系统辨识内容与要求

合集下载

系统辨识

系统辨识

1. 模型与系统1)模型:把关于实际系统的本质的部分信息简缩成有用的描述形式。

它用来描述系统的运动规律,是系统的一种客观写照或缩影,是分析、预报、控制系统行为的有力工具。

模型是实体的一种简化描述。

模型保持实体的一部分特征,而将其它特征忽略或者变化。

不同的简化方法得到不同的模型。

2)系统:有些书里也称为过程,按某种相互依赖关系联系在一起的客体的集合。

本身的含义是比较广泛的,可以指某个工程系统、某个生物学系统,也可以指某个经济的或社会的系统。

这里所研究的“对象”是抽象的,重要的是其输入、输出关系。

2. 残差和新息1)新息(输出预报误差):是过程输出预报值与实测值之间的误差。

(P13)过程输出预报值: 输出预报误差: 过程输出量: 2)残差:是滤波估计值和实测值之差。

3. 系统可辨识的条件最小二乘方法满足开环可辨识条件;激励信号是持续激励,阶次至少要(na+nb+1)阶。

可辨识条件:为了辨识动态系统,激励信号u 必须在观测的周期内对系统的动态持续地激励。

满足辨识对激励信号最起码的要求的持续激励信号应具备的条件,称“持续激励条件”。

4. 建立数学模型1)建立方法:①理论分析法:机理法或理论建模,“白箱”问题②测试法:系统辨识,“黑箱”问题③两者结合:“灰箱”理论问题2)基本原则:①目的性-明确建模的目的,如控制、预测等。

因为不同的建模目的牵涉到的建模方法可能不同,它也将决定对模型的类型、精度的要求。

②实在性-模型的物理概念要明确。

③可辨识性-模型的结构要合理,输入信号必须是持续激励的;另外数据要充足。

④节省性-待辨识的模型参数个数要尽可能地少。

以最简单的模型表达所描述的对象特征。

5. 辨识:就是在输入和输出数据的基础上,从一组给定的模型类中,确定一个与所测系统等价的模型。

1)试验设计:包括输入信号(幅度、频带等)、采样时间、辨识时间(数据长度)、开环或闭环辨识、离线或在线辨识(P19)目的:使采集到的数据序列尽可能多地包含过程特性的内在信息。

兰交课件系统辨识 第2章(输入信号的设计与选择)

兰交课件系统辨识 第2章(输入信号的设计与选择)
0
(2.3.9)
系统辨识模拟方块图如图2.5所示。由于x(t)和 不相关,故 和 不相关,积分器输出 为 。(相关法)
相关法的优缺点:
优点: 不要求系统严格地处于稳定状态 输入的白噪声对系统的正常工作影响不大 对系统模型不要求验前知识 缺点: 噪声的非平稳会影响辨识精度 用白噪声作为输 入 信号时要求较长的观测时 间
( i 6)
i 1 12
(2.2.21)
(2)变换抽样法:设 均匀分布随机变量,则
是2个互相独立的(0,1)
1 2 1 ( 2 ln 1 ) cos 22 1 2 (2 ln 1 ) 2 sin 22
是相互独立、服从N(0,1)分布的随机变量。
交换律
分配律
0
1 1
1
0 1
1
1 0
2.3.2 M序列的产生

设有一无限长的二元序列x1 x2 … xp xp+1 …
x i a1 x i 1 a 2 x i 2 a p x i p


i=p+1,p+2,…
a1,a2,…ap-1取值为0或1;系数ap为1
)
采用极大似然法辨识时,如果辨识方法使得 模型参数的估计值是渐近有效的,最优输入信号 就是使Fisher信息矩阵的逆达到最小的一个标量函 数。这个标量函数可以作为评价模型精度的度量 函数,记作
J (M
1
)
(2.1.1)
T
Mθ是Fisher信息矩阵,且
ln L ln L M E y| (2.1.2)
2.2.2 白噪声序列

系统辨识中的实际问题

系统辨识中的实际问题

第四章 系统辨识中的实际问题§4 —1 辨识的实验设计一、系统辨识的实验信号实验数据是辨识的基础,只有高质量的数据才能得出良好的数学模型,而且实验数据如果不能满足起码的要求,辨识根本得不出解。

系统辨识学科是在数理统计的时间序列分析的基础上发展起来的,两者的区别在于系统辨识的对象存在着人为的激励(控制)作用,而时序分析则没有。

因此,前者能通过施加激励信号u(k)达到获得较好辩识结果的目的(即实验信号的设计),而后者不能。

(一)系统辨识对实验信号的最起码的要求 为了辨识动态系统,激励信号u 必须在观测的周期内对系统的动态持续地激励。

满足辨识对激励信号最起码的要求的持续激励信号应具备的条件称“持续激励条件”,分以下四种情况讨论: 1. 连续的非参数模型辨识(辩识频率特性)如果系统通频带的上下限为 ωmin ≤ ω ≤ ωmax ,要求输入信号的功率密度谱在此范围内不等于零。

)()()}({)}({)(ωωωj U j Y t u F t y F j G ==2. 连续的参数模型辨识 被辩识的连续传函为,共包含(m+n+1)个参数对于u(t)的每一个频率成分ωi 的谐波,对应的频率响应有一个实部R(ωi )和一个虚部Im(ωi ),由此对应两个关系式(方程),能解出两个未知参数。

因此,为辩识(m+n+1)个参数,持续激励信号至少应包含:j ≥( m+n+1 )/2 个不同的频率成分。

3. 离散的脉冲响应 g(τ)的辨识g(τ) ;τ = 0,1,..m ,假设过程稳定,当 τ > m 时 g(τ)= 0 。

由维纳—何甫方程有:R uy (τ )=∑ g(σ)R uu (τ - σ) 式(4-1-1)由上式得出(m+1)个方程的方程组:上式表达成矩阵形式φuy = φuu G 式(4-1-2) 可解出 G = φuu -1 φuy 式(4-1-3)G s b b s b s a s a s m mn n ()=++++++0111R R R m R R R m R R R m R m R m R g g g m uy uy uy uu uu uu uu uu uu uu uu uu ()()()()()()()()()()()()()()()010********⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥=----⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⋅⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥G = [ g(0),…,g(m) ]T 有解的条件是:如果所有的输出自相关函数式(4-1-4)都存在,且方阵φuu 非奇异, 即det φuu ≠ 0 。

系统辨识的目的、三要素以及应用

系统辨识的目的、三要素以及应用

系统辨识目的及三要素
1.系统辨识的目的
➢明确模型应用的最终目的是很重要的,因为它将决定如何观测数据、如何选择三要素以及采用什么数据拟合方法等.而最根本的是它将影响辨
识结果.
➢辨识目的主要取决于模型的应用。

2.系统辨识的三要素
➢数据:由观测实体而得。

不唯一,受观测时间、观测目的、观测手段等影响。

➢模型类:规定了模型的形式。

不唯一,受辨识目的、辨识方法等影响。

➢准则:规定了模型与实体等价的评判标准.不唯一,受辨识目的、辨识方法等影响.
➢系统辨识的三要素是评判数据拟合方法优劣的必要条件,只有在相同的三要素下,才可区分数据拟合方法的优劣;而在不同的三要素下,这种
结论也会改变。

如图1所示.
图1系统辨识三要素
3.系统辨识的应用
➢验证理论模型;要求:零极点、结构(阶次及时延)、参数都准确;模型类同理论模型。

➢设计常规控制器;要求:动态响应特性、零极点、时延准确;便于分析
的模型类。

➢设计数字控制器;要求:动态响应特性、时延准确;便于计算机运算的模型类.
➢设计仿真/训练系统;要求:动态响应特性准确;便于模拟实现的模型类。

➢预报预测;要求:动态响应特性、时延准确;便于计算机运算的模型类。

➢监视过程参数,实现故障诊断;要求:参数准确;能直观体现被监视过程参数的模型类。

➢系统的定量与定性分析;要求:静态关系准确;模型简单,便于人脑判断。

系统辨识—最小二乘法

系统辨识—最小二乘法

最小二乘法参数辨识1 引言系统辨识是根据系统的输入输出时间函数来确定描述系统行为的数学模型。

现代控制理论中的一个分支。

通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。

对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。

对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。

而系统辨识所研究的问题恰好是这些问题的逆问题。

通常,预先给定一个模型类μ={M}(即给定一类已知结构的模型),一类输入信号u和等价准则J=L(y,yM)(一般情况下,J是误差函数,是过程输出y和模型输出yM的一个泛函);然后选择使误差函数J达到最小的模型,作为辨识所要求的结果。

系统辨识包括两个方面:结构辨识和参数估计。

在实际的辨识过程中,随着使用的方法不同,结构辨识和参数估计这两个方面并不是截然分开的,而是可以交织在一起进行的。

2 系统辨识的目的在提出和解决一个辨识问题时,明确最终使用模型的目的是至关重要的。

它对模型类(模型结构)、输入信号和等价准则的选择都有很大的影响。

通过辨识建立数学模型通常有四个目的。

①估计具有特定物理意义的参数有些表征系统行为的重要参数是难以直接测量的,例如在生理、生态、环境、经济等系统中就常有这种情况。

这就需要通过能观测到的输入输出数据,用辨识的方法去估计那些参数。

②仿真仿真的核心是要建立一个能模仿真实系统行为的模型。

用于系统分析的仿真模型要求能真实反映系统的特性。

用于系统设计的仿真,则强调设计参数能正确地符合它本身的物理意义。

③预测这是辨识的一个重要应用方面,其目的是用迄今为止系统的可测量的输入和输出去预测系统输出的未来的演变。

例如最常见的气象预报,洪水预报,其他如太阳黑子预报,市场价格的预测,河流污染物含量的预测等。

预测模型辨识的等价准则主要是使预测误差平方和最小。

系统辨识步骤及内容

系统辨识步骤及内容

系统辨识步骤及内容系统辨识是研究如何用实验研究分析的办法来建立待求系统数学模型的一门学科。

Zadeh(1962)指出:“系统辨识是在输入和输出数据的基础上,从一类模型中确定一个与所观测系统等价的模型”。

Ljung(1978)也给出如下定义:“系统辨识有三个要素——数据、模型类和准则,即根据某一准则,利用实测数据,在模型类中选取一个拟合得最好的模型”。

实际上,系统的数学模型就是对该系统动态本质的一种数学描述,它向人们提示该实际系统运行中的有关动态信息。

但系统的数学模型总比真实系统要简单些,因此,它仅是真实系统降低了复杂程度但仍保留其主要特征的一种近似数学描述。

建立数学模型通常有两种方法,即机理分析建模和实验分析建模。

机理分析建模就是根据系统内部的物理和化学过程,概括其内部变化规律,导出其反映系统动态行为并表征其输入输出关系的数学方程(即机理模型)。

但有些复杂过程,人们对其复杂机理和内部变化规律尚未完全掌握(如高炉和转炉的冶炼过程等)。

因此,用实验分析方法获得表征过程动态行为的输入输出数据,以建立统计模型,实际上是系统辨识的主要方面,它可适用于任何结构的复杂过程。

系统辨识的主要步骤和内容有以下几个方面。

1、辨识目的根据对系统模型应用场合的不同,对建模要求也有所不同。

例如,对理论模型参数的检验及故障检测和诊断用的模型则要求建得精确些。

而对于过程控制和自适应控制等用的模型的精度则可降低一些,因为这类模型所关心的主要是控制效果的好坏,而不是所估计的模型参数是否收敛到真值。

2、验前知识验前知识是在进行辨识模型之前对系统机理和操作条件、建模目的等了解的统称。

有些场合为了获得足够的验前知识还要对系统进行一些预备性的实验,以便获得一些必要的系统参数,如系统中主要的时间常数和纯滞后时间,是否存在非线性,参数是否随时间变化,允许输入输出幅度和过程中的噪声水平等。

3、实验设计实验设计的主要内容是选择和决定:输入信号的类型、产生方法、引入点、采样周期、在线或离线辨识、信号的滤波等。

系统辨识—最小二乘法_3

系统辨识—最小二乘法_3

---------------------------------------------------------------最新资料推荐------------------------------------------------------系统辨识—最小二乘法最小二乘法参数辨识 1 引言系统辨识是根据系统的输入输出时间函数来确定描述系统行为的数学模型。

现代控制理论中的一个分支。

通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。

对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。

对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。

而系统辨识所研究的问题恰好是这些问题的逆问题。

通常,预先给定一个模型类={M}(即给定一类已知结构的模型),一类输入信号 u 和等价准则 J=L(y,yM)(一般情况下,J 是误差函数,是过程输出 y 和模型输出 yM 的一个泛函);然后选择使误差函数J 达到最小的模型,作为辨识所要求的结果。

系统辨识包括两个方面:结构辨识和参数估计。

在实际的辨识过程中,随着使用的方法不同,结构辨识和参数估计这两个方面并不是截然分开的,而是可以交织在一起进行的。

2 系统辨识的目的在提出和解决一个辨识问题时,明确最终使1 / 17用模型的目的是至关重要的。

它对模型类(模型结构)、输入信号和等价准则的选择都有很大的影响。

通过辨识建立数学模型通常有四个目的。

①估计具有特定物理意义的参数有些表征系统行为的重要参数是难以直接测量的,例如在生理、生态、环境、经济等系统中就常有这种情况。

这就需要通过能观测到的输入输出数据,用辨识的方法去估计那些参数。

②仿真仿真的核心是要建立一个能模仿真实系统行为的模型。

用于系统分析的仿真模型要求能真实反映系统的特性。

系统辨识最小二乘法

系统辨识最小二乘法

课 程 设 计 报 告学 院: 自动化学院 专业名称: 自动化 学生姓名: ** 指导教师: *** 时 间:2010年7月课程设计任务书一、设计内容SISO 系统的差分方程为:)()2()1()2()1()(2121k k u b k u b k z a k z a k z υ+-+-=-+-+参数取真值为:[]0.35 0.39 0.715 1.642=T θ,利用MATLAB 的M 语言辨识系统中的未知参数1a 、2a 、1b 、2b 。

二、主要技术要求用参数的真值及差分方程求出)(k z 作为测量值,)(k υ是均值为0,方差为0.1、0.5和0.01的不相关随机序列。

选取一种最小二乘算法利用MATLAB 的M 语言辨识参数。

三、进度要求2周(6月28日-7月11日)完成设计任务,撰写设计报告3000字以上,应包含设计过程、 计算结果、 图表等内容。

具体进度安排:◆ 6月28日,选好题目,查阅系统辨识相关最小二乘法原理的资料。

◆ 6月29日,掌握最小二乘原理,用MATLAB 编程实现最小二乘一次完成算法。

◆ 6月30日,掌握以最小二乘算法为基础的广义最小二乘递推算法。

◆ 7月1日,用MATLAB 编程实现广义最小二乘递推算法。

◆ 7月2日,针对题目要求进行参数辨识,并记录观察相关数据。

◆ 7月3日-7月5日,对参数辨识结果进行分析,找出存在的问题,提出改进方案,验证改进优化结果。

◆ 7月6日-7月7日,撰写课程设计报告。

◆ 7月8日,对课程设计报告进行校对。

◆ 7月9日,打印出报告上交。

学 生王景 指导教师 邢小军1. 设计内容设SISO 系统的差分方程为:)()2()1()2()1()(2121k k u b k u b k z a k z a k z υ+-+-=-+-+ 式(1-1)参数取真值为:[]0.35 0.39 0.715 1.642=Tθ,利用MATLAB 的M 语言辨识系统中的未知参数1a 、2a 、1b 、2b 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

系统辨识实验内容与要求
实验题目:三温区空间晶体生长炉温度系统建模
实验对象:三温区空间晶体生长炉
单晶体是现代电子设备制造技术的一个必不可少的部分,它应用广泛,如二极管、三极管等半导体器件都需要用到单晶体。

组分均匀(compositional uniformity)、结晶完整(crystallographic perfection)的高质量晶体材料是保证电子设备性能重要因素。

目前,单晶体制备主要靠晶体生长技术完成。

其主要过程是:首先在坩埚等加热器皿中对籽晶进行加热,使其由固相转变为液相或气相,再降低器皿中温度,使液相或气相的籽晶材料冷却结晶,就可得到最终的单晶体。

这个过程中,为保证晶体的组分均匀和结晶完整,必须使晶体内部各晶格的受力均匀。

因此,为减小重力对晶体生长的影响,研究者提出在空间微重力环境下进行晶体生长的方案。

我们研究的空间晶体生长炉就是该方案中的晶体加热设备。

我们研究的空间晶体生长炉采用熔体Bridgman生长方式,其结构如图1所示。

炉身由三部分构成:外筒、炉管以及炉管外部的隔热层。

炉管由多个加热单元组成,每个加热单元组成一个温区。

加热单元由导热性能良好的陶瓷材料制成,两个加热单元之间有隔热单元隔开。

加热单元的外测均匀缠绕加热电阻丝,内侧中间部位安装有测温热电偶。

炉管外部的隔热层由防辐射绝热材料制成。

微重力环境下,晶体内部各晶格之间的热应力是影响晶体生长质量的关键因素,而热应力是由炉内温场决定的。

因此,必须对晶体炉内各温区的温度进行控制,以构造一个具有一定的梯度的、满足晶体生长需要的温场。

工作时,将装有籽晶的安瓿管按一定的速度插入晶体炉炉膛内,通过控制流过各温区加热电阻丝的电流控制炉内温场,通过热电偶在线获取各温区的实时温度值,进行闭环控制,。

其中,流过电阻丝的电流通过PWM(脉宽调制)方式进行控制。

另外,由于晶体炉工作温度的变化范围比较大,传感器热电偶难以在全量程范围内保持很高的线性度,因此,使用的热电偶的电压读数与实际温度值间需要进行查表变换。

本实验内容是运用系统辨识的方法建立晶体炉中某个温区的动力学模型,辨识数据已给出,见SI_Data.xls文件。

热电耦
图1三温区空间晶体生长炉的结构图
实验步骤:
a) 试验设计
输入信号采用方波信号对系统进行激励,如下图所示:
脉宽(%
首先选择系统的工作点,然后控制系统的输入使系统到达工作点并处于稳态,记录此时的输入脉宽为N%,然后按上图所示的脉宽变化方法来激励系统,每次都要等系统过渡过程结束进入稳态后再改变脉宽。

b) 数据预处理(实测原始数据见文件SI_Data.xls ,第一列为系统的输出值,单位毫伏(MV ),第二
列为系统的输入值,单位百分比(%),采样周期为1秒)
通常,通过辨识实验收集的数据是不能直接用于辨识算法中的,这些数据中可能存在以下几种缺陷:
● 噪声
● 野点
需要进行的数据预处理方法:
● 野点剔除
● 数据归一化
● 低通滤波
c)模型阶次/结构选择:参数模型以及非参数模型,阶次以及纯时延的选择
d)参数估计:最好不要用matlab提供的函数,自己根据教材中相应算法的描述来写辨识代码,但可
以用Matlab提供的函数来粗略估计系统的参数
e)模型校验
在校验过程中,最好使用在模型估计中没有用到的数据序列
实验内容:
要求使用的辨识算法:
●批量最小二乘估计算法
●递推最小二乘估计算法
●渐消记忆递推最小二乘估计算法
●增广最小二乘法
●渐消记忆递推增广最小二乘估计算法
●广义最小二乘法(选做)
●相关辨识法(选做)
报告要求:
1.选择的系统模型类
2.辨识的原理,方法和公式
3.辨识的源程序
4.辨识结果
5.辨识结果和实际系统输出的偏差曲线
6.详细分析和比较所获得的参数辨识结果,说明所用参数辨识方法的优缺点。

相关文档
最新文档