平面解析几何初步典型例题整理后

合集下载

平面解析几何的应用题

平面解析几何的应用题

平面解析几何的应用题在解析几何中,我们学习了如何利用坐标系和代数方法来研究和解决平面上的几何问题。

平面解析几何的应用非常广泛,可以帮助我们解决实际生活中的很多实际问题。

本文将通过几个具体的应用题来展示平面解析几何的应用。

1. 题目一:平面上两点的中点坐标已知平面上两点A和B的坐标分别为A(x1, y1)和B(x2, y2),求这两点的中点坐标M。

解析:根据中点的定义,我们知道中点M的横坐标为xM = (x1 + x2) / 2,纵坐标为yM = (y1 + y2) / 2。

因此,我们可以得出中点M的坐标为M((x1 + x2) / 2, (y1 + y2) / 2)。

2. 题目二:平面上两点间的距离已知平面上两点A和B的坐标分别为A(x1, y1)和B(x2, y2),求这两点之间的距离AB。

解析:根据两点间的距离公式,我们可以利用坐标差值和勾股定理来计算距离。

首先计算x轴上的差值dx = x2 - x1,y轴上的差值dy = y2 - y1。

然后,根据勾股定理,我们有距离AB = √(dx^2 + dy^2)。

3. 题目三:平面上直线的斜率和截距已知平面上一条直线L过点A(x1, y1)且斜率为k,求直线L的方程和截距。

解析:直线L的方程可以表示为y = kx + b,其中b为截距。

由于直线L过点A(x1, y1),代入得到y1 = kx1 + b。

因此,截距b可以通过解方程y1 = kx1 + b来求解。

4. 题目四:平面上两直线的交点坐标已知平面上两条直线L1和L2的方程分别为y = k1x + b1和y = k2x + b2,求这两条直线的交点坐标。

解析:将直线L1和L2的方程联立,我们得到k1x + b1 = k2x + b2。

通过移项整理,我们可以解出x坐标。

然后,将求得的x坐标代入其中一个方程中求解y坐标,即可得到交点的坐标。

5. 题目五:平面上两直线的夹角已知平面上两条直线L1和L2的斜率分别为k1和k2,求这两条直线的夹角。

高中解析几何典型题

高中解析几何典型题

高中解析几何典型题全文共四篇示例,供读者参考第一篇示例:一、直线和平面的关系题目题目1:设直线L经过平面α和β两个平面的交点A和B,问直线L在平面α和平面β之间的位置关系是怎样的?解析:直线L在平面α和平面β之间的位置关系有三种情况,分别是直线L既不垂直于平面α,也不垂直于平面β;直线L既垂直于平面α,也垂直于平面β;直线L既不垂直于平面α,但垂直于平面β。

具体位置可根据直线和平面的垂直关系来确定。

解析:点P在平面α和平面β之间的位置关系根据两个平面的相交线和点P所在位置的具体情况来确定。

如果直线L和点P的位置不同,点P在两个平面之间;如果直线L和点P的位置相同,点P在两个平面外部;如果直线L和点P的位置重合,点P在两个平面上。

题目3:已知平面α和平面β相交于直线m,直线n与直线m相交于点A,平面α和平面β的交线分别为l1和l2,求证:∠l1An=∠l2An。

解析:根据已知条件可得到∠l1An=∠mAn,∠l2An=∠mAn,即∠l1An=∠l2An。

解析:根据已知条件可得到∠A和∠B垂直于直线m,因此∠A和∠B所成的角度为90度。

通过以上的几个典型题目及其解析,我们不难看出解析几何题目的解题思路主要是根据已知条件,运用几何知识和性质来推导出结论。

在解析几何的学习过程中,学生应该注重培养逻辑思维能力和数学运算能力,多进行几何图形的分析和推理,提高解题的能力和速度。

在解析几何的学习过程中,还需要注意以下几点:1、熟练掌握基本几何知识和性质,包括直线、角、三角形、四边形等几何图形的性质和计算方法。

2、善于画图分析,对于解析几何题目一定要画出清晰准确的图形,以便更直观地理解题意和计算。

3、多练习典型题目,通过多做题目来积累经验,查漏补缺,加深对解析几何知识的理解。

4、注意总结归纳,将解析几何的各种题目和性质进行分类和总结,形成自己的知识体系。

高中解析几何是一个非常重要的学科,学生在学习过程中要认真对待,多加练习,提高理解能力和解题能力,从而取得更好的学习成绩。

数学一轮总复习平面解析几何的解法技巧

数学一轮总复习平面解析几何的解法技巧

数学一轮总复习平面解析几何的解法技巧在数学一轮总复习的过程中,平面解析几何是一个重要的内容。

平面解析几何涉及到点、直线、圆等几何图形与坐标之间的关系,通过采用坐标系和代数运算方法来解决几何问题。

本文将介绍平面解析几何的解法技巧,以帮助同学们更好地应对考试。

一、平面解析几何基本概念复习在开始解析几何的问题之前,我们需要对平面解析几何的基本概念进行复习。

1. 坐标系:平面直角坐标系由两条相互垂直的数轴x轴和y轴构成,其中原点为坐标系的交点,通常表示为O(0,0)。

x轴和y轴的正向分别向右和向上延伸,形成四个象限。

2. 点的坐标:在平面直角坐标系中,点P的坐标表示为P(x,y),其中x表示点在x轴上的投影,y表示点在y轴上的投影。

3. 直线的方程:直线的方程有多种形式,常见的有一般式和斜截式。

一般式方程表示为Ax + By + C = 0,斜截式方程表示为y = kx + b,其中A、B、C、k和b为常数。

4. 圆的方程:圆的方程表示为(x - a)² + (y - b)² = r²,其中(a,b)表示圆心的坐标,r表示圆的半径。

二、平面解析几何解法技巧在解决平面解析几何问题时,我们可以采取以下的解法技巧。

1. 利用直线的性质解题:在平面解析几何中,直线是一个重要的概念。

我们可以根据直线的性质,例如平行、垂直、相交等来解题。

例如,当我们需要证明两条直线平行时,可以比较两条直线的斜率是否相等。

当我们需要判断两条直线是否相交时,可以比较两条直线的方程是否有解。

2. 利用圆的性质解题:圆是平面解析几何中常见的几何图形之一,我们可以根据圆的性质来解题。

例如,当我们求两个圆的交点时,可以将两个圆的方程联立,并求解方程组来找到交点的坐标。

3. 利用坐标系解题:在平面解析几何中,坐标系是非常重要的工具。

我们可以通过建立坐标系,将几何图形转化为代数表达式,从而用代数运算来解决几何问题。

例如,当我们需要证明一个点在一条直线上时,可以通过代入点的坐标到直线的方程中,判断等式是否成立。

解析几何例题

解析几何例题

解析几何例题解析几何是数学中的一个重要分支,它研究的是几何图形在坐标平面上的性质和变换规律。

通过解析几何的方法,我们可以更加直观地理解和推导几何图形的性质。

下面我们来分析一些典型的解析几何例题,以便更好地掌握这一知识点。

例题一:直线的方程已知直线L过点A(1,2)和点B(3,4),求直线L的方程。

解析:设直线L的方程为y=ax+b,其中a为斜率,b为截距。

由于直线L 过点A和点B,代入相应的点坐标得到两个方程:2=a+b (1)4=3a+b (2)解这个方程组,可以求得a=1/2,b=3/2。

所以直线L的方程为y=x/2+3/2。

例题二:直线的垂直平分线已知直线L的方程为y=2x+1,求直线L的垂直平分线的方程。

解析:直线L的斜率为2,垂直平分线的斜率为-1/2(斜率互为倒数且符号相反),设垂直平分线的方程为y=ax+b。

由于垂直平分线过直线L的中点M,求中点M的坐标。

直线L上任意两点的横坐标和纵坐标分别求平均,得到中点M的坐标为:x=(1+3)/2=2,y=(2+4)/2=3。

代入直线L的方程,得到3=2*2+1=5,所以点M的坐标为(2,3)。

垂直平分线通过点M,代入点坐标得到方程:3=a*2+b,所以b=1-4a。

垂直平分线的方程为y=-1/2*x+1-2a。

例题三:圆的方程已知圆C的圆心为点O(2,3),半径为r=4,求圆C的方程。

解析:圆C上任意一点P(x,y)到圆心O的距离等于半径r,可以得到方程:sqrt((x-2)^2+(y-3)^2)=4对上式进行平方处理得到:(x-2)^2+(y-3)^2=16所以圆C的方程为(x-2)^2+(y-3)^2=16。

例题四:两条直线的交点已知直线L1的方程为y=2x+1,直线L2的方程为y-3=3(x-2),求直线L1和L2的交点坐标。

解析:将直线L2的方程变形为y=3x-3+3=3x,得到y=3x。

将L1的方程和L2的方程联立,解这个方程组即可求出交点的坐标。

平面解析几何试题 解析

平面解析几何试题 解析

平面解析几何1.(2020届安徽省“江南十校”高三综合素质检测)已知点P是双曲线2222:1(0,0,x y C a b c a b-=>>=上一点,若点P 到双曲线C 的两条渐近线的距离之积为214c ,则双曲线C 的离心率为()ABCD .2【答案】A【解析】设点P 的坐标为(,)m n ,有22221m n a b-=,得222222b m a n a b -=.双曲线的两条渐近线方程为0bx ay -=和0bx ay +=,则点P 到双曲线C的两条渐近线的距离之积为222222222b m a n a b a b c-==+,所以222214a b c c =,则22244()a c a c -=,即()22220c a -=,故2220c a -=,即2222c e a ==,所以e =.故选A 。

2.(2020届河南省濮阳市高三模拟)已知F 为抛物线y 2=4x 的焦点,过点F 且斜率为1的直线交抛物线于A ,B 两点,则||FA|﹣|FB||的值等于()A.B .8C.D .4【答案】C【解析】F (1,0),故直线AB 的方程为y =x ﹣1,联立方程组241y xy x ⎧=⎨=-⎩,可得x 2﹣6x+1=0,设A (x 1,y 1),B (x 2,y 2),由根与系数的关系可知x 1+x 2=6,x 1x 2=1.由抛物线的定义可知:|FA|=x 1+1,|FB|=x 2+1,∴||FA|﹣|FB||=|x 1﹣x 2|==,故选C 。

3.(2020届陕西省西安中学高三第一次模拟)已知椭圆C 的中心为原点O ,(F -为C 的左焦点,P 为C 上一点,满足||||OP OF =且||4PF =,则椭圆C 的方程为()A .221255x y +=B .2213616x y +=C .2213010x y +=D .2214525x y +=【答案】B【解析】由题意可得c=F′,由|OP|=|OF|=|OF′|知,∠PFF′=∠FPO ,∠OF′P=∠OPF′,所以∠PFF′+∠OF′P=∠FPO+∠OPF′,由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知,∠FPO+∠OPF′=90°,即PF ⊥PF′.在Rt △PFF′中,由勾股定理,得|PF′|=8=,由椭圆定义,得|PF|+|PF′|=2a=4+8=12,从而a=6,得a 2=36,于是b 2=a 2﹣c 2=36﹣=16,所以椭圆的方程为2213616x y +=,故选B 。

平面解析几何初步

平面解析几何初步

平面解析几何初步解析几何是几何学和代数学的交叉领域,它研究平面内的点、线、圆等形状及其相互关系,利用代数方法进行分析和计算。

在平面解析几何中,我们将重点讨论直线、圆和二次曲线及其性质。

本文将介绍平面解析几何的基本概念和常见问题,以及一些解题技巧。

一、直线的方程在平面解析几何中,直线是最基本的几何元素之一。

一条直线可以由其上的两个点确定,我们可以通过计算斜率和截距来表示直线的方程。

直线的方程有多种形式,常见的有点斜式和截距式。

1. 点斜式方程点斜式方程形如 y-y₁ = k(x-x₁),其中 (x₁, y₁) 是直线上的一点,k 是直线的斜率。

通过给定一点和斜率,我们可以轻松写出直线的方程。

例如,已知直线上的点 A(2,3) 和斜率 k=2,我们可以得到直线的点斜式方程为 y-3=2(x-2)。

点斜式方程的优点在于直接给出了直线的一般形式,但不适用于垂直于 x 轴的直线。

对于垂直于 x 轴的直线,我们可以使用斜截式。

2. 截距式方程斜截式方程形如 y=mx+b,其中 m 是直线的斜率,b 是直线在 y 轴上的截距。

斜截式方程适用于所有类型的直线,包括垂直于 x 轴的直线。

例如,有一条直线经过点 B(3,4) 且斜率为 1/2,我们可以得到直线的斜截式方程为 y=(1/2)x+2。

二、圆的方程圆是解析几何中的另一个重要概念,它由平面上与固定点的距离等于常数的点构成。

在平面解析几何中,圆的方程一般形式为 (x-a)² + (y-b)² = r²,其中 (a,b) 是圆的圆心坐标,r 是圆的半径。

根据圆的方程,我们可以计算圆心和半径,以及圆上的点。

例如,对于方程 (x-2)² + (y+3)² = 9,我们可以得到圆的圆心坐标为 (2,-3),半径为 3。

利用这些信息,我们可以描绘出圆的几何形状。

三、二次曲线的方程除了直线和圆,二次曲线也是平面解析几何中的重要对象。

高一数学平面解析几何初步试题答案及解析

高一数学平面解析几何初步试题答案及解析

高一数学平面解析几何初步试题答案及解析1.设A(3,3,1),B(1,0,5),C(0,1,0),AB的中点M,则A.B.C.D.【答案】C【解析】先求得M(2,,3)点坐标,利用两点间距离公式计算得,故选C。

【考点】本题主要考查空间直角坐标系的概念及空间两点间距离公式的应用。

点评:简单题,应用公式计算。

2.已知ABCD为平行四边形,且A(4,1,3),B(2,-5,1),C(3,7,-5),则点D 的坐标为A.(,4,-1)B.(2,3,1)C.(-3,1,5)D.(5,13,-3)【答案】D【解析】设D的坐标为(x,y,z)。

AC的中点和BD的中点重合,所以有x+2=4+3,y-5=1+7,z+1=3-5所以,x="5," y="13," z=-3,D的坐标为(5,13,-3),故选D。

【考点】本题主要考查空间直角坐标系的概念及两点间距离公式的应用。

点评:本题解法利用了平行四边形的性质,也可利用向量知识。

3.点到坐标平面的距离是A.B.C.D.【答案】C【解析】点在坐标平面的正投影为,所以点到坐标平面的距离是,故选C。

【考点】本题主要考查空间直角坐标系的概念及两点间距离公式的应用。

点评:认识到点在坐标平面的正投影为,结合图形分析。

4.已知点,,三点共线,那么的值分别是A.,4B.1,8C.,-4D.-1,-8【答案】C【解析】因为点,,三点共线,=(3,4,-8),=(x-1,y+2,4),所以,,故选C。

【考点】本题主要考查空间直角坐标系的概念及其应用。

点评:利用空间向量知识,简化解题过程。

5.在空间直角坐标系中,一定点到三个坐标轴的距离都是1,则该点到原点的距离是A.B.C.D.【答案】A【解析】依题意,构建正方体。

即求棱长为的正方体对角线长,计算得,故选A。

【考点】本题主要考查空间直角坐标系的概念及其应用。

点评:根据几何体的特征,认识点的坐标。

6.(12分)如图,长方体中,,,,设E为的中点,F为的中点,在给定的空间直角坐标系D-xyz下,试写出A,B,C,D,,,,,E,F各点的坐标.【答案】A(3,0,0),B(3,5,0),C(0,5,0),D(0,0,0);(3,0,3),(3,5,3),(0,5,3),(0,0,3); E();F(,5,)。

高中数学典型例题解析平面解析几何【精选文档】

高中数学典型例题解析平面解析几何【精选文档】

第七章平面解析几何初步§7。

1直线和圆的方程一、知识导学1.两点间的距离公式:不论A(1,1),B(2,2)在坐标平面上什么位置,都有d=|AB|=,特别地,与坐标轴平行的线段的长|AB|=|2-1|或|AB|=|2-1|.2.定比分点公式:定比分点公式是解决共线三点A(1,1),B(2,2),P(,)之间数量关系的一个公式,其中λ的值是起点到分点与分点到终点的有向线段的数量之比。

这里起点、分点、终点的位置是可以任意选择的,一旦选定后λ的值也就随之确定了.若以A为起点,B为终点,P为分点,则定比分点公式是。

当P点为AB的中点时,λ=1,此时中点坐标公式是。

3.直线的倾斜角和斜率的关系(1)每一条直线都有倾斜角,但不一定有斜率.(2)斜率存在的直线,其斜率与倾斜角α之间的关系是=tanα.4.确定直线方程需要有两个互相独立的条件。

直线方程的形式很多,但必须注意各种形式的直线方程的适用范围。

5.两条直线的夹角.当两直线的斜率,都存在且·≠—1时,tanθ=,当直线的斜率不存在时,可结合图形判断.另外还应注意到:“到角”公式与“夹角”公式的区别.6.怎么判断两直线是否平行或垂直?判断两直线是否平行或垂直时,若两直线的斜率都存在,可以用斜率的关系来判断;若直线的斜率不存在,则必须用一般式的平行垂直条件来判断。

(1)斜率存在且不重合的两条直线1∶,2∶,有以下结论:①1∥2=,且b1=b2②1⊥2·= —1(2)对于直线1∶,2∶,当1,2,1,2都不为零时,有以下结论:①1∥2=≠②1⊥212+12 = 0③1与2相交≠④1与2重合==7.点到直线的距离公式.(1)已知一点P()及一条直线:,则点P到直线的距离d=;(2)两平行直线1:,2:之间的距离d=.8.确定圆方程需要有三个互相独立的条件。

圆的方程有两种形式,要知道两种形式之间的相互转化及相互联系(1)圆的标准方程:,其中(,b)是圆心坐标,是圆的半径;(2)圆的一般方程:(>0),圆心坐标为(-,—),半径为=.二、疑难知识导析1.直线与圆的位置关系的判定方法.(1)方法一直线:;圆:.一元二次方程(2)方法二直线:;圆:,圆心(,b)到直线的距离为d=2.两圆的位置关系的判定方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面解析几何初步§7.1直线和圆的方程经典例题导讲[例1]直线l 经过P (2,3),且在x,y 轴上的截距相等,试求该直线方程. 解:在原解的基础上,再补充这样的过程:当直线过(0,0)时,此时斜率为:230203=--=k , ∴直线方程为y=23x 综上可得:所求直线方程为x+y-5=0或y=23x . [例2]已知动点P 到y 轴的距离的3倍等于它到点A(1,3)的距离的平方,求动点P 的轨迹方程.解: 接前面的过程,∵方程①化为(x-52 )2+(y-3)2 = 214 ,方程②化为(x+12 )2+(y-3)2= - 34 ,由于两个平方数之和不可能为负数,故所求动点P 的轨迹方程为: (x-52 )2+(y-3)2= 214 (x ≥0)[例3]m 是什么数时,关于x,y 的方程(2m 2+m-1)x 2+(m 2-m+2)y 2+m+2=0的图象表示一个圆?解:欲使方程Ax 2+Cy 2+F=0表示一个圆,只要A=C ≠0,得2m 2+m-1=m 2-m+2,即m 2+2m-3=0,解得m 1=1,m 2=-3,(1) 当m=1时,方程为2x 2+2y 2=-3不合题意,舍去.(2) 当m=-3时,方程为14x 2+14y 2=1,即x 2+y 2=114,原方程的图形表示圆.[例4]自点A(-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射光线所在直线与圆x 2+y 2-4x-4y+7=0相切,求光线L 所在的直线方程.解:设反射光线为L ′,由于L 和L ′关于x 轴对称,L 过点A(-3,3),点A 关于x 轴的对称点A ′(-3,-3), 于是L ′过A(-3,-3).设L ′的斜率为k ,则L ′的方程为y-(-3)=k [x-(-3)],即kx-y+3k-3=0,已知圆方程即(x-2)2+(y-2)2=1,圆心O 的坐标为(2,2),半径r =1 因L ′和已知圆相切,则O 到L ′的距离等于半径r =1即11k 5k 51k 3k 32k 222=+-=+-+-整理得12k 2-25k+12=0解得k =34或k =43 L ′的方程为y+3=34(x+3);或y+3=43(x+3)。

即4x-3y+3=0或3x-4y-3=0因L 和L ′关于x 轴对称故L 的方程为4x+3y+3=0或3x+4y-3=0.[例5]求过直线042=+-y x 和圆014222=+-++y x y x 的交点,且满足下列条件之一的圆的方程:(1) 过原点;(2)有最小面积.解:设所求圆的方程是:()04214222=+-++-++y x y x y x λ 即:()()04122222=+++-+++λλλy x y x (1)因为圆过原点,所以041=+λ,即41-=λ 故所求圆的方程为:0274722=-++y x y x . (2) 将圆系方程化为标准式,有:()545245222222+⎪⎭⎫ ⎝⎛+=--+⎪⎭⎫ ⎝⎛++λλλy x当其半径最小时,圆的面积最小,此时52-=λ为所求. 故满足条件的圆的方程是54585422=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+y x .[例6](06年辽宁理科)已知点A(11,y x ),B(22,y x )(21x x ≠0)是抛物线)0(22>=p px y 上的两个动点,O 是坐标原点,向量,满足|+|=|-|.设圆C 的方程为0)()(212122=+-+-+y y y x x x y x (1)证明线段AB 是圆C 的直径;(2)当圆C 的圆心到直线02=-y x 的距离的最小值为552时,求p 的值. 解:(1)证明 ∵|OB OA +|=|OB OA -|,∴(OB OA +)2=(OB OA -)2, 整理得:⋅=0 ∴21x x +21y y =0设M (y x ,)是以线段AB 为直径的圆上的任意一点,则⋅=0 即 ))((21x x x x --+))((21y y y y --=0 整理得:0)()(212122=+-+-+y y y x x x y x 故线段AB 是圆C 的直径.(2)设圆C 的圆心为C (y x ,),则⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x∵1212px y =,)0(2222>=p px y∴22221214py y x x =又∵21x x +21y y =0 ,21x x =-21y y∴-21y y 222214py y =∵21x x ≠0,∴21y y ≠0 ∴21y y =-42p2121222122212141)2(41)(412y y py y y y p y y p x x x -++=+=+==)2(122p y p+ 所以圆心的轨迹方程为222p px y -= 设圆心C 到直线02=-y x 的距离为d,则=pp p y y p y py x 5|)(|5|2)2(1|5|2|2222+-=-+=-当y =p 时,d有最小值5p ,由题设得5p =552 ∴p =2.圆锥曲线经典例题导讲[例1]设双曲线的渐近线为:x y 23±=,求其离心率. 解:由双曲线的渐近线为x y 23±=是不能确定焦点的位置在x 轴上的,当焦点的位置在y 轴上时,32=a b ,故本题应有两解,即: 213122=+==ab ac e 或313.[例2]设点P(x,y)在椭圆4422=+y x 上,求y x +的最大、最小值.剖析:本题中x 、y 除了分别满足以上条件外,还受制约条件4422=+y x 的约束.当x=1时,y 此时取不到最大值2,故x+y 的最大值不为3.其实本题只需令θθsin 2,cos ==y x ,则)sin(5sin 2cos ψθθθ+=+=+y x ,故其最大值为5,最小值为5-. [例3]已知双曲线的右准线为4=x ,右焦点)0,10(F ,离心率2=e ,求双曲线方程. 解法一: 设),(y x P 为双曲线上任意一点,因为双曲线的右准线为4=x ,右焦点)0,10(F ,离心率2=e ,由双曲线的定义知.2|4|)10(22=-+-x y x 整理得.14816)2(22=--yx 解法二: 依题意,设双曲线的中心为)0,(m ,则 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==+=+.21042acm c m c a 解得 ⎪⎩⎪⎨⎧===.284m c a ,所以 ,481664222=-=-=a c b故所求双曲线方程为.14816)2(22=--y x [例4]设椭圆的中心是坐标原点,长轴x 在轴上,离心率23=e ,已知点)23,0(P 到这个椭圆上的最远距离是7,求这个椭圆的方程. 解:若21<b ,则当b y -=时,2d (从而d )有最大值. 于是,)23()7(22+=b 从而解得矛盾与21,21237<>-=b b .所以必有21≥b ,此时当21-=y 时,2d (从而d )有最大值,所以22)7(34=+b ,解得.4,122==a b于是所求椭圆的方程为.1422=+y x [例5]从椭圆12222=+by a x ,(a >b>0)上一点M 向x 轴所作垂线恰好通过椭圆的左焦点F 1,A 、B 分别是椭圆长、短轴的端点,AB ∥OM 设Q 是椭圆上任意一点,当QF 2⊥AB 时,延长QF 2与椭圆交于另一点P ,若⊿F 1PQ 的面积为203,求此时椭圆的方程解:本题可用待定系数法求解∵b=c, a =2c ,可设椭圆方程为22222=+cy c x∵PQ ⊥AB,∴k PQ =-21==bak AB ,则PQ 的方程为y=2(x-c), 代入椭圆方程整理得5x 2-8cx+2c 2=0, 根据弦长公式,得c PQ 526=, 又点F 1到PQ 的距离d=362 c ∴==∆d PQ S PQ F 2112534c ,由,2532053422==c c ,得 故所求椭圆方程为1255022=+y x [例6]已知椭圆:1922=+y x,过左焦点F 作倾斜角为6π的直线交椭圆于A 、B 两点,求弦AB 的长解:a=3,b=1,c=22; 则F (-22,0)由题意知:)22(31:+=x y l 与1922=+y x 联立消去y 得: 01521242=++x x设A (),11y x 、B (),22y x ,则21,x x 是上面方程的二实根,由违达定理,2321-=+x x41521=⋅x x ,223221-=+=x x x M 又因为A 、B 、F 都是直线l 上的点,所以|AB|=21518324)(32||3112122121=-=-+⋅=-⋅+x x x x x x点评:也可利用“焦半径”公式计算[例7](06年全国理科)设P 是椭圆)1(1222>=+a y ax 短轴的一个端点,Q 为椭圆上的一个动点,求|PQ |的最大值.解: 依题意可设P (0,1),Q (y x ,),则|PQ |=22)1(-+y x ,又因为Q 在椭圆上,所以,)1(222y a x -=,|PQ |2=12)1(222+-+-y y y a =22212)1(a y y a ++--=22222111)11)(1(a aa y a -+-----. 因为||y ≤1,a >1,若a ≥2,则|11|2a -≤1,当211ay -=时,|PQ |取最大值11222--a a a ;若1<a <2,则当1-=y 时,|PQ |取最大值2.[例8]已知双曲线的中心在原点,过右焦点F (2,0)作斜率为53的直线,交双曲线于M 、N 两点,且MN =4,求双曲线方程解:设所求双曲线方程为)0,0(12222>>=-b a by a x ,由右焦点为(2,0)知C=2,b 2=4-a 2则双曲线方程为142222=--a y a x ,设直线MN 的方程为:)2(53-=x y ,代入双曲线方程整理得:(20-8a 2)x 2+12a 2x+5a 4-32a 2=0设M (x 1,y 1),N(x 2,y 2),则222182012a a x x --=+, 22421820a x x -=∴ ()212124531x x x x MN -+⋅⎪⎪⎭⎫⎝⎛+=482032548201258224222=--⋅-⎪⎪⎭⎫ ⎝⎛--⋅=a a a a a 解得 12=a ,142=-=∴b故所求双曲线方程为:322=-y x 点、直线和圆锥曲线经典例题导讲[例1]求过点)1,0(的直线,使它与抛物线x y 22=仅有一个交点.解: ①当所求直线斜率不存在时,即直线垂直x 轴,因为过点)1,0(,所以,0=x 即y 轴,它正好与抛物线x y 22=相切.②当所求直线斜率为零时,直线为y = 1平行x 轴,它正好与抛物线x y 22=只有一个交点.③一般地,设所求的过点)1,0(的直线为1+=kx y )0(≠k ,则⎩⎨⎧=+=x y kx y 212, ∴.01)22(22=+-+x k x k 令,0=∆解得k = 12 ,∴ 所求直线为.121+=x y 综上,满足条件的直线为:.121,0,1+===x y x y [例2]已知曲线C :2202x y -=与直线L :m x y +-=仅有一个公共点,求m 的范围. 解:原方程的对应曲线应为椭圆的上半部分.(如图),形易求得m 的范围为52525<<-=m m 或.注意:在将方程变形时应时时注意范围的变化,错.[例3]已知A 、B 是圆122=+y x 与x 轴的两个交点,直于AB 的动弦,直线AC 和DB 相交于点P 定点E 、F, 使 | | PE |-| PF | | F 的坐标;若不存在,请说明理由.解:由已知得 A (-1, 0 )、B ( 1, 0 ),设 P ( x, y ), C ( 00,y x ) , 则 D (00,y x - 由A 、C 、P 三点共线得 1100+=+x y x y① 由D 、B 、P 三点共线得1100--=-x y x y② ①×② 得 11202022--=-x y x y ③又 12020=+y x , ∴20201x y -=, 代入③得 122=-y x ,即点P 在双曲线122=-y x 上, 故由双曲线定义知,存在两个定点E (-2, 0 )、F (2, 0 )(即此双曲线的焦点),使 | | PE |-| PF | | = 2 (即此双曲线的实轴长为定值).[例4]已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y=x+1 与该椭圆相交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆的方程. 解:设所求椭圆的方程为2222by a x +=1.依题意知,点P 、Q 的坐标满足方程组:⎪⎩⎪⎨⎧+==+② ① 1x y 1by a x 2222 将②代入①,整理得0)1(2)(222222=-+++b a x a x b a , ③设方程③的两个根分别为1x 、2x ,则直线y=x+1和椭圆的交点为P(1x ,1x +1),Q(2x ,2x +1)由题设OP ⊥OQ ,|OP |=210,可得 ⎪⎪⎩⎪⎪⎨⎧=+-++--=+⋅+22122122211)210()]1()1[()(111x x x x x x x x整理得⎩⎨⎧=--+=+++ ② ①0516)(4012)(212212121x x x x x x x x解这个方程组,得⎪⎪⎩⎪⎪⎨⎧-=+=23412121x x x x 或 ⎪⎪⎩⎪⎪⎨⎧-=+-=21412121x x x x 根据根与系数的关系,由③式得(1)⎪⎪⎩⎪⎪⎨⎧=+-=+41)1(2322222222b a b a b a a 或 (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=+41)1(2122222222b a b a b a a解方程组(1)、(2)得⎪⎩⎪⎨⎧==32222b a 或⎪⎩⎪⎨⎧==23222b a故所求椭圆方程为32222y x + =1 , 或23222y x + =1.[例5](06年高考湖南)已知椭圆C 1:3422y x +=1,抛物线C 2:)0(2)(2>=-p px m y ,且C 1、C 2的公共弦AB 过椭圆C 1的右焦点。

相关文档
最新文档