有避雷线线路的雷击跳闸率可按下式计算

合集下载

35kV输电线路雷电跳闸率计算及实例分析

35kV输电线路雷电跳闸率计算及实例分析
35kV线路除了直击雷外还有感应雷也能造成线路跳闸, 感应过电压主要引起线路绝缘子闪络。假设落雷点在档距的中 间的任意位置,并且忽略感应电流在线路中的折反射,假设当 落雷点在距离导线的最近距离为S,在导线上的投影距离绝缘 子串的距离为x,则雷电在高度为k导线上的感应电压为:
。且’
峙鲫抓志+\/¨嘉
、/s2+x2)
3实例计算
35kv线路杆塔如图2所示,使用由3个绝缘子组成的绝 缘子串,导线采用LGJ—185型,避雷线型号为GJ一35型,线路档 距取为100岫。年雷暴日取为40d,落雷密度取为0.07time/I【mz・d。 经过计算发现雷电绕击时杆塔的冲击接地电阻对输电线 路的耐雷水平基本没有影响,从而对线路的绕击跳闸概率也没 有影响。对于此杆塔模型进行雷电绕击跳闸概率计算得
0.0073time/100km・a。
由于杆塔所处的地形不同,杆塔的冲击接地电阻会有很大 差别,一般取为5一100n,使用公式(6)计算杆塔随冲击接地电 阻变化的反击耐雷水平如图3所示,耐雷水平随冲击接地电阻 在12—53kA之间变化,同时可以根据公式(7)计算获得反击跳 闸概率如图3所示,在0.43.1.26time/100km・a之间变化。 由于感应雷是在线路中同时形成近似等值的过电压,因而 不可能发生线间闪络,因此感应过电压主要引起线路绝缘子闪 络。感应过电压与杆顶的接地电阻、导线的电感无关,而且同一
图l雷电绕击导线等值电路
雷电为负极性时,绕击耐雷水平由F式确定:
。cu∥矗u曲,蛩
式中,U舶。为绝缘子负极性50%闪络电压绝对值(kV)。 线路的绕击跳闸概率为:
,I-
(4)
PI=l
x(I)F(I)dI
(5)
2.2反击跳闸概率
在耐雷水平计算中,波阻抗也可以用集中电感代替,雷击 杆塔时,单根导线和避雷线的波阻取400n,2根避雷线的波阻 取250Q。如取固定波头长度下I-2.6岫,则Q=Il/26,此时耐雷水 平为;

5 输电线路的防雷保护总结

5 输电线路的防雷保护总结

根据理论分析和实验结果,当雷击点离导线的距离
S>65m,I≤100kA 时,导线上感应雷过电压幅值Ui可计算为:
Ui
?
25
Ihc S
式中 I — 雷电流幅值,kA;
hc — 导线悬挂的平均高度,m; S — 雷击点与导线的水平距离,m。
由于雷击地面时雷击点的自然接地电阻较大,雷电流幅 值一般不超过100kA,所以可按 I=100kA 估算线路上可能出 现的最大感应雷过电压。根据对这种过电压的实测证明,感 应雷过电压幅值一般不超过300~400kV。
雷击线路附近地面时导线上的感应过电压
感应雷过电压对35kV及以下输电线路,可能造成绝缘闪 络,而对于110kV及以上线路,由于线路的绝缘水平较高, 一般不会引起闪络。感应雷过电压在三相导线中存在,三相 导线上感应过电压在数值上的差别仅仅是导线高度的不同而 引起的,故相间电位差很小,所以感应过电压不会引起架空 线路的相间绝缘闪络。
如果先导通道中的电荷是全部瞬时被中 和的,则导线上的束缚电荷将全部瞬时 变为自由电荷,此时导线出现的电位仅 由这些刚解放的束缚电荷决定,显然等 于+U0(x),这是静电感应过电压的极限。 实际上,主放电的速度有限,所以导线 上束缚电荷的释放是逐步的,因而静电 感应过电压将比+U0(x)小。
感应雷过电压的形成
雷击时,地线上的电位较高,将出现电晕,耦合系数 将变大为原来的k1倍,即k=k1k0,其中k0为导线间的几何耦 合系数,k1为考虑电晕效应的修正系数。
耦合系数的电晕修正系数k1
雷击杆塔塔顶或附近避雷线时的过电压
? 线路绝缘上承受的电压
不考虑塔顶与绝缘子悬挂点的电位差,线路绝缘两端 电压Ulj等于塔顶电位减去导线电位为:

电力系统防雷保护(二)

电力系统防雷保护(二)

可将避雷器上的电压ub近似 为一斜角平顶波。波头上升 部分斜率为侵入波的陡度, 幅值为Ub-5
只要避雷器上电压<变压器冲 击电压,则可保护
17
二、距离效应
由于避雷器离被保护设备有一段距离,在波的折反射过程中,被 保护设备的电压将不同于避雷器上的电压。
at
L
B
T
at
L
B
T l2
l1
(a)
雷电波侵入变电站的典型接线
例题:
一条220kV线路架设在平原地区,绝缘子串13片,正极性50%放电 电压为1410V;杆塔冲击接地电阻为7,避雷线半径为5.5mm, 弧垂fd=7m,导线弧垂fd=12m。求该线路的耐雷水平和雷击跳闸 率。 解:(1) 求耦合系数
避雷线的平均高度
导线的平均高度 h
d
h b 29 . 1
13





对于110kV以下的配电装置,绝缘水平高,可 用构架避雷针,并就近装设辅助接地装置。 对于变压器,由于最重要,因此不能装设构架 避雷针 对于35kV以下的变电站,由于绝缘水平低,故 只能装设独立避雷针,接地电阻不能超过10 发电厂厂房一般不能装设避雷针。 现在国标也推荐采用避雷线。
2 降低杆塔接地电阻
工频接地电阻一般为10-30
3
架设耦合地线
在某些雷击故障频繁的线路上,在导线下方架设一条耦合地线。 可起到分流、增加耦合的作用。
4
采用不平衡绝缘方式
在同塔双回线的情况下,采用不平衡绝缘,可避免双回线同时跳 闸而完全停电。 10
常用措施(二):
5 6 装设自动重合闸
我国110kV以上线路自动重合闸成功率在75%-95%以上

输电线路雷电绕击跳闸率计算方法分析

输电线路雷电绕击跳闸率计算方法分析

输电线路雷电绕击跳闸率计算摘要经济的快速发展离不开电力系统的不断扩展和完善,随着电力系统容量的不断扩大,拓扑结构日趋复杂,对输电线路故障的研究和防止成为追求系统安全稳定运行这一目标的重要课题。

输电线路的雷击跳闸事故占输电线路事故的60%以上,尤其是在山区的输电线路,由于特殊的地理环境和多变的气候条件导致雷击成为线路故障的主要原因。

根据国内外输电线路的运行统计结果,雷电绕击事故是雷击线路故障中的比例最高,也是输电线路跳闸事故的主要原因。

因此,开展输电线路雷电绕击跳闸率计算研究,对于制定有效地防雷保护措施,指导我国输电工程线路防雷设计,提高电力系统安全可靠性具有重要的意义。

本课题主要研究雷电绕击的机理,输电线路雷电绕击对输电可能产生的影响。

在此基础上开展输电线路雷电绕击跳闸率计算方法分析,掌握几种不同计算方法的优缺点以及适用范围,并利用其中的一种计算方法对某一实例进行验证分析。

最后为输电线路制定有效地防雷保护措施以及指导我国输电工程线路防雷设计提供理论依据。

关键词:输电线路,跳闸率,雷电绕击AbstractRapid economic development is inseparable from the continuous expansion and improvement of the power system, with the growing capacity of the power system and the topology increasingly complex, researching and preventing faults on transmission lines to pursue system safe and stable operation became an important subject of the goal. Lightning Accident transmission accounts the transmission line accidents for more than 60%, especially in the mountains of transmission lines, due to the special geographical environment and changing climate conditions that cause lightning to become the main reason for the fault in the line.According to the statistical results at home and abroad to run transmission lines, lightning shielding failure was the highest proportion of Lightning stroke fault, which is also the main reason for tripping accidents. Therefore, developing the calculation research of transmission line lightning flashover rate of shielding failure for effective lightning protection measures to guide the design of the transmission line lightning protection engineering, improve power system security and reliability is of great significance.The main subject of this article is to study the mechanism of lightning shielding, and the effect of lightning shielding transmission lines on transmission .On the basis of it to develop the transmission line lightning strike trip out rate calculation method analysis, to grasp the scope of the advantages and disadvantages as well as several different calculation methods, and the use of a calculation method in which instances of a confirmatory analysis. Finally, the development of effective lightning protection measures, and guide our engineering lightning protection design of transmission lines to provide a theoretical basis for the transmission lines.Keywords:transmission lines, tripping rate ,lightning shielding fai目录摘要 (I)Abstract (II)第一章绪论 (1)1.1课题研究的背景和意义 (1)1.2课题研究的国内外现状 (2)1.3 本文主要工作 (3)第二章雷电绕击的机理 (4)2.1雷电对输电线路的危害 (4)2.2雷电绕击的机理 (4)2.2.1雷电先导闪击的特性 (4)2.2.2 高幅值雷电先导闪击的特性 (5)2.2.3 低幅值雷电先导闪击的特性 (8)第三章输电线路雷电绕击跳闸率计算方法 (9)3.1规程法 (9)3.2电气几何模型法 (10)3.3先导发展模型法 (11)3.4 ATP-EMPT仿真计算方法 (14)第四章电气几何模型法 (15)4.1 雷电参数 (15)4.1.1雷暴日与雷暴小时 (15)4.1.2 地面落雷密度 (15)4.1.3 雷电流幅值 (15)4.2 电气几何模型 (16)4.2.1电气几何模型的构建与分析 (16)4.2.2 暴露距离计算绕击率 (19)4.2.3 电气几何模型的改进 (23)第五章案例分析 (25)5.1 案例分析一 (25)5.2 案例分析二 (28)第六章总结与展望 (37)参考文献 (38)谢辞 (40)第一章绪论1.1课题研究的背景和意义随着我国国民经济的快速发展,我国电力系统发展的步伐日益加快,电力系统容量不断增长,网络结构不断扩大,系统发生故障的可能性也日趋增加。

35kV输电线路雷击跳闸分析及预防措施

35kV输电线路雷击跳闸分析及预防措施

35kV输电线路雷击跳闸分析及预防措施摘要:近几年来,因雷电而引发的输电线路掉落以及跳闸问题频频出现,不仅大大影响了用电设备运行的安全性,同时也在很大程度上对人们的日常工作生活造成了不良影响。

根据相关资料显示,全国各地每年都会发生多起因雷击造成的线路掉落和跳闸问题。

前几年,这一现象主要集中于山区,近些年则表现出了向平原地区转移的发展趋势。

可以说,雷击已成为影响输变电线路运行安全性和稳定性的主要因素。

关键词:35kV;输电线路;雷击跳闸;预防措施1 35kV输电线路运行的现状及雷击跳闸的类型1.1 35kV输电线路运行的现状35kV输电线路是电力系统中非常重要的组成部分,从目前情况来看,35kV输电线路运行过程中还存在如下几方面较为薄弱的环节:很大一部分35kV输电线路运行的时间过长,线路存在严重老化的问题,有些输电线路运行时间达到10年以上,甚至有的运行了30年以上,非常不利于线路运行的安全性和稳定性;某些输电线路没有进行避雷线的架设,缺少避雷线的屏蔽作用,这就造成了杆塔和线路全都暴露在雷电的打击范围内;一般情况下35kV 输电线路都只装设3~4片的绝缘子,这就造成线路的抗雷击能力比较低,不管是哪种雷击方式(主要有反击雷、感应雷以及绕击雷等等)都非常容易造成跳闸问题;对于输电线路来说,绝大部分都是布设在相对偏远的地区,例如山顶、半山坡以及丘陵地区相对比较突出的点,这些位置都非常容易遭到雷电的打击,从而引发跳闸事故。

1.2雷击跳闸的类型1.2.1反击类跳闸其主要特点为:故障点的接地电阻不符合标准要求,故障点主要是一基多相或者多基多相,在发生跳闸故障时在故障点会出现比较大的雷电流,一般情况下故障相是水平排列的中相或者垂直排列的中、下相。

1.2.2绕击类跳闸其主要特点为:输电线路架设有架空避雷线,故障点的接地电阻符合标准要求,故障点属于单基单相或者相邻两基同相,在发生跳闸故障时在故障点会出现比较小的雷电流,故障点发生的位置大都是在山顶边坡等容易绕击的区域,故障相大都是水平排列的边相或者垂直排列的上相。

(完整版)反击跳闸率计算详细说明

(完整版)反击跳闸率计算详细说明

反击跳闸率计算说明1.反击跳闸率定义:雷击跳闸率是指在雷暴日数40=d T 的情况下、100km 的线路每年因雷击而引起的跳闸次数。

它是由绕击跳闸率和反击跳闸率组成。

而反击跳闸率是指在雷暴日数40=d T 的情况下、100km 的线路每年因雷击杆塔后引起对导线的逆向闪络发生跳闸的次数。

2.规程法详细计算说明:规程法中的线路反击计算,工程上应用起来简单方便,而且它经过了实践的检验,能够满足目前我国一般输电线路的雷电反击系统设计要求。

运行经验表明,在线路落雷总数中雷击杆塔所占的比例与避雷线根数及地形有关。

雷击杆塔次数与落雷总数的比值称为击杆率(g ),规程推荐的g 值如表1所示。

表1 击杆率(g )地 形避雷线根数0 1 2平原 1/2 1/4 1/6 山区 — 1/31/4雷击塔顶时,雷电流的分配状况如图1所示:图1 雷击塔顶时的雷电流分布由于一般杆塔不高、其接地电阻i R 较小,从接地点反射回来的电流波立即到达塔顶,使入射电流加倍,因而注入线路的总电流即为雷电流i ,而不是沿雷道波阻抗传播的入射电流2i。

由于避雷线的分流作用,流经杆塔的电流i i 将小于雷电流i ,它们的比值β称为杆塔分流系数:iit =β,总的雷电流:g t i i i +=。

杆塔分流系数β的值在0.86~0.92的范围内,各种不同情况下的β值可由表2iR iRiRtitL2g i2g ii查得。

表2 一般长度档距的线路杆塔分流系数β值线路额定电压/kV避雷线根数β 110 1 0.90 2 0.86 220 1 0.92 2 0.88 330 2 0.88 50020.88规程法认为雷击塔顶时绝缘子串上的过电压包含四个分量:(1) 杆塔电流t i 在横担以下的塔身电感L a 和杆塔冲击接地电阻R i 上造成的压降使横担具有一定的对地点位u a 。

)(dtdi L i R dt di L i R U a i t at i a +=+=β 式中dtdi为雷电流波前陡度,可取平均陡度,即)/(6.21s kA I T I dt di μ==,其中I 为雷电流幅值(kA),1T 为波前时间(μs)。

线路直击雷过电压与耐雷水平

线路直击雷过电压与耐雷水平
有避雷线时线路应有的耐雷水平
额定电压(kV)
35
110
220
330
500
耐雷水平I1(kA) 雷电流超过I1的概率(%)
20~30 40~75 75~110 100~150 125~175
59~46 35~14 14~6
7~2
3.8~1
2、雷击避雷线档距中央:
根据模拟试验和实际运行经验,雷击避雷线档 距 中由央于的半概 径率较较小小的(避10雷%线)。的强烈电晕衰减作用,使 过 电压波传播到杆塔时,已不足以使绝缘子串闪络 标,准通规常定只,需只要要考按虑经雷验击公避式雷S线=对0.导01线2l+的1确反定击档问距题。 中央导、地线间的空气间距S,一般不会发生避雷 线 对导线的反击故障。
Riit
Lt
dit dt
(Rii Lt
di ) dt
Lt为杆塔等值电感,雷电流波前陡度di/dt=I/T1, 塔顶电位幅值为:
U top Ri I Lti / T1 I Ri Lt / T1
注:不同类型杆塔的等值电感不同,见表7-1; 不同电压等级及避雷线数目的β也不同,见表7-2
谢谢观看! 2020
(2) 导线电位和绝缘子串上的电压:
雷击塔顶时,与塔顶相连的避雷线也有相同的电位 utop。负极性的雷电波沿杆塔及避雷线传播时,由 于避雷线与导线之间的电磁耦合作用,在导线上将 产生耦合电压kutop,其极性与雷电流极性相同。
另一方面,由塔顶向雷云发展的正极性雷电波,引 起空间电磁场的迅速变化,又使导线上出现与雷电 流极性相反的正的感应过电压 U g ahc (1 k) 。
提高雷击塔顶时耐雷水平的措施:
(1)一般高度杆塔(小于40m),冲击接地电阻 上压降是塔顶电位的主要成分,因此降低接地电阻 可以有效地减小塔顶电位和提高耐雷水平; (2)增大耦合系数k; (3)加强线路绝缘(提高U50%) 。

输电线路绕击跳闸率计算与探讨

输电线路绕击跳闸率计算与探讨

输电线路绕击跳闸率计算与探讨发布时间:2021-03-03T02:14:42.053Z 来源:《中国科技人才》2021年第3期作者:赵庆[导读] 随着经济的发展,电力越来越致力于人们的日常工作和生活。

几乎每个人都不能避免用电。

内蒙古超高压供电局集宁输电管理处内蒙古乌兰察布 012000摘要:随着经济的发展,电力越来越致力于人们的日常工作和生活。

几乎每个人都不能避免用电。

由于用电量的不断增加,我国的电力系统、输电线路设备和技术也得到了很大的提高。

但输电线路在城市中分布广泛,工作环境十分复杂。

实现全线实时监控是不现实的,因此故障跳闸大多是由外部环境因素引起的。

本文通过对跳闸引起输电线路故障的各种原因的分析和探讨,提出了输电线路常见故障短路的原因,制定了相应的预防措施,并在故障发生时提出了相应的对策,以供参考。

关键词:输电线路;绕击跳闸率计算;分析输电线路是电力系统的重要组成部分,输电线路的性能指标是衡量电力系统安全可靠运行的主要参数,因此为了连续可靠地向用户送电,必须保证输电线路的正常运行避免失误。

电力系统的输电线路通常设置在野外。

由于地理位置的特殊性和输电线路本身的结构特点,输电线路极易遭受雷击。

雷电会诱发过电压,破坏输电线路的绝缘性能,甚至引起较大的短路电流,损坏相应的电气设备。

这一系列动作极有可能导致跳闸,从而危及电力系统的安全运行。

1输电线路发生跳闸的主要原因 1.1跳闸的气候因素污闪的季节性和区域性分布明显。

与雷击线路跳闸相比,污闪引起的线路跳闸不突出,但季节性和区域性分布明显。

污闪线路跳闸主要发生在雾、露、雪、毛毛雨等天气易发季节,而发生区域主要集中在工矿企业较多、空气污染较严重的地区。

统计结果一方面证实了线路污闪跳闸的条件,同时也表明污闪与雾闪有密切关系。

1.2山火跳闸原因导线间的气隙破坏或复合绝缘子的绝缘性能下降是引起带电跳闸的主要原因。

由于山火引起的线路跳闸,往往很难对准确的数据进行定性分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档