3-5群的自同构群.
群的同构定理

群的同构定理在抽象代数中,群是一种具有代数结构的数学对象,它在数学领域中有着广泛的应用和重要地位。
对于群的研究,同构是一个重要的概念。
同构是指两个群之间存在一个一一对应的双射,其保持了两个群之间的运算结构。
在本文中,我们将探讨群的同构定理及其相关性质。
一、同构的定义和性质设G和H是两个群,若存在一个从G到H的双射f,且对于任意的元素a、b∈G,有f(ab)=f(a)f(b),则称这个双射f为从G到H的同构映射,记作G≅H。
若存在一个同构映射从G到H,则称G和H是同构的。
同构的基本性质如下:1. 同构是等价关系。
即同一个群与自身同构,若G≅H,则一定有H≅G;若G≅H,H≅K,则一定有G≅K。
2. 同构保持群的运算结构。
若G≅H,且a、b∈G,则f(a·b)=f(a)·f(b)。
3. 同构保持单位元。
若G≅H,且eG和eH分别为G和H的单位元,则f(eG)=eH。
4. 同构保持逆元。
若G≅H,且a∈G,则f(a⁻¹)=f(a)⁻¹。
二、下面我们介绍两个经典的群的同构定理。
1. 序号群同构定理设G是一个群,H是G的一个子群。
对于G中的任意元素a∈G,定义一个同态映射f:G→H,使得f(a)=aH。
则f是从G到H的一个同态映射,并且Ker(f)={a∈G | a∈H}是G的一个同态核。
根据同态核定理,G/Ker(f)≅H。
2. 基本同构定理设f:G→H是一个群之间的同态映射,其同态核为Ker(f)。
根据同态核定理,G/Ker(f)≅Im(f),即G除以同态核的商群与f(G)同构。
三、同构的应用群的同构是抽象代数中一个重要的研究对象,它在很多数学领域中有广泛的应用。
以下是一些同构的常见应用:1. 规范形式:通过寻找两个同构的群,可以将一个复杂的群转化为一个更简单的形式,从而更容易研究和理解。
2. 基于同构的证明:在证明中,可以通过寻找两个同构的群,将一个问题转化为另一个已知结论的证明,从而简化证明的难度。
幂零李代数的自同构群的结构

综合 以上运 算结果 得
[t lb ̄ + 3 3b ,1 l 2  ̄b2 + 4 4 bl + 226l + 4 4b2 + 2 + 3 3b2 ] X x x bx x x= x
6 12 3 6 1 3 4 b 1 1 3 b 1 1 4 62 + 2 一 2 一 3 , l l b b2 b2 x
,
bl b2 b3 b4 2 2 2 2
定 理 2 设 L是 特 征 为 0的代 数 闭域 上 的幂
4
A(1 2 3 4: ,2 ,4 , , , ) (1 3 ) X
零李 代 数 , 如果 的维数 等 于 3戈 , 是 £的一 , ,。
Ab t a t S r cu e f u o r h s g o p o o rd me s n l i oe t i le r s a e d s u s d s r c : t t r so t mo p im r u f we i n i a l t n e a g b a r ic s e u a l o n p L
文 献标 志码 : A
关键 词 : 幂零 李代 数 ; 自同构 ; 自同构 群
中图分 类号 : 5 . 01 25
S r c u e fa t m o p im r u fn l o e tl l e r s t u t r so u o r h s g o p o i tn eag b a p i
LAIXi- ig OU h - u , n xn , S i k n LUO h - h n S u z e
(aut o c ne Jagi nvri f cec n eh o g, azo 4 0 0 C ia F cl f i c,inx iesyo SineadT c nl y G nh u3 10 , hn ) y Se U t o
循环群的自同构群

循环群的自同构群循环群是群论中一类重要而特殊的群结构。
它具有很多有趣的性质和应用,其中一个重要的性质就是它的自同构群。
首先,我们需要了解什么是循环群。
循环群是由一个元素生成的群,该元素被称为生成元。
换句话说,循环群中的每个元素都可以通过不断进行群运算(加法或乘法)与生成元相乘来得到。
例如,整数集合Z和模n剩余类集合Zn都是循环群,它们的生成元分别是1和1~(mod n)。
循环群的元素可以被表示为幂的形式,例如在整数集合Z 中,对于一个生成元g,其幂运算可以表示为g^n。
循环群的自同构群指的是将循环群映射到自身且保持群运算的双射(双向一一对应)集合。
换句话说,自同构群是循环群的一种变换,其中变换之前和之后的群运算保持不变。
循环群的自同构群在群论研究中具有重要的地位。
首先,自同构群是研究循环群内部结构的重要工具。
通过研究循环群的自同构群,我们可以了解循环群的各种性质和结构,并且可以对循环群进行分类。
其次,循环群的自同构群对密码学中的安全性有着重要的影响。
在现代密码学中,循环群被广泛应用于构建安全性强大的加密算法,例如Diffie-Hellman密钥交换算法和椭圆曲线密码算法。
而自同构群则可以用于验证加密算法的安全性和强度。
循环群的自同构群可以分为两类:平凡自同构群和非平凡自同构群。
平凡自同构群是指将循环群的所有元素映射到它们自身的恒等映射。
换句话说,平凡自同构群保持循环群的原始结构不变。
而非平凡自同构群则是指存在一种映射,能够改变循环群的结构,例如将生成元映射到其他元素或改变群的性质。
在循环群的自同构群中,非平凡自同构群是研究的重点。
对于循环群Z,它的非平凡自同构群就是循环群Z*。
而对于循环群Zn,它的非平凡自同构群就是单位元素到自身的同余映射(自同构映射)。
这些非平凡自同构群在代数结构和密码学中有着重要的应用。
总结起来,循环群的自同构群是群论研究中的一个重要课题。
通过研究循环群的自同构群,我们可以了解循环群的内部结构和性质,并且可以将其应用于代数结构和密码学等领域。
第三章 正规子群和群的同态与同构

§1群同态与同构的简单性质
(Basic Properties of Homomorphism and Isomorphism of the groups)
一 定义
定义1 设 ( G, ) 和 G, 是两个群,如果存在映射ϕ:G → G满足
( )
ϕ (a b) = ϕ (a) ϕ (b)(∀a, b ∈ G(即ϕ 保运算) )
G ⇒ ϕ ( N ) G;
( 2) N
G ⇒ ϕ −1 ( N ) G
5.子群之积
定理3 若群G的一个正规子群和一个子群之积仍是G的子群, 两个正规子群之积仍是正规子群,也就是说,若H ≤ G , N ≤ G, 则
(1) 若N ( 2 ) 若H
G ⇒ NH ≤ G且N G且N G ⇒ HN
NH , H ∩ N
H
G,进一步,若还有H ∩ N = {e},
则∀h ∈ H , ∀n ∈ N 都有hn = nh
例4 若H ≤ G,那么N ( H ) = {x ∈ G | xH = Hx}叫做H 在G中 的正规化子,试证H N ( H ) ≤ G。
二
1. 商群的定义
设N 即
商
群
G,任取2个陪集aN , bN。则 (aN )(bN ) = a ( Nb) N = abNN = (ab) N, (aN )(bN ) = (ab) N
ϕ
三 循环群的同态象
定理3 设G和G为两个群,且G ∼ G,若G为循环群, 则G也为循环群。
推论2 循环群的商群仍为循环群. 推广 交换群的满同态象仍为交换群;交换群的商群 也是交换群.
ϕ
四 同态映射下两个群的子群之间的关系
引理 设σ :G → G是群同态映射,又H ≤ G,如果H ⊇ Kerϕ, 则
群论中的群的同构和同构定理

群论是数学中的一个分支,研究的是群的性质、结构和变换。
群的同构在群论中扮演着重要的角色,可以帮助我们发现不同群之间的相似性,并且提供了一种分类不同群的方法。
同构定理则是群论中的一项重要成果,它不仅提供了一种判断群是否同构的方法,还为我们分析群之间的关系提供了便利。
首先,我们来了解一下群的同构。
群的同构是指两个群之间存在一个双射映射,该映射既保持群运算的性质,也保持了群元素间的关系。
具体来说,设有两个群G和H,如果存在一个映射f:G→H,满足以下条件:(1)f(x * y) = f(x) * f(y),对任意x,y∈G成立;(2)f是双射(即一一映射和满射);那么我们可以说G和H是同构的,记作G≅H。
同构的映射f在保持群运算的性质的同时,也保持了群元素之间的关系。
换句话说,两个同构群中的元素在运算上是相同的,在群的性质和结构上也是相似的。
例如,我们可以通过一个同构映射将整数加法群(Z,+)与自然数乘法群(N,*)建立起一一对应的关系,从而发现它们之间的相似性和对应关系。
而同构定理则进一步帮助我们判断群是否同构,以及刻画群之间的关系。
同构定理包括两个重要的定理,即第一同构定理和第二同构定理。
第一同构定理(同构基本定理)指出了任何一个群G和它的一个正规子群N的商群G/N之间存在一个同构关系。
具体来说,如果N是G的一个正规子群,那么存在一个同构映射f:G/N→im(f),其中im(f)是映射f的像,满足f(gN) = f(g),对任意g∈G成立。
第一同构定理不仅帮助我们理解了群的结构中正规子群的作用,也为判断群是否同构提供了一个重要的工具。
第二同构定理(同构定理)则是对第一同构定理的进一步应用和拓展。
它描述了两个群的商群之间的关系。
具体来说,设有两个群G和H,N1和N2分别是G和H的正规子群,并且存在一个同构映射f:G→H,那么G/N1和H/N2之间也存在一个同构的关系。
第二同构定理进一步说明了群的正规子群的作用,以及同构映射对群之间的关系的保持性。
范畴论

目录[隐藏]∙ 1 背景∙ 2 历史注记∙ 3 范畴o 3.1 定义o 3.2 范畴举例o 3.3 态射分类∙ 4 函子∙ 5 自然和自然同构o 5.1 定义o 5.2 举例∙ 6 泛结构,极限和上极限∙7 等价范畴∙8 进一步的概念和结果∙9 范畴分类∙10 参考书目∙11 外部链接[∙一个“对象”的类∙对于任何两个对象A和B,存在一个从A到B的态射集合 Mor(A,B)。
如果f 属于 Mor(A,B),则记为f : A→B(有些作者将态射集记为 Hom(A,B) )∙对于任何三个对象A,B和C,存在一个二元运算 Mor(A,B) × Mor(B,C) →Mor(A,C),称此为“复合态射”;由f : A→B和g : B→C复合而成,记为g·f、g o f,或者gf(有些作者将此记为fg)。
以上组成部分若满足如下两条公理,则称为范畴:∙(结合性)如果有f : A→B,g : B→C和h : C→D,则h·(g·f) = (h·g)·f;∙(等价性)对任意对象X,存在一个态射id X : X→X,称为“X的恒等态射”,使得对任何态射f : A→B,都有id B·f = f = f·id A。
从以上公理出发可以得到,一个对象的恒等态射是唯一的。
有些作者将对象本身用恒等态射来定义,这在本质上是相同的。
如果对象的类确实是个集合,那么这种范畴就被称为“小范畴”。
许多重要的范畴不是小范畴。
范畴中的态射有时又称为“箭头”,这种叫法来自于交换图。
[编辑]范畴举例每一范畴都由其对象,态射,和复合态射来表述。
为了方便起见,以下的“函数”即是指态射,不再一一说明。
∙单态射,如果fg1 = fg2,则有g1 = g2,此关系对所有态射g1,g2 : X→A成立。
映射之间的关系(比如fg = h)在大多数情形下可用更直观的交换图来表示,在此图中对象被表示成顶点,态射被表示为箭头。
3-5群的自同构群.ppt

于是易知 1 n(A) : A 0 1 是G到自身的一个映射 .又由于 1 ( AB) ( 0 n( AB) 1 ) 0 1 n( A) n( B ) 1
1 n( A) 1 n( B ) ( A) ( B ), 0 1 0 1 故是群G的一个自同态映射 .但是, 把中心元素 2 0 1 0 2 却变成非中心元素 0 不是全特征子群 .
2018/1/10 16:35
(H ) H ,
则称H为群G的一个全特征子群. 全特征子群一定是特征子群.
例2 群G的中心C是G的一个特征子群. 证 : 任取c C, x G, AutG, 则
(c)x (c) [ (x)] [c (x)]
-1 -1
由于无限循环群有两个生成元,n阶循环群有 (n) 个生成元,从而其自同构群分别为2阶循环
2018/1/10 16:35
群和
(n) 阶群.
推论2 无限循环群的自同构群与三阶循环群的自同 构群同构. 定理3 设G是一个群, a G. 1)
则
a : x axa1 ( x G)
是G的一个自同构,称为G的一个内自同构;
2018/1/10 16:35
小结 1.群的自同构群的概念,循环群的自同构群。 2.内自同构群,特征子群,全特征子群。 作业: 5.6
2018/1/10
16:35
2018/1/10
2 ,因此, G的中心 1
16:35
例4 证明:循环群G=<a>的子群都是全特征子群.
全特征子群、特征子群和正规子群间的关系是
全特征子群 特征子群 正规子群
关于有限群的Coleman自同构群的一个注记

2 0年 3月 1 0
青 岛 大 学 学 报 (自 然 科 学 版 )
J UR A NG A NI E S T ( aua S i c dt n O N L OFQI D O U V R I Y N trl c n eE i o ) e i
C lma oe n引理 设 P是 G 的一 个 P 子 群 , 是 一 个 交 换 环且 p 一 R R≠R, Nu ( 一 N P)・ u 则 ( P) m ( C 腼) ( , 中 U( P) 其 RG) 表示群 环 R 的单位群 。 G 对 C lma oe n自同构 的研 究始 于对 G 在 U( G) R 中的正 规 化 子 N ( 研 究 , 个 研 究 课 题 是 在 文 献 肼 G) 这
示 G 的 C lma oe n自同构 群 , 中每个 自同构 限 制 在 G 的任 意一 个 S lw 子 群 上 都等 于 G 的某 个 内 自同构 其 yo 在 它上 的 限制 ; t( 表 示 G 的类保 持 自同构群 , 中每 个 自同构把 G 中 的每个 元 映到 它 的某个 共轭 元 。 Au G) 其
是 一个 有 限群 , G 的每个 真 子群 可解 , G本 身 不可 解 , 若 但 则称 G 是一 个 内可解 群 。设 M 是有 限群 G 的一
( G)n Ou c G) 2一 。 t( 是 群
通 过对 有 限群 的 C l n自同构 的深入研 究 , oe ma 又得 到 了一 些 Ou ( 是 , 的充分 条 件 。在 叙述 主 t G) - 群
要 结果 之前 , 引进一 些记 号 和术语 。用 F G) 先 ( 表示 G的广 义 Ftig子群 , 表示 阶 为 P 的循 环群 。设 G i n t C