扬声器与音腔设计

合集下载

MD音腔与扬声器对照表

MD音腔与扬声器对照表

前腔设计形状对比曲线
可以看出,指数性和锥形都能提高扬声器中频段的效率,提高中频段音量。使 高频段了谐振频率降低。
侧出音设计
优点:1、可以过滤掉高频燥音。 2、如果声音破音,通过侧出音可减小破音。 侧出孔的面积要达到扬声器振动面积的15%-25%。 孔宽要达到:0.8mm-1.5mm。
后腔设计
• 作用: • 1、防止扬声器中低频的声短路。 • 2、使低频声音有力度,让人感觉声音 圆润。 后腔的设计很重要,它直接影响了一个 手机音质的好环和大小。 后腔要求:大、并且密封性好。(无泄 露后腔)
ห้องสมุดไป่ตู้
A、B A、B A、B A、B A、B A、B A、B A、B A B A、B A、B A、B A、B A、B A、B A、B A、B A、B A、B A、B A、B A、B
1.5~3 1.5~3 1.5~3 1.5~3 1.5~3 1.5~3 1.5~3 2~3 2~3 2~3 2~3 2~5 2.5~4.5 2.5~4.5 3~4.5 3~5 3.5~5.5 3.5~5.5 4~6 4~6 4.5~8
声音与音腔设计关系
类别
前腔容积 后腔容积
出声孔
出声孔相对扬声 器位置
前腔形状
声音与音腔设计关系
10%30% 正面 或侧出音 指数性、垂直性 八字性
音质好
0.8mm
3ml以上
音量大
1.5mm3.5mm
整个扬声器旁边、 3ml以上 5%-15% 八字性、指数性 正面
其它设计注意事项
为了使用传播过程中,声损耗最小,前腔出声孔里面尽使用圆角。如图
密封性后腔和泄露性后腔对比曲线
灰色的是泄露性后音腔曲线、 灰色的是泄露性后音腔曲线、红色是密封性后音腔的曲线 可以看出泄露性后音腔3K以下比密封性后音腔要高 以下比密封性后音腔要高3dB 可以看出泄露性后音腔 以下比密封性后音腔要高

扬声器音腔设计

扬声器音腔设计

优秀案例二:影院扬声器音腔设计
总结词
沉浸式音效
详细描述
影院扬声器音腔设计注重营造沉浸式的音效体验,通过大型 低音喇叭、环绕立体声技术以及特殊音腔结构,实现宽广的 音场和深沉的低音效果,让观众仿佛置身于电影场景之中。
优秀案例三:便携式扬声器音腔设计
总结词
轻便与音质兼备
详细描述
便携式扬声器音腔设计追求轻便与音质的高度结合,通过采用先进的材料和音腔结构优 化技术,减小体积和重量,同时保持出色的音质表现,方便用户在外出时随时随地享受
扬声器音腔设计
目录 CONTENT
• 扬声器音腔设计概述 • 音腔结构设计 • 材料选择与声学特性 • 优化与改进 • 案例分析
01
扬声器音腔设计概述
设计概念与目标
设计概念
扬声器音腔设计是指对扬声器内 部结构的规划和优化,旨在提高 扬声器的声音品质和性能。
设计目标
通过合理的音腔设计,实现更清 晰、更纯净的声音输出,同时减 小失真和噪音,提升扬声器的整 体表现。
实验测试
通过实验测试,验证仿真结果的准确性,并对音 腔设计进行进一步分析,找出差异 原因,提高仿真精度。
参数调整
根据实验结果,调整仿真模型中的参数,使仿真 结果更接近实际表现。
用户反馈与持续改进
用户调研
收集用户对扬声器性能的反馈,了解用户需求和期望。
迭代改进
总结词
材料的非线性行为是导致声音失真的主要原因。
详细描述
当声音强度达到一定水平时,许多材料会表现出非线性行为,这意味着它们的声学特性不再是线性的 ,而是随着声音强度的增加而发生变化。这种非线性行为会导致声音失真,使音质变差。因此,在扬 声器音腔设计中,选择具有较低非线性行为的材料可以减少声音失真,提高音质。

扬声器原理及音腔设计

扬声器原理及音腔设计

SPL[dB]
120 110 100
90 80 70 60
100
φ14扬声器背面容积変化时的频率特性変化(0.2W/0.1m)
容積可 変
1000 0.5cc
Frequnecy[Hz]
10000
1cc 3cc 5cc 45cc
100000
Ⅱ- 2)背面容积和 Fo 的变化
由于φ14,16,18扬声器容积変化Fo変化的数据 (扬声器的Fo为800Hz)
2)F h(高域限界周波数): 表示高域再生能力 (Hz)
3)S P L(音压)
: 表示声音的大小 (dB)
3)手机实装时的特性变化
Ⅰ- 1)扬声器背面密封的必要性 通常扬声器的背面都有密封。从扬声器振动板上面产生的声波和其下面产生的声波的相差
为180度。因此若不遮断其上下声波就会由于相差干扰而使声音消失。特别是波长长的低 频是很显著的。因此理想的方法是完全遮断背面声波,使其不再有相差干扰。 ⇒ 手机实装时、若前盖后盖的卡合部或转轴等其他连接部有间隙,背面声波就会漏音、尤 其是波长长的低音会消失、低音质感也会耗损。
4000
3500 3000 2500
・容积和Fo的关系如下图表所示:3cc以下的时候 突然变化很大。 ⇒容积3cc时为重要背景 (3cc时勉强在1kHz的再生帯域)
Foc[Hz]
2000
1500
1000
500
0
0
1
2
3
4
5
6
7
8
9
10
Cavity[cc]
φ14ス扬ピ声ー器カ
φ16ス扬ピ声ー器カ
在干扰 部分声 音消失
密封盒
音圧 [dB] 音圧 [dB]

手机音腔与扬声器对照表演示文稿

手机音腔与扬声器对照表演示文稿
并且声音小还细,没有厚度。
第七页,共47页。
扬声器振膜面频段分布
扬声器频段分布: 振膜边是低频,振膜中是高频
第八页,共47页。
出声孔分布设计实例1
第九页,共47页。
出声孔:出声孔开在扬声器振动膜的边上 ,可以提高中频音量,减小高频燥声,扬
声器振膜3/4处为低频发声点(从中往边
)。
出声孔分布设计实例2
第三页,共47页。
音腔设计作用
1、防止声音短路,充分发挥扬声器性能。 2、对声音进行修正,防止噪音。
3、正确的音腔设计可提高扬声器利用率。
4、让声音真实的还原。 5、后腔是对手机低频进行修正 6、前腔对中高频进行修正。 7、出声孔面积能对中高频进行修正。
第四页,共47页。
音腔设计的要点(无泄漏后腔设计)
手机音腔与扬声器对照表演示 文稿
第一页,共47页。
优选手机音腔与扬声器对照表
第二页,共47页。
声音曲线
从图看出,MP3音乐和人耳听觉区域为20-20KHZ,手机喇叭并不是所有音乐都能播放
只能播放500HZ以上音乐信号,但是高频灵敏度相对其它频段要高,并且没有低频,
因此过多的高频段相对于手机音乐只是一种燥声。
后腔实结构际2 后腔结构2
第三十页,共47页。
后腔
减小了机壳处声音泄露、延长
声音传播路径。扩大了后 腔容积。
后腔结构3
第三十一页,共47页。
• 整个机壳里面都是后腔。
• 优点:后腔容积大、可操作 性强、成本低。
• 缺点:密封性差。
后腔不良设计1
第三十二页,共47页。
• 后腔容积太小,没有 低频,这样的音质较 差,声音显得燥、吵, 干。
出声孔位置(从扬声器振动边往 正中)

有关喇叭的音腔的设计规范标准[详]

有关喇叭的音腔的设计规范标准[详]

SPEAKER常用种类
圆形的:13mm,14mm,15mm,16mm,17mm,18mm,20mm. 椭圆或跑道的: 10*15mm,,10*20mm,12*14mm 12*18mm,13*18,14*20
Speaker与Receiver对比
性能参数 频率响应曲线 有效频率范围 特性灵敏度(SPL) 谐波失真(THD) 谐振频率Fo 额定阻抗 Speaker 0.5W/5cm 600~20KHz 98+/-3dB 1KHz 0.5W/5cm <0.15% 0.5W 900+/-20%Hz 8+/-15%ohm Receiver 179mV 300~3400Hz 110+/-3dB 1KHz 179mV <5% 300~3400Hz 179mV 600+/-20%Hz 32+/-15%ohm
电压(V)
声压级(dB)
F1
F2
频率(Hz)
F1
F2
频率(Hz)
Speaker的关键参数
频率响应曲线 谐波失真 额定功率/最大功率
Speaker频率响应曲线
频响曲线主要从三个方面进行评价:SPL值、低频谐振点f0、平坦度
Speaker频率响应曲线关键参数
SPL(灵敏度):指输入扬声器单元1W的电功率,在扬声器轴线方向离开1米远的 地方测得的声压级大小。它实质上是一种(转换效率)的体现。 SPL=20log(P/P0)dB 低音共振频率f0的值和 共振锐度Q0(平坦度)的值共同决定了低音域的特性。 低频谐振点f0反映了SPEAKER的低频特性,是频响曲线次重要的指标。平坦度 反映了SPEAKER还原音乐的保真能力,作为参考指标
额定功率/最大功率

有关喇叭的音腔的设计规范

有关喇叭的音腔的设计规范

电压(V)
声压级(dB)
F1 F2
频率(Hz)
F1 F2
频率(Hz)
Speaker的关键参数
❖ 频率响应曲线 ❖ 谐波失真 ❖ 额定功率/最大功率
Speaker频率响应曲线
频响曲线主要从三个方面进行评价:SPL值、低频谐振点f0、平坦度
Speaker频率响应曲线关键参数
SPL(灵敏度):指输入扬声器单元1W的电功率,在扬声器轴线方向离开1米远的 地方测得的声压级大小。它实质上是一种(转换效率)的体现。
SPL=20log(P/P0)dB
低音共振频率f0的值和 共振锐度Q0(平坦度)的值共同决定了低音域的特性。
低频谐振点f0反映了SPEAKER的低频特性,是频响曲线次重要的指标。平坦度 反映了SPEAKER还原音乐的保真能力,作为参考指标
SPEAKER常用种类
❖ 圆形的:13mm,14mm,15mm,16mm,17mm,18mm,20mm. ❖ 椭圆或跑道的: 10*15mm,,10*20mm,12*14mm
泄漏尽量小,离SPK尽量远。
音腔设计参数建议
Thank you for your support !
谐波失真(THD)
<0.15% 0.5W
<5% 300~3400Hz 179mV
谐振频率Fo
900+/-20%Hz
600+/-20%Hz
额定阻抗
8+/-15%ohm
32+/-15%ohm
额定功率/最大功率
0.5W/1W
10mW/30mW
音腔设计
音腔作用: ❖ 腔体的目的是为了隔开前后声波,避免二者干涉 ❖ 腔体的大小左右着SPK/RVR的低频重放

Speaker选择和音腔的设计

Speaker选择和音腔的设计

FAE_声腔的设计及Speaker的选型_V0.1Vimicro_FAE2004-12-09Only For Inter Reference.目录一、在实际的设计中容易出现的问题 (2)二、设计要求 (2)三、音频测试标准 (4)四、音频测试注意事项 (5)一. 在实际的设计中容易出现的问题:现象 原因要求 备注 喇叭的厚度限制了振膜的振动幅度,厚度太薄喇叭振膜易碰到喇叭的外壳,产生“破音”的现象。

所以选择喇叭的尺寸和厚度,应综合结构的设计,在结构允许的情况下选择尽可能大的尺寸,以达到良好的声音效果。

破音需要根据实际情况调整,所以结构上可预留一定的哑孔方便调节,塑胶壳体上开数个出音孔时,各出音孔的面积总和应不小于喇叭有效发声面积的20%较好。

SPEAKER 直径太小(最好>15mm ) SPEAKER 本体厚度(不低于3.3mm )出音孔的宽度(或直径)控制在1.5mm~2.5mm 以内,绝对避免狭长的缝隙作为出音孔。

如果密封不好,则后腔产生的声波会叠加到前声腔产生的声波上去,导致铃声音量变小。

音量小对于Speaker 来说,一般声腔设计的深度为0.8mm~1.0mm ,较佳值取1.0mm 。

当声腔设计的深度<0.5mm 时,声音效果会很差。

当声腔设计的深度>1.5mm 时,由于Speaker 和Receiver 的尺寸不是很大,相对来讲声腔设计的深度深了一点,当声腔设计的深度过深时,则会在声腔内产生共振,容易使声音效果变差。

漏音 尽量避免在腔体附近有太多的镶嵌和缝隙,否则易引起漏音。

嘶叫 如果喇叭与机壳压的过紧导致前声腔体积过小则易出现“嘶叫”。

二. 设计要求:Issues Sub-issues RulesDescriptionNote 功率 输出功率不得小于0.5W声压级额定输入×240h(h 为小时)对于同样尺寸的喇叭,应选声压级较高的产品,声压级越高,喇叭的声音越大。

喇叭和MIC结构设计说明

喇叭和MIC结构设计说明

喇叭和MIC结构设计说明1、喇叭前后音腔和大小的设计●音腔设计主要的原则就是,前音腔要密封,后音腔要尽可能的大,泄露孔尽量离喇叭远一些●音腔大小和喇叭直径的关系,建议:1.Φ13mm Speaker前容积高度:0.3~2mm 出音孔高度: Φ1.0,4~8孔(3mm2~6mm2 ) 后容积高度:3~5Cm3 洩漏孔高度:4~6mm22.Φ15mm Speaker前容积高度:0.3~2mm 出音孔高度: Φ1.0,4~8孔(3mm2~6mm2 ) 后容积高度:3~5Cm3 洩漏孔高度:4~6mm23. Φ16~20m/m Speaker 前容积高度:0.3~2mm 出音孔高度: Φ1.0,4~8孔(3mm2~6mm2 ) 后容积高度:5~7Cm3 洩漏孔高度:5mm22、出音孔的设计和注意点:●出音孔的面积一般在喇叭振动面积的5%~15%之间,过大可导致高频噪音过多,过小可能导致声音变小●出声孔尽量不要开在正中,这样高频较多,声音做不大,并伴随高频噪音,开孔面积也不能太大,参照上一点描述●出声孔过渡要平滑,孔口要倒角,这样声音不会刺耳●出声孔的孔径,方形孔的孔距不得小于1mm,太小不利于发声,并且声音小且细,没有厚度●上图为不同出音孔的位置在SPL曲线上反馈的的效果●出音孔的设计要点如下图:出音孔的常用设计形状:●在类似于有全双工等高要求的情况下,需要把用橡胶把喇叭和壳体隔开,防止共振,起到缓冲的效果3、.Mic和喇叭的位置●原则上,MIC与SPK之间的朝向的确是反方向上最好的,如果做不到反向,可以是成垂直关系;在这个基础上,MIC与SPK之间的间距越大越好;一般来说,距离越远,二者之间的耦合越小,对回声的抑制会更有利4、Mic的设计●Mic前音腔需要做密封处理,一般用那个泡棉或者硅胶以一定的压缩量保证充分密封,压缩量一般建议在0.2~0.3mm,硅胶或泡棉的硬度在中等以上,尽量不要使用侧边密封。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0922 1018 1020 1117 1215 1217 1218 1315 1317 1318 13 15 16 1420 17 18 20 1422 1524 1625 2030
2.5±1 2.5±1 2.5±1 2.5±1 2.5±1 2.5±1 2.5±1 2.5±1 2.5±1 2.5±1 2.5±1 2.5±1 2.5±1 2.5±1 2.5±1 2.5±1 2.5±1 2.5±1 2.5±1 2.5±1 2.5±1
后腔设计
• 作用: • 1、防止扬声器中低频的声短路。 • 2、使低频声音有力度,让人感觉声音圆润。
后腔的设计很重要,它直接影响了一个手机音质的好环 和大小。 后腔要求:大、并且密封性好。(无泄露后腔)
后腔结构1
• • •
单独的密封后腔,现品牌机
常采用的形式。
优点:后腔完全密封,并且 容积足够大,低频效果好。 缺点:成本高
出声孔设计注意点
• 出声孔:1、尽量不要开在正中,这样高频较多,声音 做不大,并且伴随高频噪声。2、开孔面积也不能太大, 因为扬声器本身的原因和后腔因素,高音会显得比较尖 锐,听起来声音刺耳。 • 出声孔过渡要平滑,这样声音不会刺耳。 • 出声孔圆孔径、方形孔孔距不得小于1mm,太小不利 于发声,并且声音小还细,没有厚度。
侧出音设计
优点:1、可以过滤掉高频噪音。 2、如果声音破音,通过侧出音可减小破音。
侧出孔的面积要达到扬声器振动面积的15%-25%。 孔宽要达到:0.8mm-1.5mm。





• 出声孔作用:
• 1、出声。 • 2、出声孔面积影响高频截止频率、中低频的灵敏度。 • 3、出声孔面积一般在扬声器振动面积的5%-15%之间,过 大可导致高频噪音过多,过小可能导致声音变小。
• 将一定幅度的粉红噪声信号输入扬声器,扬声器连续工作 100H而不发生热损坏或机械损坏,就称为扬声器的额定噪 声功率。
短期最大功率:
• 将噪声信号送入扬声器,扬声器每工作1秒,停60s,循环 60次,扬声器不发生热损害或机械损坏,就称为扬声器的 短期最大功率
额定最大正弦功率
• 在扬声器送入连续的正弦波信号,工作一个小时,扬声器不发 生热损坏和机械损坏,成为额定最大正弦功率,一般该功率大 于额定功率。
A、B A、B A、B A、B A、B A、B A、B A、B A、B A、B A、B A、B A、B A、B A、B A、B A、B A、B A、B A、B A、B
1.5~3 1.5~3 1.5~3 1.5~3 1.5~3 1.5~3 1.5~3 2~3 2~3 2~3 2~3 2~5 2.5~4.5 2.5~4.5 3~4.5 3~5 3.5~5.5 3.5~5.5 4~6 4~6 4.5~8
扬声器振膜面频段分布
扬声器频段分布:振膜边是低 频,振膜中是高频
出声孔分布设计实例1
出声孔:出声孔开在扬声器振动膜 的边上,可以提高中频音量,减小 高频噪声,扬声器振膜3/4处为低频 发声点(从中往边)。
出声孔分布设计实例2
单个扬声器:出声孔开在扬声器正 中,谷峰较小,声音显得不够大 (相对出声孔开在旁边),扬声 器振膜正中发出的为高频。
前腔设计
• 作用:
1、前腔是让声音产生一个高频段的截止频率,并产生一个 高频峰(相对的)。 2、修正高频噪声。 3、好的前腔可提高中频、减小高频噪声、降低高频段延伸、 提高声音转换效率。
前腔设计注意点
• 1、前腔壁的形状和高度设计要能提高声音转换效率。
• 2、前腔一定要与后腔分开,做好密封措施。
扬声器参数说明与音腔设计
扬声器的指标说明
额定阻抗、谐振频率
• 额定阻抗是被测扬声器单元在谐振频率后第一个阻抗最小值,它反映
在扬声器阻抗曲线上是谐振峰后曲线平坦部分的最小阻值,一般是直 流阻抗的1.1 ~1.2倍。
• 由阻抗曲线可见,在低频某一频率其阻抗值最大,此时的频率称之为
扬声器的谐振频率,记为fo,即在阻抗曲线上扬声器阻抗模值随频率上 升的第一个主峰对应的频率。
3/5以内 3/5以内 3/5以内 3/5以内 3/5以内 3/5以内 3/5以内 3/5以内 3/5以内 3/5以内 3/5以内 3/5以内 3/5以内 3/5以内 3/5以内 3/5以内 3/5以内 3/5以内 3/5以内 3/5以内 3/5以内
ห้องสมุดไป่ตู้
上面的数据要求: 1: 前腔和后腔完全隔开; 2:后腔密封要好(无泄露性后腔设计)。 3:前腔的出声孔面积、位 置、前 腔高度是让声音在中频段共振峰, 让音量大,高频噪声少。
• 声泄孔离出声孔太近,造成声音短路,使音量变小,音 质变差。 • 机壳尽量要密封,最好不能有声泄露孔。
密封性后腔和泄露性后腔对比曲线
灰色的是泄露性后音腔曲线、红色是密封性后音腔的曲线 可以看出泄露性后音腔3K以下比密封性后音腔要高3dB
后腔大小与扬声器振膜振幅的关系 加大后腔可以改善低频效果,但是扬声器振膜的振幅也会同时增大,采用大后腔 的时候需要注意提高振膜到前盖板的距离,防止振膜发生碰撞。
音乐功率:
• 短时间向扬声器输入音乐信号,扬声器发出的声音无不可忍受 的失真、热损坏或机械损坏,此时测得的输入功率为扬声器的 音乐功率。音乐功率可以是额定噪声功率的四倍以上。。
商业功率:
• 不考虑失真,瞬时扬声器输入不至于使扬声器发生永久损坏的 功率,称为扬声器的商业功率。这个功率经常很大,是额定噪 声功率的八倍甚至十几倍。
出声孔分布设计实例
出声孔位置图比较
出声孔面积为扬声器振动面积的20%
出声孔面积设计实例
出声孔:不能分布在整个面上, 会使出声孔面积过大,高音显 得比较尖,燥。
出声孔面积设计实例
出声孔孔径在0.8mm-1.5mm之 内,出声孔面积只有占到 扬声器振动面积10%左右的 时候,声音音量、音质都 能做好。
• 3、前腔壁越高,高频截止频率越低(与出声孔面积和位置 配合),中频转换效率越高,高频成份越小。
前腔大小的影响
1.出声孔面积保持一定时,前腔越小,高频截止谐振频率越大 2.前腔太小时,振膜距离前盖太近,导致震动附加质量过大,使得低 频灵敏度下降
前腔设计形状1
这种锥形结构对声音反射有影响,因为声音反射回来, 不能提高声音的利用率。

极差
喇叭规格
前腔高度(mm) 前腔形状 指数性(A)直锥形(B)垂直性(C)
单个喇叭
后腔容积(ml) 出声孔面积(扬声 器振动面积;泡棉 内面积) 5%~15% 5%~15% 5%~15% 5%~15% 5%~15% 5%~15% 5%~15% 5%~15% 5%~15% 5%~15% 5%~15% 5%~15% 5%~15% 5%~15% 5%~15% 5%~15% 5%~15% 5%~15% 5%~15% 5%~15% 5%~15% 出声孔位置(从扬声器振动边 往正中)
灵敏度、总谐波失真
• 在扬声器的有效频率范围内,给扬声器施加一定功率的电 信号,测试一定距离处的声压。 • 在扬声器的有效频率范围内,给扬声器施加一定功率的电 信号,测试声音的失真大小。
关于扬声器的功率
• 一般我们可以看到扬声器的额定功率和最大功率,但其实 扬声器的功率有更多的定义方法。
额定功率:
声音与音腔设计关系
类别
前腔容积 后腔容积
出声孔
出声孔相对扬声 器位置
前腔形状
声音与音腔设计关系
10%30% 正面 或侧出音 指数性、垂直性 八字性
音质好
0.8mm
3ml以上
音量大
1.5mm3.5mm
整个扬声器旁边、 3ml以上 5%-15% 八字性、指数性 正面
音腔对声音的影响
高频延伸 高频破音 音量
前腔设计形状2
• 倒锥形和指数性结构 的前腔壁都可以提高 扬声器的利用率,起 到提高中频音量作用。
前腔设计形状3
• 垂直前腔对高频的延伸特性好,但是没有倒锥形和指数性 结构对中、低频的提升好。
前腔设计形状对比曲线
可以看出,指数性和锥形都能提高扬声器中频段的效率,提高中频段音量。使 高频段了谐振频率降低。
3、正确的音腔设计可提高扬声器利用率。 4、让声音真实的还原。 5、后腔是对手机低频进行修正 6、前腔对中高频进行修正。
7、出声孔面积能对中高频进行修正。
音腔设计的要点(无泄漏后腔设计)
1、后腔设计要求:后腔要求无限大,密封(手机扬声器振幅较小, 空气压缩容积小)。 2、前腔设计要求:前腔要尽量小(扬声器曲线在理想的情况下), 但由于扬声器参数的缺陷,前腔要为声音形成一个高频共振,使 声音干净,前腔高度应在1.5mm-3.5mm之间。 3、前腔出声孔要求:出声孔面积要尽量的大(扬声器曲线在理想 的情况下),但由于手机扬声器低频下限高,没有低频,过多的 高频形成了噪音,因此出声孔最好控制在扬声器振动面积(泡棉 内面积)5%-15%之间。 4、电池槽,卡槽孔要远离手机扬声器。 5、前后腔要完全隔开,后腔要密封好。
音腔设计
声音曲线
从图看出,MP3音乐和人耳听觉区域为20-20KHZ,手机喇叭并不是所有音乐都能播放 只能播放500HZ以上音乐信号,但是高频灵敏度相对其它频段要高,并且没有低频, 因此过多的高频段相对于手机音乐只是一种噪声。
音腔设计作用
1、防止声音短路,充分发挥扬声器性能。
2、对声音进行修正,防止噪音。
出声孔面 积 出声孔位 置 前腔高度 前腔形状 后腔容积 A C B C A C B C D B C A C A
低频破音 低频下限 音质
B C B C B A A B A B A
后腔密性
A:影响最大


D:影响最小



出声孔面积曲线对比
出声孔径要求
相关文档
最新文档