4.2流水行船问题(二)
五年级奥数流水行船问题讲解及练习答案

流水行船问题讲座流水问题是探讨船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个根本公式:顺水速度=船的静水速+水速(1)逆水速度=船的静水速-水速(2)水速=顺水速度-船速(3)静水船速=顺水速度-水速(4)水速=静水速-逆水速度(5)静水速=逆水速度+水速(6)静水速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)例1:一艘每小时行25千米的客轮,在大运输河中顺水航行140千米,水速是每小时3千米,需要行几个小时?解析:顺水速度为25+3=28 (千米/时),需要航行140÷28=5(小时).例2:两个码头相距352千米,一船顺流而下,行完全程需要11小时.逆流而上,行完全程需要16小时,求这条河水流速度。
解析:(352÷11-352÷16)÷2=5(千米/小时).例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8船速:(26+16)÷2=21(千米/小时),水速:(26—16)÷2=5(千米/小时)例4:一位少年短跑选手,顺风跑90米用了10秒,在同样的风速下逆风跑70米,也用了10秒,则在无风时他跑100米要用多少秒.解析:本题类似于流水行船问题.根据题意可知,这个短跑选手的顺风速度为90÷10=9米/秒,逆风速度为70÷10=7米/秒,那么他在无风时的速度为(9+7)÷2=8米/秒.在无风时跑100米,需要的时间为100÷8=12.5秒.例5:一只小船在静水中的速度为每小时 25千米.它在长144千米的河中逆水而行用了 8小时.求返回原处需用几个小时?解析:船在144千米的河中行驶了8小时,则船的航行速度为144÷8=18(千米/时)因为船的静水速度是每小时 25千米,所以水流的速度为:25-18=7(千米/时)返回时是顺水,船的顺水速度是25+7=32(千米/时)所以返回原处需要:144÷32=4.5(小时)例6:(难度等级※)一艘轮船在两个港口间航行,水速为每小时6千米,顺水下行需要4小时,返回上行需要7小时.求:这两个港口之间的间隔 ?解析:(船速+6)×4=(船速-6)×7,可得船速=22,两港之间的间隔为:6×7+6×4=66,66÷(7-4)=22(千米/时)(22+6)×4=112千米.例7:甲、乙两船在静水中速度一样,它们同时自河的两个码头相对开出,4小时后相遇.已知水流速度是6千米/时.求:相遇时甲、乙两船航行的间隔相差多少千米?解析:在两船的船速一样的状况下,一船顺水,一船逆水,它们的航程差是什么造成的呢?不妨设甲船顺水,乙船逆水.甲船的顺水速度=船速+水速,乙船的逆水速度=船速-水速,故:速度差=(船速+水速) -(船速-水速)=2×水速,即:每小时甲船比乙船多走6×2=12(千米).4小时的间隔差为12×4=48(千米)顺水速度-逆水速度速度差=(船速+水速) -(船速-水速)=船速+水速-船速+水速=2×6=12(千米)12×4=48(千米)例8:(难度等级※※)乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时?解:乙船顺水速:120÷2=60(千米/小时).乙船逆水速:120÷4=30(千米/小时)。
五年级奥数流水行船问题讲解及练习答案

流水行船问题讲座流水问题是研究船在流水中的行程问题,因此,又叫行船问题.在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船的静水速+水速(1)逆水速度=船的静水速-水速(2)水速=顺水速度-船速(3)静水船速=顺水速度-水速(4)水速=静水速-逆水速度(5)静水速=逆水速度+水速(6)静水速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)例1:一艘每小时行25千米的客轮,在大运河中顺水航行140千米,水速是每小时3千米,需要行几个小时?解析:顺水速度为25+3=28 (千米/时),需要航行140÷28=5(小时).例2:两个码头相距352千米,一船顺流而下,行完全程需要11小时。
逆流而上,行完全程需要16小时,求这条河水流速度。
解析:(352÷11-352÷16)÷2=5(千米/小时).例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,解析:顺水速度:208÷8=26(千米/小时),逆水速度:208÷13=16(千米/小时),船速:(26+16)÷2=21(千米/小时),水速:(26—16)÷2=5(千米/小时)例4:一位少年短跑选手,顺风跑90米用了10秒,在同样的风速下逆风跑70米,也用了10解析:本题类似于流水行船问题.根据题意可知,这个短跑选手的顺风速度为90÷10=9米/秒,逆风速度为70÷10=7米/秒,那么他在无风时的速度为(9+7)÷2=8米/秒.在无风时跑100米,需要的时间为100÷8=12.5秒.例5:一只小船在静水中的速度为每小时25千米.它在长144千米的河中逆水而行用了8小时.求返回原处需用几个小时?解析:船在144千米的河中行驶了8小时,则船的航行速度为144÷8=18(千米/时)因为船的静水速度是每小时25千米,所以水流的速度为:25-18=7(千米/时)返回时是顺水,船的顺水速度是25+7=32(千米/时)所以返回原处需要:144÷32=4。
四年级流水行船问题的公式和例题含答案精修订

四年级流水行船问题的公式和例题含答案GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
五年级奥数专题 流水行船问题二(学生版)

学科培优数学“流水行船问题二”学生姓名授课日期教师姓名授课时长在行程问题这个大家族中,除了我们常常研究的相遇与追及外,还有两个特别相似的问题:流水行程和扶梯问题。
它们之间有很多相似之处,当然也有不同之处,在学习的过程中,同学们应该细细体会。
在历届小升初和杯赛考试中,相比与流水行船问题,扶梯问题往往不是重点,但是也需要我们有一定的了解和认识!在讲解本讲知识点时,一定要讲两大问题进行对比讲解,从公式形式到一般变形,以及推导过程都要让学生加以重点理解。
流水行船问题中速度打破了常规的0参考系,在讲解过程中可以引入生活中最贴切的实例,加深学生印象。
一、流水行船问题通常我们所接触的行程问题可以称作为“参考系速度为0”的行程问题,例如当我们研究甲乙两人在一段公路上行走相遇时,这里的参考系便是公路,而公路本身是没有速度的,所以我们只需要考虑人本身的速度即可。
但是在流水行船问题中,我们的参考系将不再是速度为0的参考系,因为水本身也是在流动的,所以这里我们必须考虑水流速度对船只速度的影响,具体为:①顺水速度=船速+水速;②逆水速度=船速-水速。
(可理解为和差问题)由上述两个式子我们不难得出一个有用的结论:船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2此外,在流水行船问题中,对于河流中的漂浮物,我们还会经常用到一个常识性性质,即:漂浮物速度=流水速度。
流水行船问题中的相遇与追及:①两只船在河流中相遇问题.当甲、乙两船(甲在上游、乙在下游)在江河里相向开出,它们单位时间靠拢的路程等于甲、乙两船速度和。
这是因为:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速。
这就是说,两船在水中的相遇问题与静水中的及两车在陆地上的相遇问题一样,与水速没有关系.②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,也只与路程差和船速有关,与水速无关.这是因为:甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速。
流水行船问题

流水行船问题【知识点睛】1基本公式:相遇问题:路程和=速度和×相遇时间追及问题:路程差=速度差×追及时间2行船问题:船的静水速度:船在静止水中行驶的速度,简称船速水流速度:水在河流中流淌的速度,简称水速顺水速度:船顺流而行时的总速度,即顺水速度=静水速度+水速逆水速度:船逆流而行时的总速度,即逆水速度=静水速度-水速3推导公式静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2【例题精讲】例1:四个速度游轮以每小时30千米的速度,在水速每小时5千米的水中顺流航行5小时,共行了多少千米?【练习1】1.一艘船每小时行25千米,在大河中顺水航行140千米。
已知水速是每小时3千米,这艘船行完全程需要航行几小时?2.一条河的水速为2千米/小时,一艘船顺水航行6小时走了60千米,若它逆水航行66千米需要多少小时?3.一条河的水速为4千米/小时,一艘船顺水航行11小时走了121千米,若它逆水航行39千米需要多少小时?例2:甲乙两港相距100千米,一只船从甲港往乙港顺流出发,4小时到达,从乙港返回甲港,10小时到达,求船在静水中的速度是多少?【练习2】1.甲乙两港相距180千米,一只船从甲港往乙港顺流出发,6小时到达,从乙港返回甲港,9小时到达,求水流的速度是多少?2.甲乙两港之间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度各是多少?3.一艘飞艇,顺风6小时行驶了900公里,在同样的风速下,逆风行驶600公里,也用了6小时,那么在无风的时候,这艘飞艇行驶1000公里要用多少小时?例3:一艘轮船在河流的两个码头之间航行,顺流需要6小时,逆流需要8小时,水流速度为2.5千米/小时。
求轮船在静水中的速度。
1.一艘轮船在河流的两个码头间航行,顺流需要4小时,逆流需要5小时,水流速度为1.5千米/时。
流水行船问题的公式和例题(完整版)

流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1 一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?(适于高年级程度)解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
*例2 一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。
水流的速度是每小时多少千米?(适于高年级程度)解:此船在逆水中的速度是:12÷4=3(千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1(千米/小时)答:水流速度是每小时1千米。
四年级下册数学教案 - 流水行船问题(二) 全国通用

2、流水行船问题(二)教学目标:1、掌握流水行船问题中的相遇问题和追及问题的特征。
2、熟练运用相遇问题和追及问题的数量关系式解决流水行船问题。
3、把流水中两船的相遇和追及转化成和差问题。
4、培养学生仔细读题、审题的意识,引导学生根据题目条件,分析题意,获取有效信息,最终正确解答问题。
教学重点:1、掌握流水行船问题中的相遇问题和追及问题的特征。
2、熟练运用相遇问题和追及问题的数量关系式解决流水行船问题。
教学难点:熟练运用相遇问题和追及问题的数量关系式解决流水行船问题。
教学过程:一、情景体验师:同学们,在流水行船问题中,我们已经知道了顺水行船和逆水行船的情形,在河流中,大家会看到有很多艘船在行驶。
如果按照行驶方向分类,会有哪几种情况?点学生回答。
师:就像大家刚才所说的一样,有同向行驶,有相向行驶。
两艘船同向行驶会出现追及,两艘船相向行驶会出现相遇。
那么流水行船问题中的相遇和追及又是怎样的呢?这就是我们今天要研究的内容,让我们带着疑问一同去探究。
二、思维探索(建立知识模型)例1:甲、乙两船相距120千米,两船同时出发,顺流而下。
已知甲船船速每小时行30千米,乙船船速每小时行20千米,水速每小时5千米,甲船多少小时可以追上乙船?师:怎样求追及时间呢?生:用追及路程÷速度差=追及时间。
师:追及路程是多少?速度差怎么求?生:追及路程是120千米,甲、乙两船都是顺水行驶,分别求出它们的顺水速度,再相减。
这一问剩下的过程由学生自主解答。
师:如果题目没有告诉我们水速,那怎么办?生:两船的顺水速度之差是10千米/小时,如果没有告诉水速,它们的静水速度之差也是10千米/小时,在已知追及路程的情况下也能求出追及时间。
师:对比一下这两问,你能发现什么?学生自主回答。
小结:流水中的追及问题,与船在静水中的追及问题及陆地上的追及问题一样,与水速无关。
即:两船速度差=甲船速度-乙船速度(甲船速>乙船速)。
例2:甲、乙两船在静水中的速度分别为每小时36千米和每小时28千米,今从相隔192千米的两港同时相向而行,甲船逆水而上,乙船顺水而下。
奥数之复习八:行程问题——流水行船问题及答案 2

复习八:行程问题——流水行船问题1.甲、乙两港间的水路长432千米,一只船从上游甲港航行到下游乙港需要18小时。
从乙港返回甲港,需要24小时,求船在静水中的速度和水流速度。
2.一艘船在静水中的速度为每小时15千米,它从上游甲地开往下游乙地共花去了8小时,已知水速为每小时3千米,那么从乙地返回甲地需多少小时?3.一艘轮船从甲港开往乙港,顺水而行每小时行28千米,返回甲港时逆水而行用了6小时,已知水速是每小时4千米,甲、乙两港相距多少千米?4.一条大河,河中间(主航道)水的流速为每小时8千米,沿岸边水的速度为每小时6千米。
一条船在河中间顺流而下,13小时行驶520千米,求这条船沿岸边返回原地需要多少小时?5.有人在河中游泳逆流而上,丢失了水壶,水壶顺流而下,经30分钟才发觉此事,他立即返回寻找。
结果在离丢失地点下游6千米处找到水壶,他返回寻找用了多少时间?水流速度是多少?6.一艘货轮顺流航行36千米,逆流航行12千米,共用了10小时,顺流航行20千米,再逆流航行20千米也用了10小时,顺流航行12千米,又逆流航行24千米要用多少小时?7.一只船在水中航行,水速为每小时2千米,它在静水中航行每小时行8千米。
问这只船顺水航行50千米需要多少小时?8.一艘轮船在静水中的速度是每小时15千米,它逆水航行88千米用了11小时,问这艘船返回原地需用几小时?9.一只船往返于一段长120千米的航道,上行时用了10小时,下行时用了6小时。
船在静水中航行的速度与水速各是多少?10.两港口相距432千米,轮船顺水行这段路程需要16小时,逆水每小时比顺水少行9千米。
问行驶这段路程逆水比顺水多用几小时?11.一艘轮船往返于相距198千米的甲、乙两个码头,已知这段水路的水速是每小时2千米,从甲码头到乙码头顺流而下需要9小时。
这艘船往返于甲、乙两码头共需几小时?12.一条船在静水中的速度是每小时16千米,它逆水航行了12小时,行了144千米,如果这是按原路返回,每小时要行多少千米?13.甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法二:120÷(30-20)=12(小时) 答:甲船12小时可以追上乙船。
例3:甲、乙两船在静水中的速度分别为每小时20千米和每小时16千米,两船先 后自同一个港口开出,乙比甲早出发2小时,若水速为每小时4千米,甲开出后几小时 追上乙? 分析:甲乙可以怎么行驶?要追上乙的路程是多少?
博易新思维数学 易于学 乐于思
追及路程是6千米。
6+2=8(千米/小时)
船调头后是顺水行驶, 木板在水中漂流的 速度就是水速。
8-2=6(千米/小时)
6÷6=1(小时)
答:小奥追回木板需要1个小时。
例5:甲、乙两条船在同一条河上相距128千米。若两船相向而行,则2 小时相遇;若同向而行,则16小时甲船追上乙船,问两船在静水中的速度 各是多少?
速无关。
例2:甲、乙两船相距120千米,两船同时出发,顺流而下。已知甲船 是每小时30千米,乙船是每小时20千米,水速每小时5千米,甲船多少小时 可以追上乙船?如果不告诉你水速,你能解答出来吗?你发现了什么?
方法一:30+5=35(千米/时) 20+5=25(千米/时) 120÷(35-25)=12(小时)
速度和:128÷2=64(千米/小时) 速度差:128÷16=8(千米/小时) 甲船速度:(64+8)÷2=36(千米/小时) 乙船速度: 36-8=28(千米/小时) 答:甲船的静水速度是每小时36千米,乙船的静水速度是每小时28千米。
流水中的相遇、追及问题与静水中及陆地上的 相遇、追及问题一样,与水速无关。
博ห้องสมุดไป่ตู้新思维数学
四年级春季培优版
流水行船问题(二)
我们已经知道陆地上的相遇问题的关 系式:相遇路程=速度和×相遇时间;陆 地上的追及问题的关系式:追及路程=速 度差×追及时间。流水中的相遇和追及又 是怎样的呢?这是我们今天要研究的内容。
例1:甲、乙两船在静水中的速度分别为每小时25千米和每小时15千米,现从相隔 400千米的两港同时相向而行,甲船逆水而上,乙船顺水而下。如果水速为每小时5千米, 两船几小时后相遇?如果有一天下了暴雨,水速增为每小时10千米,两船的船速不变, 两船几小时后相遇?你发现了什么? 方法一:(1)甲船逆水速度:25-5=20(千米/时)
乙船顺水速度:15+5=20(千米/时) 400÷(20+20)=10(小时) (2)25-10=15(千米/时) 15+10=25(千米/时) 400÷(15+25)=10(小时) 答:两船10小时后相遇,我发现了流水中的相遇问题,速度和与水速无关。
方法二:(1)400÷(25+15)=10(小时) (2)400÷(15+25)=10(小时) 答:两船10小时后相遇,我发现了流水中的相遇问题,速度和与水
顺水行驶:(16+4)×2=40(千米) 40÷(20-16)=10(小时)
逆水行驶:(16 - 4)×2=24(千米) 24÷(20-16)=6(小时)
答:顺水航行时,甲开出后10小时追上乙;逆水航行时,甲开出后6小时追上乙。
例4:小奥与金博士去公园玩,他们租了一只小船,沿河向上游划去。在划船时, 船上的一块木板掉到河里去了,当他们发现并调过船头时,木板与船已经相距6千米。 假定船速是每小时6千米,水速是每小时2千米。那么,小奥追回木板需要多长时间?