利用算术平方根的非负性进行计算
算术平方根的非负性运用

算术平方根的非负性运用
旧知链接 a 被1. 开a可方以数取a是任非何负数数吗,?即 a 0 .
2a. 是a非是负什 数,么即数a? 0 .
也就是说,非负数的“算术平方根”是非负数.
负数不存在算术平方根,即当 a 0 时,a 无意义.
如: 6 无意义 ; 8是64的算术平方根 或 64 8 .
所以 3 m 0 m n 1 0
所以 m 3 n 4 所以 1 m 1 n 7
9 23
强调:几个非负数的和为0,则 这几个数都为0.
巩固练习 1.若 5-x 有意义,则x的取值范围是_x____5___.
2.若 m 2 化简 m 22 =_m_____2.
追问:若m<-2呢? 结果(-m-2).
3. 是算术平方根的运算符号.
运用新知
例1 2-x 有意义,则实数x应满足条件为________.
解:要使 2-x有意义,需有2 x 0,即x 2.
变式:若m>0,则 m2 __m__ . 变式:若m<0,则 m2 __-_m_ .
强调: a2 a
当a 0时,a2 a 当a 0时,a2 a 当a 0时,a2 0
3.已知 y x 3 3 x 2,则 y x =___8___.
4.已知 3 m (1 n)2 0 ,则 m+n=_4_____.
a
总结反思
运用算术平方根的双重非负性解决问题:
1.求算术平方根被开方数的取值范围.
2.化简简单的二次根式.
3.解决几个非负数和为2m 1 1 2m 1 ,求 y 2m .
4
解:由题意知 : 2m10 12m0
所以
把m
所以
巧用算术平方根的非负性解题

巧用算术平方根的非负性解题
我们知道,当a≥0时,式子叫做a的算术平方根,由此可知,在式子中就有两个非负整数:①a≥0;②这两个非负性有着极为广泛的应用。
一、单独得用中a≥0解题
例1:要使式子有意义,字母x的取值范围必须满足()
(A)、(B)、(C)、(D)、
解:根据算术平方根的被开方数的非负性,有2x+3≥0, ;故选(A)。
例2:已知a,b是有理数,且则a·b的值是()
(A)、0 (B)、1‘(C)、-1 (D)、12
解:由算术平方根的被开方数的非负性,等式成立的条件是:
即:所以a=4把a=4代入已知等式得:
b=3故a·b=4×3=12应选(D)
二、单独应用≥0解题
例3:已知,则x-y的值为。
解:根据算术平方根的非负性及任何数和式子的平方的非负性有;又结合已知条件得所以x=-3,y=1所以x-y=-3-1=-4
三、同时利用a≥0和≥0解题
例4:若m·n≠0,则式子成立的条件是:
(A)、m>0,n>0(B)、m0 (C)、m0,n0故选(B)
“本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文”。
利用平方根的定义及性质解题的几个技巧

平方根概念解题的几个技巧平方根在解题中有着重要的应用.同学们想必已经知到.但是,今天要告诉同学们的是它的几个巧妙的应用.希望对大家的学习有所帮助.一、巧用被开方数的非负性求值.大家知道,当a ≥0时,a 的平方根是±a ,即a 是非负数.例1、若,622=----y x x 求y x 的立方根.分析 认真观察此题可以发现被开方数为非负数,即2-x ≥0,得x ≤2;x -2≥0,得x ≥2;进一步可得x =2.从而可求出y =-6.解 ∵⎩⎨⎧≥-≥-0202x x , ∴⎩⎨⎧≥≤22x x x =2; 当x =2时,y =-6.y x =(-6)2=36. 所以y x 的立方根为336.二、巧用正数的两平方根是互为相反数求值.我们知道,当a ≥0时,a 的平方根是±a ,而.0)()(=-++a a例2、已知:一个正数的平方根是2a -1与2-a ,求a 的平方的相反数的立方根.分析 由正数的两平方根互为相反得:(2a -1)+(2-a )=0,从而可求出a =-1,问题就解决了.解 ∵2a -1与2-a 是一正数的平方根,∴(2a -1)+(2-a )=0, a =-1.a 的平方的相反数的立方根是.113-=-三、巧用算术平方根的最小值求值. 我们已经知道0≥a ,即a =0时其值最小,换句话说a 的最小值是零.例3、已知:y =)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a 的非算术平方根.分析 y =)1(32++-b a ,要y 最小,就是要2-a 和)1(3+b 最小,而2-a ≥0,)1(3+b ≥0,显然是2-a =0和)1(3+b =0,可得a =2,b =-1.解 ∵2-a ≥0,)1(3+b ≥0,y =)1(32++-b a ,∴2-a =0和)1(3+b =0时,y 最小.由2-a =0和)1(3+b =0,可得a =2,b =-1.所以b a 的非算术平方根是.11-=-四、巧用平方根定义解方程.我们已经定义:如果x 2=a (a ≥0)那么x 就叫a 的平方根.若从方程的角度观察,这里的x 实际是方程x 2=a (a ≥0)的根.例4、解方程(x +1)2=36.分析 把x +1看着是36的平方根即可.解 ∵(x +1)2=36 ∴x +1看着是36的平方根. x +1=±6.∴x 1=5 , x 2=-7.例4实际上用平方根的定义解了一元二次方程(后来要学的方程).你能否解27(x +1)3=64这个方程呢?不妨试一试.利用平方根的定义及性质解题如果一个数的平方等于a (a ≥0),那么这个数是a 的平方根.根据这个概念,我们可以解决一些和平方根有关的问题.例1 已知一个数的平方根是2a -1和a -11,求这个数.分析:根据平方根的性质知:一个正数的平方根有两个,它们互为相反数.互为相反数的两个数的和为零.解:由2a -1+a -11=0,得a =4,所以2a -1=2×4-1=7.所以这个数为72=49.例2 已知2a -1和a -11是一个数的平方根,求这个数.分析:根据平方根的定义,可知2a -1和a -11相等或互为相反数.当2a -1=a -11时,a =-10,所以2a -1=-21,这时所求得数为(-21)2=441;当2a -1+a -11=0时,a =4,所以2a -1=7,这时所求得数为72=49.综上可知所求的数为49或441.例3 已知2x-1的平方根是±6,2x+y-1的平方根是±5,求2x-3y+11的平方根.分析:因为2x-1的平方根是±6,所以2x-1=36,所以2x=37;因为2x+y-1的平方根是±5,所以2x+y-1=25,所以y=26-2x=-11,所以2x-3y+11=37-3×(-11)+11=81,因为81的平方根为±9,所以2x-3y+11的平方根为±9.例4 若2m-4与3m-1是同一个数的平方根,则m为()(A)-3 (B)1 (C)-3或1 (D)-1分析:本题分为两种情况:(1)可能这个平方相等,即2m-4=3m-1,此时,m=-3;(2)一个数的平方根有两个,它们互为相反数,所以(2m-4)+(3m-1)=0,解得m=1.所以选(C).练一练:1.已知x的平方根是2a-13和3a-2,求x的值.2.已知2a-13和3a-2是x的平方根,求x的值3.已知x+2y=10,4x+3y=15, 求x+y的平方根..答案:1.49;2. 49或1225; 3.5估计方根的取值,你会吗在实数的学习中,关于估计方根的取值问题屡见不鲜.解答它们,要注意灵活利用平方根或立方根的定义,从平方或立方入手.例1 )(A )3.15 3.16 (B )3.16 3.17(C )3.17 3.18 (D )3.18 3.19.10 3.15、3.16、3.17、3.18、3.19当中的哪两个数之间,只需看看10在这五个数的哪两个数的平方之间.解:计算知,2223.15= 9.9225 , 3.16= 9.9856 , 3.17= 10.0489.所以23.16<10<23.17.所以3.16 3.17,应选B .例2 估计68的立方根的大小在( )(A ) 2与3之间 (B )3与4之间(C ) 4与5之间 (D )5与6之间.分析:要估计68的立方根的大小在哪两个连续整数之间,只需看看68在哪两个连续整数的立方之间.解:计算知,33332= 8 , 3=27 , 4= 64 , 5= 125.所以34<68<35.所以45,应选B .例3 最接近的是( )(A )2.5 (B )2.6 (C )2.7 (D )2.8.分析:要比较2.5、2.6、2.7、2.8更接近,只需看看这四个数中哪个数的平方更接近7.解:计算知,22222.5 = 6.25 , 2.6 = 6.76 , 2.7 = 7.29 , 2.8 =7.84.因为22227 2.5 = 0.75 , 7 2.6 = 0.24 , 2.77 = 0.29 , 2.87 = 0.84----,所以22.6比22.5、22.7、22.8更接近7,所以2.6比2.5、2.7、2.8.应选B .《平方根》典例分析平方根是学习实数的准备知识,是以后学习一元二次方程等知识的必备基础,也是中考的必考内容之一.现以几道典型题目为例谈谈平方根问题的解法,供同学们学习时参考.一、基本题型例1 求下列各数的算术平方根(1)64;(2)2)3(-;(3)49151. 分析:根据算术平方根的定义,求一个数a 的算术平方根可转化为求一个数的平方等于a 的运算,更具体地说,就是找出平方后等于a 的正数.解:(1)因为6482=,所以64的算术平方根是8,即864=;(2)因为93)3(22==-,所以2)3(-的算术平方根是3,即3)3(2=-;(3)因为496449151=,又4964)78(2=,所以49151的算术平方根是78,即7849151=. 点评:这类问题应按算术平方根的定义去求.要注意2)3(-的算术平方根是3,而不是3.另外,当这个数是带分数时,应先化为假分数,然后再求其算术平方根,不要出现类似74149161=的错误. 想一想:如果把例1改为:求下列各数的平方根.你会解吗?请试一试.例2 求下列各式的值(1)81±; (2)16-; (3)259; (4)2)4(-. 分析:±81表示81的平方根,故其结果是一对互为相反数;-16表示16的负平方根,故其结果是负数;259表示259的算术平方根,故其结果是正数;2)4(-表示2)4(-的算术平方根,故其结果必为正数.解:(1)因为8192=,所以±81=±9.(2)因为1642=,所以-416-=.(3)因为253⎪⎭⎫ ⎝⎛=259,所以259=53. (4)因为22)4(4-=,所以4)4(2=-.点评:弄清与平方根有关的三种符号±a 、a 、-a 的意义是解决这类问题的关键.±a 表示非负数a 的平方根.a 表示非负数a 的算术平方根,-a 表示非负数a 的负平方根.注意a ≠±a .在具体解题时,符与“”的前面是什么符号,其计算结果也就是什么符号,既不能漏掉,也不能多添.例3 若数m 的平方根是32+a 和12-a ,求m 的值.分析:因负数没有平方根,故m 必为非负数,故本题应分两种情况来解.解: 因为负数没有平方根,故m 必为非负数.(1)当m 为正数时,其平方根互为相反数,故(32+a )+(12-a )=0,解得3=a ,故32+a =9332=+⨯,912312-=-=-a ,从而8192==a .(2)当m 为0时,其平方根仍是0,故032=+a 且0433=-a ,此时两方程联立无解.综上所述,m 的值是81.想一想:如果把例3变为:若32+a 和12-a 是数m 的平方根,求m 的值.你会解吗?请试一试.二、创新题型例4 先阅读所给材料,再解答下列问题:若1-x 与x -1同时成立,则x 的值应是多少?有下面的解题过程:1-x 和x -1都是算术平方根,故两者的被开方数x x --1,1都是非负数,而1-x 和x -1是互为相反数. 两个非负数互为相反数,只有一种情形成立,那就是它们都等于0,即1-x =0,x -1=0,故1=x . 问题:已知,21221+-+-=x x y 求y x 的值.解:由阅读材料提供的信息,可得,012=-x 故21=x . 进而可得2=y .故y x =41212=⎪⎭⎫ ⎝⎛. 点评:这是一道阅读理解题.解这类问题首先要认真阅读题目所给的材料,总结出正确的结论,然后用所得的结论解决问题.例5 请你认真观察下面各个式子,然后根据你发现的规律写出第④、⑤个式子. ①44141411611622=⨯=⨯=⨯=⨯=; ②244242421623222=⨯=⨯=⨯=⨯=; ③344343431634822=⨯=⨯=⨯=⨯=.分析:要写出第④、⑤个式子,就要知道它们的被开方数分别是什么,为此应认真观察所给式子的特点.通过观察,发现前面三个式子的被开方数分别是序数乘以16得到的,故第④、⑤个式子的被开方数应该分别是64和80.解:④84244441646422=⨯=⨯=⨯=⨯=; ⑤544545454516580222=⨯=⨯=⨯=⨯=⨯=.点评:这是一个探究性问题,也是一道发展数感的好题,它主要考查观察、归纳、概括的能力.解这类题需注意分析题目所给的每个式子的特点,然后从特殊的例子,推广到一般的结论,这是数学中常用的方法,同学们应多多体会,好好掌握!。
利用算术平方根的非负性进行计算

利用算术平方根的非负性进行计算算术平方根的非负性是指一个非负实数的算术平方根也是非负的。
在数学中,利用算术平方根的非负性可以进行各种计算,包括求解方程、简化公式、推导关系等。
本文将对如何利用算术平方根的非负性进行计算进行详细的阐述。
首先,让我们来了解一下算术平方根的定义。
给定一个非负实数x,我们称一个非负实数y满足y²=x为x的算术平方根。
符号上,我们用√x表示x的算术平方根。
根据定义,我们有√x≥0,即算术平方根是非负数。
基于算术平方根的非负性,我们可以进行几种常见的计算。
首先,我们可以利用算术平方根的非负性求解方程。
考虑一个方程x²=a,其中a是已知的非负实数。
根据算术平方根的非负性,我们知道方程的解必然是非负实数。
因此,我们可以得出x=√a。
例如,对于方程x²=4,根据算术平方根的非负性,我们得出x=±√4=±2,即x可以是2或者-2、取非负解,我们得到x=2其次,我们可以利用算术平方根的非负性简化公式。
例如,我们考虑计算下列表达式:√(a²+b²)根据算术平方根的非负性,我们知道√(a²+b²)≥0。
因此,无需进行进一步计算,可以直接得出结果为非负实数0。
此外,我们也可以利用算术平方根的非负性推导关系。
例如,考虑两个非负实数a和b,满足a>b。
我们可以利用算术平方根的非负性证明以下关系:√a>√b首先,我们可以用反证法来证明上述关系。
假设√a≤√b,根据算术平方根的非负性,我们可以得到a≤b。
然而,这与假设a>b矛盾,因此原假设不成立。
所以我们可以得到√a>√b。
这个结论表明,对于两个非负实数,如果一个大于另一个,则它们的算术平方根之间的大小关系也是相同的。
综上所述,利用算术平方根的非负性进行计算可以大大简化问题。
我们可以利用算术平方根的非负性求解方程、简化公式以及推导关系。
巧用算术平方根的非负性求值

巧用算术平方根的非负性求值数学中的求值题类型颇多,下面例谈巧用算术平方根的非负性求值。
例1 已知:(1-2a )2+2-b =0,求(ab )b 的值。
分析:清楚完全平方数和算术平方根的非负性是解这类题的关键。
解:∵(1-2a )2≥0,2-b ≥0且(1-2a )2+2-b =0∴1-2a=0,b-2=0∴a=21,b=2∴(ab )b =(21×2)2=1点评:若干个非负数的和为零,则它们分别为零例2 已知3+-b a 与5-+b a 互为相反数,求a 2+b 2的值。
分析:利用绝对值的非负性和算术平方根的非负性解题 解:∵3+-b a 与5-+b a 互为相反数 ∴3+-b a +5-+b a =0 又3+-b a ≥0,5-+b a ≥0∴a-b+3=0且a+b-5=0,解方程即可求得:a=1,b=4∴a 2+b 2=12+42=17点评:如果两个非负数互为相反数,则这两个非负数分别为零例3 若m <0,n <0,求2)1(m -+(n -)2的值 分析:运用公式2a =a 解题解:∵m <0 ∴2)1(m -=-m ;∵n <0,∴(n -)2=-n ∴2)1(m -+(n -)2=-m+(-n )=-m-n 点评:2a =a 中,注意a 的取值范围。
例4 △ABC 的三边长分别为a 、b 、c ,且a 、b 满足1-a +b 2-4b+4=0,求c 的取值范围。
分析:要清楚完全平方数和算术平方根的非负性及三角形的性质。
解:由1-a +b 2-4b+4=0,可得1-a +(b-2)2=0 ∵1-a ≥0,(b-2)2≥0 ∴1-a =0,(b-2)2=0∴a=1,b=2由三角形三边关系定理有:b-a <c <b+a即1<c <3点评:此处除用到算术平方根和完全平方数的非负性外,还利用了三角形边的关系。
例5 已知实数,满足等式132--y x +(x-2y+2)4=0,求2x-53y 的平方根。
浅谈算术平方根的非负性在解题中的运用

河南省信阳市息县城郊中学作者:敖勇手机:####邮编:464300浅谈算术平方根的“非负性”在解题中的运用河南省信阳市息县城郊中学 敖勇 从所周知,算术平方根a 具有双重非负性:1、被开方数具有非负性,即a ≥0;2、a 本身具有非负性,即a ≥0。
这两个非负性形象、全面地反映了算术平方根的性质。
在解决与此相关的问题时,如果能仔细观察、认真地分析题目中的已条件,挖掘出题目中隐含的算术平方根的这两个非负性,并在解题过程中做到有机地配合,则可避免用常规方法造成的复杂运算或误解,从而收到事半功倍的效果。
例1、已知y=211331+-+-x x ,求9x 2-y 的值。
分析:挖掘算术平方根隐含的非负性条件是解决本题的关键所在。
解:由⎩⎨⎧≥-≥-,013,031x x 得⎪⎪⎩⎪⎪⎨⎧≥≤,31,31x x 得x=31。
所以y=211331+-+-x x =21。
则9x 2-y=9(31)221-=21,例2、已知()z y x z x y x ,,,02212求=+-+++-的值。
分析:一个数的绝对值、平方根、和算术平方根是三种非负数“若几个非负数的和为零,那么每个非负数均为零”即可求解。
解:由01≥-x ,()022≥+y ,02≥+-z x ,且()02212=+-+++-z x y x ,得⎪⎩⎪⎨⎧=+-=+=-,02,02,01z x y x 解得x=1,y=2-,z=3.例3、已知03962=-++-x x x ,x 的取值范围是分析:此题是填空题,按常规思维去思考,做题是比较麻烦的,需要对x 的取值范围进行讨论。
这样做不仅费时,而且会出现误解,如果我们能利用二次根式的非负性来解决本题,问题很快就能解决。
解:∵03962=-++-x x x 即3962-=+-x x x 又∵0962≥+-x x∴≥-3x 0∴3≥x所以x 的取值范围为3≥x例 4、求2011)2012(2-+--a a 值 解:∵2)2012(--a 存在,∴ a − 2012 = 0 即 a = 2012 ,且2)2012(--a = 0 ,∴2011-aa=2012-2011 =1-(2-)2012+。
算术平方根非负性的应用教学设计

课题算术平方根非负性的
应用
课时 1 主备
授课时间授课类型复习【学习目标】应用算术平方根的非负性求字母的取值
【重点】理解非负性并灵活运用
【难点】各种题型中正确运用非负性
【学习过程】一复习归纳:
什么是算术平方根?怎样表示?任何数都有算术平
方根吗?
答:如果一个正数x的平方等于a,那么这个正数x
叫做a的算术平方根.
a的算术平方根表示为:
()
a a≥
0的算术平方根是0
负数没有算术平方根
二、热身练习
三、例题讲解
(1)若.
_________
2
3=
+
=
-
+
+b
a
b
a,则
(2).
________
1
2015
)
1(2=
-
=
-
+
+y
x
y
x,则
四、巩固练习
(1).
_________
)
(
4
52=
+
=
+
+
-y
x
y
x,则
若
(2).
________
3
4
)1
(2=
-
=
-
+
+b
a
b
a,则
引领学生复习知
识点,为本节内
容做好铺垫
归纳概括,引导
学生完成解题方
法的探索。
本环
节根据实际情况
可组织学生采取
互问互答的方式
进行巩固深化。
专题02 平方根重难点题型专训(9大题型+15道拓展培优)(解析版)七年级数学下册-

专题02平方根重难点题型专训(9大题型+15道拓展培优)【题型目录】题型一平方根与算术平方根概念理解题型二求一个数的算术平方根题型三利用算术平方根的非负性解题题型四求算术平方根的整数部分与小数部分题型五与算术平方根有关的规律探索题题型六求一个数的平方根题型七已知一个数的平方根,求这个数题型八利用平方根解方程题型九平方根的应用【知识梳理】知识点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);a,读作“a 的算术平方根”,a 叫做被开方数.特别说明:有意义时,aa ≥0.2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算.a (a≥0)的平方根的符号表达为0)a ≥是a 的算术平方根.知识点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.特别说明:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质0||000a a a a a a >⎧⎪===⎨⎪-<⎩()20a a =≥知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.=.=0.25=25=, 2.5250【经典例题一平方根与算术平方根概念理解】【变式训练】平方差公式和完全平方公式,下,【经典例题二求一个数的算术平方根】【变式训练】A.3B.3±C.3【答案】A【分析】本题主要考查了有理数和无理数的识别,根据程序图及算术平方根的计算方法,依次计算即可,理解算术平方根是解题的关键.【点睛】本题主要考查了同类项、代数式求值、算术平方根等知识,熟练掌握相关知识是解题关键.七年级统考期末)我们知道,任意一个有理数与无理数的和为无理数,任意一个不为【经典例题三利用算术平方根的非负性解题】【变式训练】【经典例题四求算术平方根的整数部分与小数部分】【变式训练】8.(2022下·广东珠海·七年级统考期末)如图,用边长为3的两个小正方形拼成一个面积为18的大正方形,则大正方形的边长最接近的整数是()A.4B.5C.6D.7【分析】根据算术平方根的概念结合正方形的性质得出其边长,进而得出答案.【经典例题五与算术平方根有关的规律探索题】【答案】B【分析】根据算术平方根的定义解决此题.【详解】解:由题意得:从0.0625开始,小数点每向右移动两位,对应算术平方根扩大10倍,从0.625开始,小数点每向右移动两位,对应算术平方根扩大10倍,∴可得:6.25的算术平方根为2.5,62.5的算术平方根约为7.91,故选B.【点睛】本题主要考查数字类规律探索,算术平方根,熟练掌握原数和平方根的变化规律是解决本题的关键.【变式训练】【经典例题六求一个数的平方根】n 【变式训练】∴x y+的平方根是2±,±.故答案为:2【点睛】本题考查根式的非负性,以及计算一个数的平方根,能够根据根式的非负性计算出未知数的值是解决本题的关键.【经典例题七已知一个数的平方根,求这个数】【变式训练】的值,再找出关系即可.【详解】(1)解:由题意得,6290a a ++-=,解得1a =,21649m +∴==();(2)当1a =时,2160x -=,216x ∴=,4x ∴=±.【点睛】本题考查平方根的意义及求平方根,关键是要掌握一个正数有两个平方根,互为相反数.【经典例题八利用平方根解方程】【变式训练】1.(2023下·河北石家庄·七年级统考期中)问题:在一块面积为2400cm 的正方形纸片上,沿着边的方向裁出一块面积为2300cm ,且长宽之比为3:2的长方形纸片(不拼接),能裁出吗?对于上述问题的解决,嘉嘉和琪琪进行如下对话:嘉嘉:可是不符合实际情况啊正方形纸片的面积为【经典例题九平方根的应用】【变式训练】1.(2023下·河南郑州·八年级统考期末)电流通过导线时会产生热量,满足2=,其中Q为产生的热量Q I Rt为通电时间(单位:,则乙的面积为【拓展培优】A.2B.【答案】C【分析】本题主要考查算术平方根的定义,准确求出阴影部分的面积是解题的关键.根据割补法求出阴影部分的面积即可得到答案.①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则±【答案】2【分析】本题考查了二元一次方程组的应用,平方根,找准等量关系,列出二元一次方程组是解题的关键.则3757.69的算术平方根为.【答案】61.3【分析】本题考查了求一个数的算术平方根,根据题目所给的方法进行解答即可.;,由于10.(2023上·浙江丽水·七年级统考期中)如图角形和一个阴影小正方形(无缝隙、不重叠)折后得到图2所示的大正方形.(1)若阴影小正方形的边长为1,则图2中大正方形的面积为(2)若图2中大正方形的边长为正整数,则阴影小正方形的边长为【答案】7123或8【分析】(1)根据图1求出四个直角三角形的面积,根据翻折的性质,从而得到图可;(2)设小正方形的面积为x,从而得到图2大正方形的面积,再根据大正方形的边长为正整数,即可得到x的值.【详解】解:(1)∵一个边长为6的正方形被分割成四个完全相同的直角三角形和一个阴影小正方形,阴影小正方形的边长为1,②∵3,2a b ==-,∴a b >,∴()()33228a b ⊕=⊕-=-=-,∵83-<,∴()()()8328313a b a ⊕⊕=-⊕=⨯-+=-.13.(2023上·湖北黄冈·七年级武穴市实验中学校考期中)如图,A 、B 、C 、D 四张卡片分别代表一种运算,例如,5经过A B C D →→→顺序的运算,可列式为:2[(52)3]4⨯-+,8经过运算顺序B D A C →→→运算,可列式为2{[(83)4]2}-+⨯(1)请计算2[(52)3]4⨯-+;(2)列式计算2-经过C D A B →→→顺序的运算结果;(3)若数x 经过B C A D →→→顺序的运算,结果是12.则求初始数字x 是多少?【答案】(1)53(2)13(3)初始数字x 是5或1【分析】(1)根据有理数的运算法则和运算顺序计算即可;(2)根据题意可以列出算式2[(2)4]23-+⨯-,计算即可;(3)根据题意可以得到()223412x -+=,即可求解.【详解】(1)解:2[(52)3]4⨯-+()21034=-+274=+53=;(2)解:由题意得:2[(2)4]23-+⨯-(44)23=+⨯-2。