1.1 高等数学---集合的相关知识
高数高等数学1.1映射与函数

说明 (1) 分段函数对应不同的区间,函数有不同的表达式. (2) 分段函数表示一个函数,不是几个函数. (3) 分段函数的定义域是各分区间的定义域的并集.
1 例6 设 f ( x ) 2 1 解 f ( x) 2
0 x1
求 f ( x 2) .
解
2( x 2) 1, 0 x 2 1 f ( x 2) 4 ( x 2), 1 x 2 2
2 x 5, 2 x,
2 x 1 1 x 0
.
几个特殊的函数举例 (1)常函数
开区间
( a , b ) { x a x b}
o
闭区间
a
b
x
[a , b ] { x a x b }
o
a
b
x
半开区间
[a , b ) { x a x b}
( a , b] { x a x b }
无限区间
有限区间
称a, b为区间的端点, 称b-a为这些区间的长度.
1, 当 x > 0 0, 当x = 0
1 ,
1
当x<0
y4
3 2 1
o
-1
x
x sgn x x
(4)取整函数 y x
[x]表示不超过x 的最大整数
-4 -3 -2 -1 o -1 1 -2 -3 -4
2 3 4
x
(5)狄利克雷函数
y
1 1 当x是有理数时 • y D( x ) o• 0 当x是无理数时 无理数点
f (sin x ) (sin x )3 1
高等数学(上册)重要知识点

lim f ( x)
x
x0
0
=A.如果
是一个在该去心领域取值的数列, xn
0
x (n=1,2,....)
且
lim x
n
n
则有
lim f ( x ) =A.
n
5.如果
lim f ( x) A lim g ( x)
x
x0
,
x
x0
=B,并且存在常数δ>0,
使得当0<|x- x0 |<δ,有 f ( x) g ( x) ,那么A B。
lim g ( x) u
x
x0
0
,而函数 f 在点 u 0 连续 则有
0
lim f [ g ( x)] f (u )
x
x0
。
6.5 三个等价无穷小(当 x 0 时)
ln( 1 x) ~ x
e
x
-1 ~ x
(1 x)
- 1 ~ x
6.6 基本初等函数在其定义域内是连续的。 一切初等函数在其定义域内都是连续的。 6.7 闭区间上的连续函数在该区间上有界,并且一定能取得最大值与最小 值。 6.8 介值定理 设函数 y f ( x) 在闭区间[a,b]上连续,在该区间的两端点处分别取值 A,B(A≠B,那么,对 A,B 之间的任意一个数 C,在该区间(a,b)内至少存 在一点§使得
f ( x x) f ( x0) x
存在, 称该单侧极限为 y f ( x) 在 x0 点的
f ( x ) ;类似地,称 右导数,记作
0
/
lim
x
f ( x x) f ( x0) x
高等数学1重要知识点总结

高等数学1重要知识点总结•相关推荐高等数学1重要知识点总结在我们的学习时代,说到知识点,大家是不是都习惯性的重视?知识点就是一些常考的内容,或者考试经常出题的地方。
掌握知识点有助于大家更好的学习。
下面是小编为大家整理的高等数学1重要知识点总结,希望对大家有所帮助。
高等数学1重要知识点总结11、函数、极限与连续重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。
2、一元函数微分学重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。
3、一元函数积分学重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。
4、向量代数与空间解析几何(数一)主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。
5、多元函数微分学重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。
另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。
6、多元函数积分学重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。
此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。
7、无穷级数(数一、数三)重点考查正项级数的`基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。
高等数学基本知识点大全

们 论单值函数
函数相等
由函数的定 可知 个函数的构 要素 定 域 对 关系和值域 由于值域是由定 域和对
关系决定的 所 如果 个函数的定 域和对 关系完全
们就 个函数相等
域函数的表示方法
⑷核 解析法 用数学式子表示自 量和因 量之间的对 关系的方法 是解析法 例 直角坐标系中
222
半径 征 圆心在原点的圆的方程是 x 为y =征
的元素完全
因 集合 A 集合 B 相等 记作 A B
真子集 如何集合 A 是集合 B 的子集 但 在 个元素属于 B 但 属于 A 们 集合 A 是集合
B 的真子集 空集
们把
任何元素的集合 做空集 记作 ∅ 并规定 空集是任何集合的子集
由 述集合之间的基本关系 可 得到 面的结论
任何 个集合是它本身的子集
函数的
函数的表达式
函数的 形
函数的性质
⑷核 定 域 光样-∞主为∞核 曲
⑸核 是奇函数
干核 在定 域内是单调增
曲余
曲
们再来看
曲函数 角函数的区 曲函数的性质
s穷x t穷x 是奇函数 干穷x 是偶函数
它们都 是周期函数 曲函数 有和差 式
⑷核 定 域 光样-∞主为∞核
⑸核 是偶函数
干核
像过点样0主1核
B
A B {x|x∈A 且 x∈B}
的集合 的集合
A B 的并集 记作 A A B 的交集 记作 A
补集
全集 通常记作 U
般地 如果 个集合 有 们所研
题中所涉及的所有元素 那 就
个集合 全集
补集 对于 个集合 A 由全集 U 中 属于集合 A 的所有元素
的补集 简 集合 A 的补集 记作 CUA
《高等数学》各章知识点总结——第1章

《高等数学》各章知识点总结——第1章1.集合的概念:集合是由确定的、互不相同的对象组成的一个整体。
集合中的对象称为元素,用大写字母A、B等表示集合,用小写字母a、b等表示元素。
集合中的元素无序,不重复。
2.集合的运算:(1)并集:表示由属于任一集合的元素组成的新集合,记作A∪B。
(2)交集:表示同时属于所有集合的元素组成的新集合,记作A∩B。
(3)差集:表示属于一个集合但不属于另一个集合的元素组成的新集合,记作A-B。
(4)互斥:两个集合的交集为空集,即A∩B=∅。
(5)补集:表示全集中不属于一些集合的所有元素的集合,记作A'。
3.集合之间的关系:(1)包含关系:若集合A的所有元素都属于集合B,则称集合A包含于集合B,记作A⊆B。
(2)相等关系:若集合A和集合B的元素完全相同,则称集合A等于集合B,记作A=B。
(3)真包含关系:若集合A包含于集合B,并且集合A不等于集合B,则称集合A真包含于集合B,记作A⊂B。
4.映射的概念:(1)映射:设有两个非空集合A和B,如果存在一种对应关系,使得A 中的每个元素对应B中的唯一元素,则称这种对应关系为映射。
(2)函数:映射的另一种称呼,表示自变量和因变量之间的关系。
通常用f(x)表示函数,其中x为自变量,f(x)为相应的因变量。
5.映射的性质:(1)定义域和值域:映射的定义域是指所有自变量的集合,值域是指所有因变量的集合。
(2)单射:每个自变量只对应唯一的因变量。
(3)满射:每个因变量都有对应的自变量。
(4)一一对应:既是单射又是满射的映射。
(5)复合映射:将两个映射结合起来形成一个新的映射,称为复合映射。
总结:本章主要阐述了集合的基本概念、集合的运算、集合之间的关系和映射的概念及其性质。
理解这些基本概念对于后续学习高等数学的内容具有重要的指导意义,也为我们建立起了抽象数学思维的基础。
在学习中,我们需要牢记集合的运算规则和映射的性质,灵活运用,为数学的进一步学习打下坚实的基础。
高等数学第一章.

记作A
B,即A
B
x
xA或xB.
交集(Intersection): 设A和B是两个集合,由既属
于集合A又属于集合B的元素组成的集合,称为集合A
和集合B的交集, 空集:如果A和B没有公共元素,则称集合A和集合B
集合的表示方法:列举法和描述法。
1.列举法:就是把所有元素都列出来,用大括号括
起来。
s 例如:如果令 表示由2、3、4三个数组成的集合,
用列举法将其写成:s ={2,3,4}
2. 描述法:用语言描述出所有元素的共有特征。
若令 I 表示所有正整数集合,列举便很困难,则我们
可以简单地描述其元素,
写成:
称A是有限集,否则称为无限集(Infinite Set). 我们用N表示全体自然数的集合,即N{1,2,3,L }, 如果存在从A到自然数集合N的双射,则称A是可数无 限集(Countable Infinite Set). 1.2 实数 用Z表示全体整数的集合, 用Q表示全体有理数的集合。
有理数和无理数统称为实数, 用R表示. 把数轴叫做实直线。 上界(Upper Bound):令X是R的一个子集。若存在一 个实数u(不一定属于X), 满足对X中的任意x都有xu, 则称u是X的上界(Upper Bound). 这时称X是有上界的(Bounded Above).类似地,可以
定义下界(Lower Bound).
上确界(Supremum): 令X是R 的一个有上界的子集,
若s是X的一个上界,且对于任意的 y s 都存在一个 xX ,使得x y,则称s是X的上确界。 记为s=sup X; 类似地,可以定义X的下确界(Infimum)。 上确界是最小上界,下确界是最大下界 若X是R的一个有上界(下界)的子集,则X有上确界
高等数学第一章第一课-2022年学习资料

空集为任意集合A的子集,即Φ cA-若A与B互为子集,即AcB,且BCA,则称集合-A与B相等,记作A=B或 =A.-五、集合的运算-交集:A∩B={xxeA且xeB}:-→∩
并集:AUB={xx∈A或x∈B;-例5设A={1,2,4,6,B={2,4,7}-则AUB={1,2,3 4,6,7-A∩B={2,4-6设A={x-1≤x≤2,B={xx>0,-则AUB={xx≥-1,AnB= x0<x≤2-例7设A={xx≤1,B={x2≤x≤5}-则AUB={xx≤1,或2x≤5},AnB=D. →∩
例4设fx=x2+x-1,求f1,fa,fx+1-〔》奶-解f1=1+1-1=1-fa=a2+a-1-fx =x++x+-1-=x2+3x+1-→
f[fx]=[fx]+[fx]-1-=x2+x-1+x2+x--1-=x4+2x3-1-→∩
如果自变量在定义域内任取一个数值时-对应的函数值总是只有一个,叫做单值函数,-否则叫做多值函数.-例如:y ±V2-x2-定义:点集C={x,yy=∫x,x∈D}称为-函数y=fx的图形-→∩
第一章-函数-极限与连续-§1.1-集合-一、概念-具有某种特定性质并且可以彼此区别的事物的-总体,称为集 -集合里的每一个事物称为集合的元素。-例1方程x2-3x+2=0的根.-有限集合-→∩
例2-全体实数.常记为R.-例3-全体正实数.常记为R-例4-全体自然数.常记为N.-无限集合-若某个元素 属于集合A,则记作x∈A;-若某个元素x不属于集合A,则记作xEA.-例如:-2R,4∈N.-二、集合的表 法-1.列举法:按任意顺序列出集合的所有元素-并用花括号括起来,
高一集合的知识点总结

高一集合的知识点总结高一时期是学生迈入高中阶段的第一步,也是各科知识的基础奠定阶段。
集合是数学学科中非常重要的一个概念,不仅在高中的数学学习中扮演着重要角色,还在后续的高等数学学习以及其他学科中有着广泛应用。
下面将从集合的基本概念、集合的运算、集合间的关系以及集合的应用等方面对高一集合的知识点进行总结和探讨。
一、集合的基本概念集合是指具有共同特征的事物的总体。
在数学中,我们用大写字母A,B,C等来表示集合,用小写字母a,b,c等来表示集合中的元素。
集合的元素一般用列举法或描述法确定。
如果一个元素a属于集合A,我们可以表示为:a∈A。
如果一个元素b不属于集合A,我们可以表示为:b∉A。
集合的基本概念还包括空集和全集。
空集是不含有任何元素的集合,用符号∅表示。
全集是指研究对象所在的范围内的一切元素所组成的集合。
二、集合的运算1. 并集:并集运算是指将属于两个或多个集合的所有元素组成的集合。
用符号∪表示两个集合的并集。
例如,如果集合A={1,2,3},集合B={3,4,5},则它们的并集A∪B={1,2,3,4,5}。
2. 交集:交集运算是指既属于一个集合又属于另一个集合的元素所组成的集合。
用符号∩表示两个集合的交集。
例如,如果集合A={1,2,3},集合B={3,4,5},则它们的交集A∩B={3}。
3. 差集:差集运算是指属于一个集合但不属于另一个集合的元素所组成的集合。
用符号-表示两个集合的差集。
例如,如果集合A={1,2,3},集合B={3,4,5},则它们的差集A-B={1,2}。
4. 对称差:对称差运算是指属于一个集合但不属于另一个集合的元素以及属于另一个集合但不属于第一个集合的元素所组成的集合。
用符号△表示两个集合的对称差。
例如,如果集合A={1,2,3},集合B={3,4,5},则它们的对称差A△B={1,2,4,5}。
三、集合间的关系1. 包含关系:如果一个集合A的所有元素都属于另一个集合B,我们可以说集合A包含于集合B,记作A⊆B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
倍⻆公式 降幂公式
•12
基本初等函数---五类
5.反三⻆函数
•13
基本初等函数---五类
5.反三⻆函数
•14
初等函数
由常数及基本初等函数经过有限次四则运算和复合 所构成并可一一个式一表示的函数 , 称为初等函数 .
一个特殊的函数举例
(1) 符号函数
(2) 绝对值函数
y
1
o
x
-1
y
o
x
•16
(3) 取整函数 y=[x] [x]表示不超过 的最一整数
y
-4 -3 -2 -1
-1 1 2 3 4 5 x -2 -3
-4
•17
南京一程学院
Thanks !
函数
一 集合的相关概念 一 初等函数
邻域
•2
实一邻域
左 邻域 :
右 邻域 :
去一邻域
直积(笛卡尔乘积)
将两个元素x和y按前后顺序排列成一个元素
说明 类似地,三元有序数组 设A,B是 两个任意集合,则称集合
为A与B的直积(或笛卡尔乘积),记作
.
•4
直积(笛卡尔乘积)
例如
记
为平一上的全体点集
•5
基本初等函数---五类 1.幂函数
•6
基本初等函数---五类
2.指数函数
3.对数函数
•7
基本初等函数---五类
4.三⻆函数 正弦函数
余弦函数
•8
基本初等函数---五类
4.三⻆函数 正切函数
余切函数
•
基本初等函数---五类
4.三⻆函数 正割函数
余割函数
•10
三⻆函数的定义和关系
倒数关系 商数关系 平一关系