普通方程,从而得出参数方程.【参考答案】cos 1sin x y αα=+⎧⎨=⎩,(α为参数)【试题解析】先把极坐标方程化为普通方程,再把普通方程化为参数方程. 2cos ρθ=化为普通方程为22222x x y x y +=+,即22(1)1x y -+=,(步骤1)则其参数方程为1cos sin x y αα-=⎧⎨=⎩,(α为参数),即cos 1sin x y αα=+⎧⎨=⎩,(α为参数)(步骤2)15.(几何证明选讲选做题)如图3,在矩形ABCD 中,3,AB =3BC =,BE AC ⊥,垂足为E ,则ED =________ .【测量目标】正弦定理和余弦定理在几何中的应用.【考查方式】由平面图形中给定线段,利用勾股定理和三角函数求解平面图形中线段的长度. 【参考答案】212【试题解析】由题意可求AE 的长及BAC ∠,故可把DE 放在AED △或ECD △中,利用余弦定理求解.也可以从E 点出发作辅助线,将DE 放在直角三角形中求解.方法一:因为3AB =,3BC =,所以223(3)23AC =+=,3tan 33BAC ∠==,所以π3BAC ∠=.(步骤1)在Rt BAE △中,π3cos 32AE AB ==,则3332322CE =-=. (步骤2)第15题图在ECD △中,2222cos DE CE CD CE CD ECD=+-⋅∠223333121()(3)232224=+-⨯⨯⨯=,故212DE =.(步骤3) 方法二:如图,作EM AB ⊥交AB 于点M ,作EN AD ⊥交AD 于点N .(步骤1) 因为3AB =,3BC =, 所以3tan 33BAC ∠==,则π3BAC ∠=,(步骤2)π3cos 32AE AB ==,π313cos 3224NE AM AE ===⨯=, π333sin 3224AN ME AE ===⨯=,39344ND =-=. (步骤3) 在Rt DNE △中,22DE NE ND =+223921()()442=+=,(步骤4)三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 已知函数π()2cos(),12f x x x =-∈R . (1) 求π()3f 的值; (2) 若33πcos ,(,2π)52θθ=∈,求π()6f θ-. 【测量目标】正弦函数和余弦函数的图象与性质..【考查方式】给定余弦函数表达式,利用同角三角函数的基本关系式、两角差的余弦公式等方法求出函数值. 【试题解析】(1)因为π()2cos()12f x x =-,所以ππππ2()2cos()2cos 21331242f =-==⨯= (2)因为3π(,2π)2θ∈,3cos 5θ=,所以22234sin 1cos 1()55θθ=--=--=-. (步骤1) 所以π()6f θ-=ππ26θ--π24θ=-=222(cos sin )22θθ⨯+=cos sin θθ+=341555-=-. (步骤2)17.(本小题满分13分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:第15题图分组(重量) [80,85) [85,90)[90,95)[95,100)频数(个)5102015(1) 根据频数分布表计算苹果的重量在[90,95)的频率;(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个? (3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率. 【测量目标】频数分布表、频率、分层抽样、古典概型等概念的理解和相关运算.【考查方式】由频数分布表找出相应范围内的频数,由分层抽样确定在某范围内的个体数目,用列举法求解古典概型.【试题解析】(1)根据频数分布表,苹果重量在[90,95)范围内的频数为20,因为样本容量为50,故所求频率为200.450=. (2)重量在[80,85)和[95,100)范围内的苹果频数之比为5:151:3=,又1414⨯=,故重量在[80,85)内的苹果个数为1.(3)从苹果重量在[80,85)范围内抽出的苹果记为a ,从[95,100)范围内抽出的苹果记为1,2,3,则任取两个苹果的所有情况为{,1}a ,{,2}a ,{,3}a {1,2},{1,3},{2,3},共六个结果,(步骤1)记事件{A =重量在[80,85)和[95,100)中各有一个苹果},其包含的基本事件个数为3,故31()62P A ==. (步骤2)18.(本小题满分13分)如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF △沿AF 折起,得到如图5所示的三棱锥ABCF -,其中22BC =. (1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ; (3) 当23AD =时,求三棱锥F DEG -的体积F DEG V -.【测量目标】线面平行、线面垂直和面面平行的判定与性质、平面图形的折叠问题和三棱锥的体积的求法. 【考查方式】通过折叠问题来分析折叠前后变化的元素和不变化的元素,从而得出线面平行或垂直关系以及三棱锥的体积.第18题图【试题解析】(1)证法一:在折叠后的图形中,因为,AB AC AD AE ==, 所以AD AEAB AC=, 所以DE BC ∥. (步骤1)因为DE ⊄平面BCE ,BC ⊂平面BCF ,所以DE ∥平面BCF .(步骤2) 证法二:在折叠前的图形中,因为,AB AC AD AE ==, 所以A D A EA B A C=, 所以D E B C ∥,即,D G B F E G C F ∥∥.(步骤1)在折叠后的图形中,仍有,DG BF EG CF ∥∥. 又因为DG ⊄平面BCF ,BF ⊂平面BCF ,所以DG ∥平面BCF ,同理可证EG ∥平面BCF . (步骤2)又,DG EG G DG =⊂ 平面DEG ,EG ⊂平面DEG ,故平面DEG ∥平面BCF . (步骤3) 又DE ⊂平面DEG ,所以DE ∥平面BCF .(步骤4)(2)证明:在折叠前的图形中,因为ABC △为等边三角形,BF CF =, 所以AF BC ⊥,则在折叠后的图形中,,.AF BF AF CF ⊥⊥(步骤1)又12,22BF CF BC ===,所以222BC BF CF =+, 所以BF CF ⊥. (步骤2) 又BF AF F = ,BF ⊂平面ABF ,AF ⊂平面ABF ,所以CF ⊥平面ABF .(步骤3) (3) 解:由(1)可知GE CF ∥,结合(2)可得GE ⊥平面DFG .(步骤1)1132F DEG E DFG V V DG FG GF --∴==⋅⋅⋅⋅1111313()323323324=⋅⋅⋅⋅⋅=(步骤2)19.(本小题满分14分)设各项均为正数的 数列{}n a 的前n 项和为n S ,满足21441,,n n S a n n *+=--∈N 且2514,,a a a 构成等比数列.(1) 证明:2145a a =+;(2) 求数列{}n a 的通项公式; (3) 证明:对一切正整数n ,有1223111112n n a a a a a a ++++< .【测量目标】等差数列、等比数列的定义及应用,函数与方程的思想以及不等式的证明.【考查方式】把等式、不等式、等差数列和等比数列等知识结合在一起来考查,考查了递推公式、等比中项、等差数列的概念和通项公式,会用列项相消法求数列的前n 项和,放缩法证明不等式的知识. 【试题解析】解:(1)当1n =时,22122145,45a a a a =-=+,(步骤1)21045n a a a >∴=+ (步骤2)(2)当2n …时,()214411n n S a n -=---,22114444n n n n n a S S a a -+=-=--()2221442n n n n a a a a +=++=+,(步骤1)102n n n a a a +>∴=+ ∴当2n …时,{}n a 是公差2d =的等差数列. (步骤2)2514,,a a a 构成等比数列,25214a a a ∴=⋅,()()2222824a a a +=⋅+,解得23a =,(步骤3)由(1)可知,212145=4,1a a a =-∴=(步骤4)21312a a -=-= ∴ {}n a 是首项11a =,公差2d =的等差数列. 为正等差数列∴数列{}n a 的通项公式为21n a n =-.(步骤5)(3)()()1223111111111335572121n n a a a a a a n n ++++=++++⋅⋅⋅-+ (步骤1) 1111111112335572121n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⋅-+-+-+- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1111.2212n ⎡⎤=⋅-<⎢⎥+⎣⎦(步骤2)-20.(本小题满分14分)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线:20l x y --=的距离为322.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点. (1) 求抛物线C 的方程;(2) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (3) 当点P 在直线l 上移动时,求AF BF ⋅的最小值.【测量目标】点到直线的距离公式、直线的点斜式方程、抛物线的定义和标准方程、导数的几何意义、直线与抛物线的交点、二次函数的最值以及待定系数法的应用.【考查方式】由点到直线的距离公式建立关于c 的方程,从而确定c 并写出抛物线的标准方程;设出点坐标并求出切线方程从而得到所求直线方程;利用抛物线的定义转化为点到准线的距离,建立关于y 的目标函数,从而确定函数的最小值.【试题解析】(1)依题意023222c d --==,解得1c =(负根舍去)(步骤1) ∴抛物线C 的方程为24x y =.(步骤2)(2)设点11(,)A x y ,22(,)B x y ,),(00y x P ,由24x y =,即214y x ,=得y '=12x . (步骤1)∴抛物线C 在点A 处的切线PA 的方程为)(2111x x x y y -=-,即2111212x y x x y -+=. (步骤2) ∵21141x y =, ∴112y x xy -= . (步骤3) ∵点),(00y x P 在切线1l 上, ∴10102y x x y -=. ①,同理 20202y x xy -=. ② 综合①、②得,点1122(,),(,)A x y B x y 的坐标都满足方程 y x xy -=002. (步骤4) ∵经过1122(,),(,)A x y B x y 两点的直线是唯一的, ∴直线AB 的方程为y x xy -=002,即00220x x y y --=;(步骤5)(3)由抛物线的定义可知121,1AF y BF y =+=+,所以()()121212111AF BF y y y y y y ⋅=++=+++ (步骤1)联立2004220x y x x y y ⎧=⎨--=⎩,消去x 得()22200020y y x y y +-+=,2212001202,y y x y y y y ∴+=-=(步骤2)0020x y --= ()222200000021=221AF BF y y x y y y ∴⋅=-++-+++2200019=22+5=2()+22y y y ++ (步骤3)∴当012y =-时,AF BF ⋅取得最小值为92 (步骤4)21.(本小题满分14分)设函数x kx x x f +-=23)( ()k ∈R . (1) 当1=k 时,求函数)(x f 的单调区间;(2) 当0<k 时,求函数)(x f 在[]k k -,上的最小值m 和最大值M ,()2321f x x kx '=-+【测量目标】导数的计算和导数在研究函数中的应用,利用导数来求函数的单调区间和最值.【考查方式】由抛物线与直线方程的位置关系来求解方程,通过导数来求函数及函数的单调区间;对于导数中含有未知数,需要讨论判别式∆的符号,然后比较区间端点的函数值与极值的大小从而确定最值.【试题解析】(1)当1k =时()2321,f x x x '=-+(步骤1)41280∆=-=-<()0f x '∴>,()f x 在R 上单调递增.(步骤2)(2)当0k <时,()2321f x x kx '=-+,其开口向上,对称轴3kx =,且过()01,(步骤1) 第21题图(i )当()()2412433k k k ∆=-=+-…,即30k -<…时,()0f x '…,()f x 在[],k k -上单调递增,(步骤2)从而当x k =时,()f x 取得最小值()m f k k == ,当x k =-时,()f x 取得最大值()3332M f k k k k k k =-=---=--.(步骤3)(ii )当()()24124330k k k ∆=-=+->,即3k <-时,令()23210f x x kx '=-+=解得:221233,33k k k k x x +---==,注意到210k x x <<<,(步骤4)(注:可用韦达定理判断1213x x ⋅=,1223kx x k +=>,从而210k x x <<<;或者由对称结合图像判断) ()(){}()(){}12min ,,max ,m f k f x M f k f x ∴==-()()()()32211111110f x f k x kx x k x k x -=-+-=-+>()f x ∴的最小值()m f k k ==,(步骤5)()()()()()232322222222=[1]0f x f k x kx x k k k k x k x k k --=-+---⋅-+-++<()f x ∴的最大值()32M f k k k =-=--(步骤6)综上所述,当0k <时,()f x 的最小值()m f k k ==,最大值()32M f k k k =-=--(步骤7)解法2(2)当0k <时,对[],x k k ∀∈-,都有32332()()(1)()0f x f k x kx x k k k x x k -=-+-+-=+-…,故()()f x f k …(步骤1)32332222()()()(221)()[()1]0f x f k x kx x k k k x k x kx k x k x k k --=-++++=+-++=+-++…故()()f x f k -…(步骤2)而 ()0f k k =<,3()20f k k k -=-->所以 3max ()()2f x f k k k =-=--,min ()()f x f k k ==(步骤3)(1)解法3:因为2()321f x x kx '=-+,22(2)4314(3)k k ∆=--⨯⨯=-;(步骤1) ○1当0∆…时,即30k -<…时,()0f x '…,()f x 在R 上单调递增,此时无最小值和最大值;(步骤2)○2当0∆>时,即3k <-时,令()0f x '=,解得22223363k k k k x +-+-==或22223363k k k k x ----==;(步骤2)令()0f x '>,解得233k k x --<或233k k x +->;(步骤3)令()0f x '<,解得223333k k k k x --+-<<;(步骤4)因为223033k k k k k +-+<=<-,2232333k k k k k k --->=>作()f x 的最值表如下:xk 23,3k k k ⎛⎫-- ⎪ ⎪⎝⎭ 233k k --2233,33k k k k ⎛⎫--+- ⎪ ⎪⎝⎭233k k +-23,3k k k ⎛⎫+--⎪ ⎪⎝⎭k -()f x ' +- 0+()f xk极大值极小值32k k --则23min (),3k k m f k f ⎧⎫⎛⎫+-⎪⎪= ⎪⎨⎬ ⎪⎪⎪⎝⎭⎩⎭,23max (),3k k M f k f ⎧⎫⎛⎫--⎪⎪=- ⎪⎨⎬ ⎪⎪⎪⎝⎭⎩⎭;(步骤5)因为22222333313333k k k k k k k k f k ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-+-+-+-⎢⎥=-⨯+⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦3222(26)3927k k k k ----+=; 3223222(26)1832(26)318()32727k k k kk k k k k k f f k ⎛⎫----+-------=> ⎪ ⎪⎝⎭2480279k k -==->,所以23min (),()3k k m f k f f k k ⎧⎫⎛⎫+-⎪⎪=== ⎪⎨⎬ ⎪⎪⎪⎝⎭⎩⎭;(步骤6)因为22222333313333k k k k k k k k f k ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫--------⎢⎥=-⨯+⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 3222(26)3927k k k k -+--+=;2322332(26)395427()327k k k k k k k k f f k ⎛⎫---+--+++--= ⎪ ⎪⎝⎭32322352(26)3652(26)33650420272727k k k k k k k k k k +-++--++=<=<;所以233max (),()23k k M f k f f k k k ⎧⎫⎛⎫--⎪⎪=-=-=-- ⎪⎨⎬ ⎪⎪⎪⎝⎭⎩⎭;(步骤7) 综上所述,所以m k =,32M k k =--.(步骤8)。
2013广东高考数学(文科)真题及详细答案

2013广东高考数学(文科)真题及详细答案一、 选择题:本大题共10小题,每小题5分,满分50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设集合{}{}22|20,,|20,S x x x x R T x x x x R =+=∈=-=∈,则S T = ( )A. {}0B. {}0,2C. {}2,0-D. {}2,0,2-【答案】A ;【解析】由题意知{}0,2S =-,{}0,2T =,故{}0S T = ;2. 函数()lg 11x y x +=-的定义域是( )A. ()1,-+∞B. [)1,-+∞C. ()()1,11,-+∞D. [)()1,11,-+∞【答案】C ;【解析】由题意知1010x x +>⎧⎨-≠⎩,解得1x >-且1x ≠,所以定义域为()()1,11,-+∞ ;3. 若()34i x yi i +=+,,x y R ∈,则复数x yi +的模是( )A. 2B. 3C. 4D. 5 【答案】D ;【解析】因为()34i x yi i +=+,所以34xi y i -=+,根据两个复数相等的条件得:3y -=即3y =-,4x =,所以x yi +43i =-,x yi +的模224(3)5=+-=;4. 已知51sin 25πα⎛⎫+=⎪⎝⎭,那么cos α=( ) A. 25- B. 15- C.15D.25【答案】C ; 【解析】51sin sin ()co s ()co s()co s 22225ππππααααα⎛⎫⎡⎤+=+=-+=-==⎪⎢⎥⎝⎭⎣⎦; 5. 执行如图1所示的程序框图,若输入n 的值为3,则输出s 的值是( )A. 1B. 2C. 4D. 7【答案】D ;【解析】1i =时,1(11)1s =+-=;2i =时,1(21)2s =+-=;3i =时,2(31)4s =+-=;4i =时,4(41)7s =+-=;图1 图26. 某三棱锥的三视图如图2所示,则该三棱锥的体积是( )A.16B. 13C. 23D. 1【答案】B ;【解析】由三视图可看出该三棱锥的底面为直角边为1的等腰直角三角形,高为2, 所以该三棱锥的体积111112323V =⋅⋅⋅⋅=; 7. 垂直于直线1y x =+且与圆221x y +=相切于第Ⅰ象限的直线方程是( )A. 20x y +-= B. 10x y ++= C. 10x y +-= D. 20x y ++=【答案】A ;【解析】设所求直线为l ,因为l 垂直直线1y x =+,故l 的斜率为1-,设直线l 的方程为y x b =-+,化为一般式为0x y b +-=;因为l 与圆相切221x y +=相切,所以圆心(0,0)到直线l 的距离12b -==,所以2b =±,又因为相切与第一象限,所以0b >,故2b =,所以l 的方程为20x y +-=;8. 设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( )A. 若//,//l l αβ,则//αβB. 若,l l αβ⊥⊥,则//αβC. 若,//l l αβ⊥,则αβ//D. 若,l αβα⊥//,则l β⊥【答案】B ; 【解析】若α与β相交,且l 平行于交线,则也符合A ,显然A 错;若,//l l αβ⊥,则αβ⊥,故C 错;,l αβα⊥//,若l 平行交线,则//l β,故D 错;9. 已知中心在原点的椭圆C 的右焦点为()1,0F ,离心率等于12,则C 的方程是( )A.22134xy+= B.22143xy+= C.22142xy+= D.22143xy+=【答案】D ;【解析】由焦点可知()1,0F 可知椭圆焦点在x 轴上,由题意知11,2c c a==,所以222,213a b ==-=,故椭圆标准方程为22143xy+=;10. 设a 是已知的平面向量且0a ≠ ,关于向量a的分解,有如下四个命题:① 给定向量b ,总存在向量c ,使a b c =+;② 给定向量b 和c ,总存在实数λ和μ,使a b c λμ=+;③ 给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a b c λμ=+;④ 给定正数λ和μ,总存在单位向量b 和单位向量c ,使a b c λμ=+.上述命题中的向量b ,c 和a在同一平面内且两两不共线,则真命题的个数是( )A. 1B. 2C. 3D. 4【答案】D ;【解析】因为单位向量(模为1的向量,方向不确定)和一个不为零的实数可以表示任何一个向量,由题意可知A,B,C,D 均正确;二、 填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)11. 设数列{}n a 是首项为1,公比为2-的等比数列,则1234a a a a +++=____________; 【答案】15;【解析】由题意知11a =,22a =-,34a =,48a =-,所以;1234a a a a +++124815=+++=;12. 若曲线2ln y ax x =-在点()1,a 处的切线平行于x 轴,则a =_____________;【答案】12;【解析】因为2ln y ax x =-,所以12y a x x'=-,因为曲线2ln y ax x =-在点()1,a 处的切线平行于x 轴,所以1210x y a ='=-=,所以12a =;13. 已知变量,x y 满足约束条件30111x y x y -+≥⎧⎪-≤≤⎨⎪≥⎩,则z x y =+的最大值是_____________;【答案】5;【解析】作出可行域可得直角梯形的四个顶点分别为(1,1),(1,2),(1,1),(1,4)--,代入可知z 的最大值为145z =+=;(二)选做题(14~15题,考生只能从中选做一题)14. (坐标系与参数方程选做题)已知曲线C 的极坐标方程为2cos ρθ=,以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为___________________; 【答案】22(1)1x y -+=;【解析】因为曲线C 的极坐标方程为2cos ρθ=;所以2cos 2cos 1cos 2x ρθθθ===+① ,sin 2sin cos sin 2y ρθθθθ===②;①可变形得:cos 21x θ=-③,②可变形得:sin 2y θ=;由22sin 2cos 21θθ+=得:22(1)1x y -+=;15. (几何证明选讲选做题)如图3,在矩形A B C D 中,3A B =,3B C =,B E A C ⊥,垂足为E ,则E D =___________; 【答案】212;【解析】因为在矩形A B C D 中,3A B =,3B C =,B E AC ⊥,所以030B C A ∠=,所以03co s 3032C E C B =⋅=;在CDE 中,因为60E C D ∠=,由余弦定理得:()22222033331212co s 603232224D EC E CD CE C D ⎛⎫=+-⋅⋅⋅=+-⨯⨯⨯=⎪ ⎪⎝⎭,所以212C D =;三、 解答题:本大题共6小题,满分80分. 解答须写出文字说明和演算步骤.16. (本小题满分12分)已知函数()2co s ,12f x x x R π⎛⎫=-∈ ⎪⎝⎭.(1) 求3f π⎛⎫⎪⎝⎭的值; (2) 若3co s 5θ=,3,22πθπ⎛⎫∈⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭.【答案与解析】 (1)22co s 2co s21331242f ππππ⎛⎫⎛⎫=-==⨯=⎪ ⎪⎝⎭⎝⎭;(2)因为3co s 5θ=,3,22πθπ⎛⎫∈ ⎪⎝⎭,所以234sin 155θ⎛⎫=--=-⎪⎝⎭;2co s 2co s 2co s co s sin sin 6612333f ππππππθθθθθ⎛⎫⎛⎫⎛⎫⎛⎫-=--=-=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭314332462525210⎛⎫-=⨯-⨯= ⎪ ⎪⎝⎭;17. (本小题满分12分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下: 分组(重量) [)80,85[)85,90[)90,95[)95,100频数(个)5102015(1) 根据频数分布表计算苹果的重量在[)90,95的频率;(2) 用分层抽样的方法从重量在[)80,85和[)95,100的苹果中共抽取4个,其中重量在[)80,85的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[)80,85和[)95,100中各有一个的概率;【答案与解析】(1)重量在[)90,95的频率200.450==;(2)若采用分层抽样的方法从重量在[)80,85和[)95,100的苹果中共抽取4个,则重量在[)80,85的个数541 515=⨯=+;(3)设在[)80,85中抽取的一个苹果为x,在[)95,100中抽取的三个苹果分别为,,a b c,从抽出的4个苹果中,任取2个共有(,),(,),(,),(,),(,),(,)x a x b x c a b a c b c6种情况,其中符合“重量在[)80,85和[)95,100中各有一个”的情况共有(,),(,),(,)x a x b x c种;设“抽出的4个苹果中,任取2个,求重量在[)80,85和[)95,100中各有一个”为事件A,则事件A的概率31()62P A==;18.(本小题满分14分)如图4,在边长为1的等边三角形A B C中,,D E分别是,A B A C上的点,A D A E=,F是B C的中点,A F与D E交于点G. 将A B F∆沿A F折起,得到如图5所示的三棱锥A B C F-,其中22B C=.(1)证明:D E B C F//平面;(2)证明:C F A B F⊥平面;(3)当23A D=时,求三棱锥F D E G-的体积F D E GV-.图4 图5(1)证明:在图4中,因为A B C是等边三角形,且A D A E=,所以A D A EA B A C=,//D E B C;在图5中,因为//D G B F,//G E F C,所以平面D G E//平面B C F,所以D E B C F//平面;(2)证明:在图4中,因为因为A B C是等边三角形,且F是B C的中点,所以A F B C⊥;在图5中,因为在B F C 中,12,22B F FC B C ===,所以222B F FC B C +=,B FC F ⊥,又因为A F C F ⊥,所以C F A B F ⊥平面;(3)因为,A F C F A F B F ⊥⊥,所以A F ⊥平面B C F ,又因为平面D G E //平面B C F ,所以A F ⊥平面D G E ;所以11111113333232336324F D EG D G E V S F G D G G E F G -=⋅⋅=⋅⋅⋅⋅=⋅⋅⋅⋅= ; 19. (本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,满足2*1441,n n S a n n N +=--∈,且2514,,a a a 构成等比数列;(1) 证明:2145a a =+;(2) 求数列{}n a 的通项公式; (3) 证明:对一切正整数n ,有1223111112n n a a a a a a ++++<.(1)证明:因为2*1441,n n S a n n N +=--∈,令1n =,则212441S a =--,即22145a a =+,所以2145a a =+;(2)当2n ≥时,()()221144441411n n n n n a S S a n a n -+⎡⎤=-=------⎣⎦2214n n a a +=--,所以221(2)n n a a +=+,因为{}n a 各项均为正数,所以12n n a a +=+;因为2514,,a a a 构成等比数列,所以22145a a a ⋅=,即2222(24)(6)a a a +=+,解得23a =,因为2145a a =+,所以11a =, 212a a =+ ,符合12n n a a +=+,所以12n n a a +=+对1n =也符合,所以数列{}n a 是一个以11a =为首项,2d =为公差的等差数列,1(1)221n a n n =+-⋅=-;(3)因为111111()(21)(21)22121n n a a n n n n +==-+--+,所以12231111111111111()()()21323522121n n a a a a a a n n ++++=-+-+⋅⋅⋅+--+111111111112133521212121212n n n n n ⎛⎫⎛⎫=-+-+⋅⋅⋅-=-=< ⎪ ⎪-+++⎝⎭⎝⎭; 所以对一切正整数n ,有1223111112n n a a a a a a ++++<.20. (本小题满分14分)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线:20l x y --=的距离为322. 设P 为直线l 上的点,过点P 作抛物线C 的两条切线,P A P B ,其中,A B 为切点.(1) 求抛物线C 的方程;(2) 当点()00,P x y 为直线l 上的定点时,求直线A B 的方程; (3) 当点P 在直线l 上移动时,求A F B F ⋅的最小值. 【答案与解析】(1)因为抛物线焦点()()0,0F c c >到直线:20l x y --=的距离为322所以23222c d --==,又因为0c >,所以解得1c =,抛物线的焦点坐标为(0,1),所以抛物线C 的方程为24x y =;(2)因为抛物线的方程为24x y =,即214y x =,所以12y x '=,设过()00,P x y 点的切线l '与抛物线的切点坐标为21(,)4m m ,所以直线l '的斜率2001142y mk m x m-==-,解得210004m x x y =+-或220004m x x y =--;不妨设A 点坐标为2111(,)4m m ,B 点坐标为2221(,)4m m ,因为2004x y -2200004(2)48x x x x =--=-+ 20(2)40x =-+>,所以12m m ≠;221212012111144()42A B m m k m m x m m -==+=-;所以直线A B 的方程为210111()42y m x x m -=-,代入整理得:012y x =;(3)A 点坐标为2111(,)4m m ,B 点坐标为2221(,)4m m ,F 点坐标为()0,1,因为0020x y --=;所以221000004(2)4m x x y x x =+-=+-+,222000004(2)4m x x y x x =--=--+,1202m m x +=,12048m m x =-;因此A FB F ⋅=2222222222112212111*********m m m m m m ⎛⎫⎛⎫⎛⎫⎛⎫+-⋅+-=+⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()2222222212121212121211111111()1()2144164164m m m m m m m m m m m m ⎛⎫⎛⎫⎡⎤=++=+++=++-+ ⎪ ⎪⎣⎦⎝⎭⎝⎭()22220000001139(48)22(48)12692()16422x x x x x x ⎡⎤=-+--+=-+=-+⎣⎦,所以当032x =时,A F B F ⋅取最小值92;21. 设函数()()32f x x kx x k R =-+∈.(1) 当1k =时,求函数()f x 的单调区间;(2) 当0k <时,求函数在[,]k k -上的最小值m 和最大值M . 【答案与解析】(1) 因为()32f x x kx x =-+,所以2()321f x x k x '=-+;当1k =时,2212()3213()033f x x x x =-+=-+>,所以()fx 在R 上单调递增;(2) 因为2()321f x x kx '=-+,22(2)4314(3)k k ∆=--⨯⨯=-;① 当0∆≤时,即30k -≤<时,()0f x '≥,()f x 在R 上单调递增,此时无最小值和最大值;② 当0∆>时,即3k <-时,令()0f x '=,解得22223363k k k k x +-+-==或22223363k k k k x ----==;令()0f x '>,解得233k k x --<或233k k x +->;令()0f x '<,解得223333k k k k x --+-<<;因为223033k k k kk +-+<=<-,2232333k k k kk k --->=>作()f x 的最值表如下:xk 23,3k k k ⎛⎫-- ⎪ ⎪⎝⎭233k k --2233,33k k k k ⎛⎫--+- ⎪ ⎪⎝⎭233k k +-23,3k k k ⎛⎫+-- ⎪⎪⎝⎭k -()f x '+-+()f xk极大值极小值32k k--。
广东省高考数学试卷(文科)答案与解析

2013年广东省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.222.(5分)(2013•广东)函数的定义域是(),的定义域是(﹣3i|==53i|==54.(5分)(2013•广东)已知,那么cosα=()B++(.5.(5分)(2013•广东)执行如图所示的程序框图,若输入n的值为3,则输出s的值是()6.(5分)(2013•广东)某三棱锥的三视图如图所示,则该三棱锥的体积是()BV==.7.(5分)(2013•广东)垂直于直线y=x+1且与圆x2+y2=1相切于第一象限的直线方程是B±,,解之得±﹣时,可得切点坐标(﹣,﹣时,可得切点坐标(,﹣,直线方程为9.(5分)(2013•广东)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是()B解:由题意设椭圆的方程为,又离心率等于所以椭圆的方程为.10.(5分)(2013•广东)设是已知的平面向量且,关于向量的分解,有如下四个命题:①给定向量,总存在向量,使;②给定向量和,总存在实数λ和μ,使;③给定单位向量和正数μ,总存在单位向量和实数λ,使;④给定正数λ和μ,总存在单位向量和单位向量,使;上述命题中的向量,和在同一平面内且两两不共线,则真命题的个数是()不一定能用两个单位向量的组合表示出来.和,只需求得其向量差即为所求的向量,使,故,当向量,和在同一平面内且两两不共线时,向量,,取=,λ都平行于μ成立,根据平行四边形法则,向量μ的纵坐标一定为使等式成立,故为正数,所以和不一定能用两个单位向量的组合表示出来,成立,故二、填空题:本大题共3小题.每小题5分,满分15分.(一)必做题(11~13题)11.(5分)(2013•广东)设数列{a n}是首项为1,公比为﹣2的等比数列,则a1+|a2|+a3+|a4|= 15.12.(5分)(2013•广东)若曲线y=ax2﹣lnx在点(1,a)处的切线平行于x轴,则a=.,,故答案为:.13.(5分)(2013•广东)已知变量x,y满足约束条件,则z=x+y的最大值是5.得选做题(14、15题,考生只能从中选做一题)14.(5分)(2013•广东)(坐标系与参数方程选做题)已知曲线C的极坐标方程为ρ=2cosθ.以极点为原点,极轴为x轴的正半轴建立直角坐标系,则曲线C的参数方程为(θ为参数).,得的参数方程为故答案为15.(2013•广东)(几何证明选讲选做题)如图,在矩形ABCD中,,BC=3,BE⊥AC,垂足为E,则ED=.AC=2AC EC=CD=AB=EC=+3﹣,.故答案为:四、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)(2013•广东)已知函数.(1)求的值;(2)若,求.直接代入函数解析式求解.﹣)∵,17.(13分)(2013•广东)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.)的频率为18.(13分)(2013•广东)如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A﹣BCF,其中BC=.(1)证明:DE∥平面BCF;(2)证明:CF⊥平面ABF;(3)当AD=时,求三棱锥F﹣DEG的体积V F﹣DEG.,可得.在三棱锥中,由,运算求得结果.中,=19.(14分)(2013•广东)设各项均为正数的数列{a n}的前n项和为S n,满足4S n=a n+12﹣4n ﹣1,n∈N*,且a2,a5,a14构成等比数列.(1)证明:a 2=;(2)求数列{a n}的通项公式;(3)证明:对一切正整数n,有.)对于利用时,时,满足,且,构成等比数列,∴,)可知,,∴)可得式.20.(14分)(2013•广东)已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x﹣y﹣2=0的距离为,设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|•|BF|的最小值.)先设,)根据抛物线的定义,有,的距离)设,的方程为,的斜率分别为,①:的坐标为,即,的斜率为,整理得的斜率的方程为,整理得,即)根据抛物线的定义,有,=所以当的最小值为21.(14分)(2013•广东)设函数f(x)=x3﹣kx2+x(k∈R).(1)当k=1时,求函数f(x)的单调区间;(2)当k<0时,求函数f(x)在[k,﹣k]上的最小值m和最大值M.,且过(,且过(,即)当,即解得:。
2013年高考广东卷文科数学试题及答案

设函数 .
(1)当 时,求函数 的单调区间;
(2)当 时,求函数 在 上的最小值 和最大值 .
【解析】:
(1)当 时
, 在 上单调递增.
(2)当 时, ,其开口向上,对称轴 ,且过
(i)当 ,即 时, , 在 上单调递增,
从而当 时, 取得最小值 ,
当 时, 取得最大值 .
7.垂直于直线 且与圆 相切于第Ⅰ象限的直线方程是
A. B.
C. D.
【解析】直接法可设所求的直线方程为: ,再利用圆心到直线的距离等于 ,求得 .选A.
8.设 为直线, 是两个不同的平面,下列命题中正确的是
A.若 , ,则 B.若 , ,则
C.若 , ,则 D.若 , ,则
【解析】借助长方体判断,可知B正确..
分组(重量)
频数(个)
5
10
20
15
(1)根据频数分布表计算苹果的重量在 的频率;
(2)用分层抽样的方法从重量在 和 的苹果中共抽取4个,其中重量在 的有几个?
(3)在(2)中抽出的4个苹果中,任取2个,求重量在 和 中各有1个的概率.
【解析】(1)苹果的重量在 的频率为 ;
(2)重量在 的有 个;
【解析】:考查三角函数诱导公式, ,选C.
5.执行如图1所示的程序框图,若输入 的值为3,则输出 的值是
A.1 B.2 C.4 D.7
【解析】根据程序框图,s=1+0+1+2=4.选C.
6.某三棱锥的三视图如图2所示,则该三棱锥的体积是
A. B. C. D.
【解析】由三视图判断底面为等腰直角三角形,三棱锥的高为2,则 ,选B.
(ii)当 ,即 时,令
2013年高考文科数学广东卷及答案

数学试卷 第1页(共14页) 数学试卷 第2页(共14页)绝密★启用前2013年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|20,}S x x x x =+=∈R ,2{|20,}T x x x x =-=∈R ,则ST =( ) A .{0} B .{0,2}C .{2,0}-D .{2,0,2}-2.函数lg(1)()1x f x x +=-的定义域是( ) A .(1,)-+∞B .[1,)-+∞C .(1,1)(1,)-+∞D .[1,1)(1,)-+∞3.若i(+i)=3+4i x y ,,x y ∈R ,则复数+i x y 的模是( ) A .2 B .3C .4D .54.已知5π1sin()25α+=,那么cos α=( ) A .25-B .15-C .15D .255.执行如图1所示的程序框图,若输入n 的值为3,则输出s 的值是( ) A .1B .2C .4D .76.某三棱锥的三视图如图2所示,则该三棱锥的体积是( ) A .16B .13C .23D .17.垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是( )A.0x y +- B .10x y ++= C .10x y +-=D.0x y +=8.设l 为直线,α,β是两个不同的平面,下列命题中正确的是( )A .若l α∥,l β∥,则αβ∥B .若l α⊥,l β⊥,则αβ∥C .若l α⊥,l β∥,则αβ∥D .若αβ⊥,l α∥,则l β⊥9.已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于12,则C 的方程是 ( )A .22134x y +=B.2214x += 姓名________________ 准考证号_____________------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------------数学试卷 第3页(共14页) 数学试卷 第4页(共14页)C .22142x y +=D .22143x y +=10.设a 是已知的平面向量且0≠a ,关于向量a 的分解,有如下四个命题: ①给定向量b ,总存在向量c ,使=+a b c ;②给定向量b 和c ,总存在实数λ和μ,使λμ=+a b c ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使λμ=+a b c ; ④给定正数λ和μ,总存在单位向量b 和单位向量c ,使λμ=+a b c ;上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是 ( ) A .1B .2C .3D .4二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11-13题)11.设数列{}n a 是首项为1,公比为2-的等比数列,则1234||||a a a a +++= . 12.若曲线2ln y ax x =-在点(1,)a 处的切线平行于x 轴,则a = .13.已知变量x ,y 满足约束条件30111,x y x y -+⎧⎪-⎨⎪⎩≥,≤≤,≥则z x y =+的最大值是 .(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知曲线C 的极坐标方程为2cos ρθ=.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为 . 15.(几何证明选讲选做题)如图3,在矩形ABCD 中,AB =,3BC =,BE AC ⊥,垂足为E ,则ED = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数π())12f x x =-,x ∈R .(Ⅰ)求π()3f 的值;(Ⅱ)若3cos 5θ=,3π(,2π)2θ∈,求π()6f θ-.17.(本小题满分13分)(Ⅰ)根据频数分布表计算苹果的重量在[90,95)的频率;(Ⅱ)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个;(Ⅲ)在(Ⅱ)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.18.(本小题满分13分)如图4,在边长为1的等边三角形ABC 中,D ,E 分别是AB ,AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF △沿AF 折起,得到如图5所示的三棱锥A B C F -,其中BC =(Ⅰ)证明:DE ∥平面BCF ; (Ⅱ)证明:CF ⊥平面ABF ;(Ⅲ)当23AD =时,求三棱锥F DEG -的体积F DEG V -.19.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441n n S a n +=--,*n ∈N ,且2a ,5a ,14a 构成等比数列.(Ⅰ)证明:2a =(Ⅱ)求数列{}n a 的通项公式; (Ⅲ)证明:对一切正整数n ,有1223111112n n a a a a a a ++++<.20.(本小题满分14分)已知抛物线C 的顶点为原点,其焦点(0,)(0)F c c >到直线l :20x y --=的距离为数学试卷 第5页(共14页) 数学试卷 第6页(共14页)设P 为直线l 上的点,过P 点作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点.(Ⅰ)求抛物线C 的方程;(Ⅱ)当点00(,)P x y 为直线l 上的定点时,求直线AB 的方程;(Ⅲ)当点P 在直线l 上移动时,求||||AF BF 的最小值.21.(本小题满分14分)设函数32()()f x x kx x k =-+∈R . (Ⅰ)当1k =时,求函数()f x 的单调区间;(Ⅱ)当k <0时,求函数()f x 在[,]k k -上的最小值m 和最大值M .数学试卷 第7页(共14页) 数学试卷 第8页(共14页)2013年普通高等学校招生全国统一考试(广东卷)数学(文科)答案解析一、选择题 1.【答案】A【解析】由题意知{0,2}S =-,{0,2}T =,故{0}ST =,故选A . 【提示】先求一元二次方程的根,再用列举法求交集元素. 【考点】集合的交集运算. 2.【答案】C【解析】由题意知1010x x +>⎧⎨-≠⎩,解得1x >-且1x ≠,所以定义域为(1,1)(1,)-+∞【提示】从函数有意义的角度分析求解定义域,再由各个集合的交集得出定义域. 【考点】函数的定义域和集合的交集运算. 3.【答案】D【解析】因为i(i)34i x y +=+,所以i 34i x y -=+,根据两个复数相等的条件得:3y -=即3y =-,4x =,所以x yi +43i =-,i x y +的模5=;6.【答案】B【解析】由三视图可看出该三棱锥的底面为直角边为1的等腰直角三角形,高为2, 所以该三棱锥的体积111112323V ==; 【提示】由三视图还原出直观图,根据“长对正、高对齐、宽相等”寻找出三棱锥的相关数据,代入棱锥的体积公式进行计算. 【考点】平面图形的三视图的和棱锥的体积. 7.【答案】A【解析】设所求直线为l ,因为l 垂直直线1y x =+,故l 的斜率为1-,设直线l 的方程为y x b =-+,化为一般式为0x y b +-=;因为l 与圆相切221x y +=相切,所以圆心(0,0)到直线l 的距离1=,所以b =0b >,【解析】若α与β相交,且l 平行于交线,则也符合A ,显然A 错;若l l αβ⊥,∥,则αβ⊥,故C 错;l αβα⊥,∥,若l 平行交线,则l β∥,故D 错;【提示】由线面平行或垂直的某些给定条件来判断相关线面的位置关系. 【考点】空间中直线、平面之间的位置关系.9.【答案】由线面平行或垂直的某些给定条件来判断相关线面的位置关系. 【解析】由焦点可知(1,0F )可知椭圆焦点在x 轴上,由题意知1c =,12c a =,所以2a b ===,22143x y +=; 【提示】给定椭圆的离心率和焦点,求出各参数从而确定其标准方程. 【考点】椭圆的标准方程和椭圆的几何性质. 10.【答案】C【解析】对于①,若向量a ,b 确定,因为a b -是确定的,故总存在向量c ,满足c a b =-,数学试卷 第9页(共14页) 数学试卷 第10页(共14页)即a b c =+,故正确.对于②,因为c 和b 不共线,由平面向量基本定理可知,总存在唯一的一对实数λ,μ,满足a b c λμ=+,故正确;对于③,如果a b c λμ=+,则以||a ,||b λ,||c μ为三边长可以构成一个三角形,如果单位向量b 和正数μ确定,则一定存在单位向量c 和实数λ,使a b c λμ=+,故正确;对于④,如果给定的正数和不能满足“以||a ,||b λ,||c μ为三边长可以构成一个三角形”,这时单位向量b 和c 就不存在,故错误.因此选C【提示】给定某些向量,利用平行四边形或三角形法则及平面向量基本定理来进行判断. 【考点】平面向量基本定理. 二、填空题 11.【答案】15【解析】由题意知11a =,22a =-,34a =,48a =-,所以;1234a a a a +++【解析】因为2ln y ax x =-,所以2y ax x'=-,因为曲线2ln y ax x =-在点(1,)a 处的切线平行于x 轴,所以1210x y a ='=-=,所以12a =;【提示】给定曲线上某点切线在坐标轴上的位置关系,利用该点导数的几何意义求解原方程,从而求出待定系数.【考点】曲线的切线与导数的联系,导数的几何意义. 13.【答案】5【解析】作出可行域可得直角梯形的四个顶点分别为(1,1)-,(1,2)-,(1,1),(1,4)代入可知z 的最大值为145z =+=;【提示】画出线性约束条件表示的平面区域,用图解法求最值. 【考点】线性规划问题的最值求解.14.【答案】,(为参数)【解析】因为曲线C 的极坐标方程为2cos ρθ=;所以2cos 2cos 1cos2x ρθθθ===+①,sin 2sin cos sin 2y ρθθθθ===②; ①可变形得:cos21x θ=-③,②可变形得:sin 2y θ=;由2222(1)1x y -+=【解析】因为在矩形ABCD 中,AB =3BC =,BE AC ⊥,所以30BCA ∠=︒,所以cos30CE CB =︒=CDE △中,因为60ECD ∠=︒,由余弦定理得: 2222021212cos60224DE CE CD CE CD =+-=+-=⎝⎭,所以CD =; ππππππcos cos sin sin 6612333f θθθθθ⎛⎫⎛⎫⎛⎫⎫-=--=-=+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎭314525210⨯-⨯=⎭; 【提示】给定余弦函数表达式,利用同角三角函数的基本关系式、两角差的余弦公式等λμcos 1sin x y αα=+⎧⎨=⎩α数学试卷 第11页(共14页) 数学试卷 第12页(共14页)(2)若采用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,则重量在[80,85)的个数541515=⨯=+; (3)设在[80,85)中抽取的一个苹果为x ,在[95,100)中抽取的三个苹果分别为a b c ,,,从抽出的4个苹果中,任取2个共有(,)x a ,(,)x b ,(,)x c ,(,)a b,(,)a c ,(,)b c 6种情况,其中符合“重量在[80,85)和[95,100)中各有一个”的情况共有(,)x a ,(,)x b ,(,)x c种;设“抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有一个”为事件A ,则事件A 的概率31()P A ==;(2)证明:在图4中,因为因为ABC 是等边三角形,且F 是BC 的中点,所以AF BC ⊥;在图5中,因为在BFC △中,122BF FC BC ===,,所以222BF FC BC +=,BF CF ⊥,又因为AF CF ⊥,所以CF ABF ⊥平面(3)因为AF CF AF BF ⊥⊥,,所以AF ⊥平面BCF ,又因为平面DGE ∥平面BCF ,所以AF ⊥平面DGE;所以11111113333232336324F D EGDGE V S FG DG GE FG -====△; 【提示】通过折叠问题来分析折叠前后变化的元素和不变化的元素,从而得出线面平行或垂直关系以及三棱锥的体积.【考点】线面平行、线面垂直和面面平行的判定与性质,平面图形的折叠问题和三棱锥(2)当2n ≥时,2211444(41)4(1)1n n n n n a S S a n a n -+⎡⎤=-=------⎣⎦2214n n a a +=--, 所以221(2)n n a a +=+,因为{}n a 各项均为正数,所以12n n a a +=+; 因为2a ,5a ,14a 构成等比数列,所以22145a a a =,即2222(24)(6)a aa +=+,解得23a =,因为2a =,所以11a =,212a a =+,符合12n n a a +=+,所以12n n a a +=+对1n =也符合,所以数列{}n a 是一个以11a =为首项,2d =为公差的等差数列,1(1)221n a n n =+-=-;(3)因为111111(21)(21)22121n n a a n n n n +⎛⎫==- ⎪+--+⎝⎭, 所以1223111111111111121323522121n n a a a a a a n n +⎛⎫⎛⎫⎛⎫+++=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭111111111112133521212121212n n n nn ⎛⎫⎛⎫=-+-+⋅⋅⋅-=-=< ⎪ ⎪-+++⎝⎭⎝⎭; 所以对一切正整数n ,有11112a a a a a a +++<.以抛物线C 的方程为24x y =; (2)因为抛物线的方程为24x y =,即214y x =,所以12y x '=,设过00(,)P x y 点的切线l '与抛物线的切点坐标为21,4m m ⎛⎫ ⎪⎝⎭,所以直线l '的斜率2104012y m k m x m -==-,解得10m x =或20m x =;不妨设A 点坐标为2111,4m m ⎛⎫ ⎪⎝⎭,B 点数学试卷 第13页(共14页) 数学试卷 第14页(共14页)坐标为2221,4m m ⎛⎫ ⎪⎝⎭0,所以12m m ≠;221112441201211()42AB m m k m m x m m -==+=-; 所以直线AB 的方程为210111()42y m x x m -=-,代入整理得:012y x =;(3)A 点坐标为2111,4m m ⎛⎫ ⎪⎝⎭,B 点坐标为2221,4m m ⎛⎫ ⎪⎝⎭,F 点坐标为(0,1),因为0020x y --=;所以100m x x =,200m x x ==1202m m x +=, 12048m m x =-;因此=22222222221122121111|||11114444AF BF m m m m m m ⎛⎫⎛⎫⎛⎫⎛⎫+-+-=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2222222212121212121211111111()1()[()2]44164164m m m m m m m m m m m m ⎛⎫⎛⎫=++=+++=++-+ ⎪⎪⎝⎭⎝⎭22220000001139(48)[(2)2(48)]1269216422x x x x x x ⎛⎫=-+--+=-+=-+ ⎪⎝⎭, 所以当03x =时,||||AF BF 取最小值9;①当0∆≤时,即0k ≤<时,()0f x '≥,()f x 在R 上单调递增,此时无最小值和最大值;②当0∆>时,即k <()0f x '=,解得x ==或。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图 2
俯视图
侧视图正视图2013年普通高等学校招生全国统一考试(广东卷)
数学(文科A 卷)解析
从今以后,不再是大学特学综合科,而是大学特学数学科了!让别的科扼杀学生的能力吧,数学出基础题就好——感恩广东今年数学出题老师——湛江-农垦-小徐注(QQ:808068)
本试卷共4页,21小题,满分150分.考试用时120分钟.
锥体的体积公式:13
V Sh =.其中S 表示锥体的底面积,h 表示锥体的高.ks5u 一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S
T = A .{0} B .{0,2} C .{2,0}- D .{2,0,2}-
【解析】:先解两个一元二次方程,再取交集,选A ,5分到手,妙!
2.函数lg(1)()1
x f x x +=-的定义域是 A .(1,)-+∞ B .[1,)-+∞ C .(1,1)
(1,)-+∞ D .[1,1)(1,)-+∞ 【解析】:对数真数大于零,分母不等于零,目测C !
3.若()34i x yi i +=+,,x y R ∈,则复数x yi +的模是
A .2
B .3
C .4
D .5
【解析】:复数的运算、复数相等,目测4,3x y ==-,模为5,选D .
4.已知51sin()25
πα+=,那么cos α= A .25- B .15- C .15 D .25 【解析】:考查三角函数诱导公式,51sin()sin(2+)sin cos 2225πππαπααα⎛⎫+=+=+== ⎪⎝⎭
,选C. 5.执行如图1所示的程序框图,若输入n 的值为3,则输出s 的值是
A .1
B .2
C .4
D .7 【解析】选C.本题只需细心按程序框图运行一下即可.
6.某三棱锥的三视图如图2所示,则该三棱锥的体积是
A .16
B .13
C .23
D .1 图 1。