七年级下全等三角形经典
七年级(下)数学 第11讲 全等三角形的概念和性质及判定

本节主要针对全等三角形的相关概念和性质及全等三角形的判定进行讲解,重点是全等三角形的性质的运用和判定两个三角形全等的四个判定定理,要求同学们可以达到灵活运用判定定理进行说明三角形全等的理由.本节课是几何说理的基础,综合性不高,相对简单.一、全等形、全等三角形及其相关的概念 (1) 全等形:能够重合的两个图形叫做全等形.(2) 能够完全重合的两个三角形叫做全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点;互相重合的角叫做对应角;互相重合的边叫做对应边. 如下图所示:已知:△ABC ≌DFE ,A 与D ,B 与F 是对应顶点,则:(C 与E 是对应顶点) 对应边有:AB 与DF ,AC 与DE ,BC 与FE . 对应角有:A D B F C E ∠∠∠∠∠∠与,与,与.全等三角形的概念性质和判定内容分析知识结构模块一 全等三角形的概念和性质知识精讲ABCDEF- 2 -二、全等三角形的数学语言:三角形ABC 与三角形A′B′C′全等,记作△ABC ≌△A′B′C′,读作“三角形ABC 全等于三角形A′B′C′ ”. 三、全等三角形的性质:(1)全等三角形的对应边相等,对应角相等; (2)全等三角形的面积相等,周长相等;(3)全等三角形的对应线段(高线、中线、角平分线)相等. 四、全等三角形中应注意的问题:(1)要正确区分“对应边”与“对边”、“对应角”与“对角”的不同含义; (2)符号“≌”表示的双重含义:①“∽”表示形状相同;②“=”表示大小相等; (3)表示两个三角形全等时,表示对应的顶点的字母要写在相对应的位置上; 五、画三角形:确定三角形形状、大小的条件:六个元素(三条边、三个角)中的如下三个元素: ①两角及其夹边; ②两边及其夹角; ③三边.【例1】 下列说法正确的是( )A .全等三角形是指形状相同的三角形B .全等三角形是指面积相等的三角形C .全等三角形的周长和面积都相等D .所有的等边三角形都全等【例2】 直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )A .形状相同B .周长相等C .面积相等D .全等【例3】 如图所示,△ABC ≌△CDA ,且AB =CD ,则下列结论错误的是( ) A .∠1=∠2 B .AC =CA C .∠B =∠D D .AC =BC例题解析21ABCD【例4】 下列各条件中,不能作出唯一的三角形的是 ( )A .已知两边和夹角B .已知两角和夹边C .已知两边和其中一边的对角D .已知三边【例5】 练习画出下列条件的三角形:(1) 画,ABC ∆使40,45,4A B AB cm ∠=︒∠=︒=;(2) 画,ABC ∆使6,8,10AB cm BC cm AC cm ===;(3) 画,ABC ∆使4,3,45AB cm AC cm A ==∠=︒;(4) 画,ABC ∆使8,5,50AB cm AC cm B ==∠=︒.【例6】 下列说法:①形状相同的两个图形是全等形;②面积相等的两个三角形是全等三角形;③全等三角形的周长相等,面积相等;④在△ABC 和△DEF 中,若∠A =∠D ,∠B =∠E ,∠C =∠F ,AB =DE ,BC =EF ,AC =DF ,则两个三角形的关系,可记作△ABC ≌△DEF ,其中说法正确的是( )A .1个B .2个C .3个D .4个【例7】 下列说法中错误的是()A .全等三角形的公共角是对应角,对顶角也是对应角B .全等三角形的公共边也是对应边C .全等三角形的公共顶点是对应顶点D .全等三角形中相等的边所对应的角是对应角,相等的角所对的边是对应边- 4 -【例8】 如图所示,ABE ADC ABC ∆∆∆和是分别沿着AB AC 、边翻折形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为 ( ) A .80° B .100° C .60° D .45°【例9】 如图所示,30255ADF BCE B F BC cm ∆≅∆∠=︒∠=︒=,,,,14CD cm DF cm ==,.求:(1)1∠的度数;(2)AC 的长.【例10】 如图,在△ABC 中,∠ A :∠B :∠ACB =2:5:11,若将△ABC 绕点C 逆时针旋转,使旋转前后的△A′B′C′中的顶点B′在原三角形的边AC 的延长线上,求∠BCA′的度数.【例11】 如图,已知△ABC ≌△ADE ,BC 的延长线交AD 于点F ,交AE 的延长线于G ,∠ACB =105°,∠CAD =10°,∠ADE =25°,求∠DFB 和∠AGB 的度数.α321AB CDEP1ABCDEFABCA′B′A BCD EF G本模块复习了全等三角形的4个判定定理,主要是已知条件为“两边及夹角对应相等(SAS )”,“两角及夹边对应相等(ASA )”,“两角及其中一角的对边对应相等(AAS )”“三边对应相等(SSS )”的两个三角形全等.【例12】 如图,已知∠B =∠D ,∠1=∠2,AC =AE ,说明△ABC ≌△ADE 的理由.【例13】 如图,已知∠C =∠E ,BE =CD ,说明△ABE 与△ADC 全等的理由,AB 与AD相等吗?为什么?【例14】 如图,已知AD =BC ,AE =BE .说明AC =BD ,∠C =∠D 的理由.模块二 全等三角形的判定知识精讲例题解析ABCDEF21AB C DEABCDE- 6 -【例15】 如图,已知AB =CD ,AD =BC ,说明∠A =∠C 的理由.【例16】 如图,已知BD 是△ABC 的中线,B 、D 、E 、F 在一条直线上,且AE ∥CF ,说明△ADE 与△CDF 全等的理由.【例17】 如图,已知AC ∥BD ,AC =BD ,(1)说明△AOC 与△BOD 全等的理由;(2)说明EO =FO 的理由.【例18】 如图,CD ⊥AB 于D ,BE ⊥AC 于E ,OD =OE ,说明AB =AC 的理由.【例19】 如图,已知AD ∥BC ,BF ∥DE ,AE =CF .(1) △ADE 与△CBF 全等吗,为什么? (2) 说明AB =CD 的理由; (3) 图中有哪几对全等三角形?ABCDABC D EFABCD EFO ABCDEOABCDEF【例20】 如图,已知AB =CD ,BM =CM ,AC =BD ,说明AM =DM 的理由.【例21】 如图所示,AB =AC ,CE =BE ,连结AE 并延长交BC 于D ,说明AD ⊥BC 的理由.【例22】 如图所示,BE 、CD 相交于O ,AB =AC ,AD =AE ,说明OD =OE 的理由.【例23】 如图,线段BE 上有一点C ,以BC 、CE 为边分别在BE 的同侧作等边三角形ABC 、DCE ,连结AE 、BD ,分别交CD 、CA 于Q 、P .(1)找出图中的一组相等的线段(等边三角形的边长相等除外),并说明你的理由; (2)取AE 的中点M 、BD 的中点N ,连结MN ,试判断△CMN 的形状.ABCDMABCDE ABC DEO2121A BCDEQP ABCDEMN PQ- 8 -【例24】 如图,△ABC 是等腰直角三角形,其中CA =CB ,四边形CDEF 是正方形,连接AF 、BD .(1)观察图形,猜想AF 与BD 之间有怎样的关系,并证明你的猜想;(2)若将正方形CDEF 绕点C 按顺时针方向旋转,使正方形CDEF 的一边落在△ABC 的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.【习题1】 下列命题中正确的是 ( )A .全等三角形的高相等B .全等三角形的中线相等C .全等三角形的角平分线相等D .全等三角形对应角的平分线相等【习题2】 如图,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD =7厘米,DM =5厘米,∠DAM =39°,则AN = 厘米,NM =_________厘米,∠NAB = .随堂检测A BCDMNABCD EF【习题3】 如图,CE ⊥AB ,DF ⊥AB ,垂足分别为E 、F ,(1)若AC //DB ,且AC =DB ,则△ACE ≌△BDF ,根据____________; (2)若AC //DB ,且AE =BF ,则△ACE ≌△BDF ,根据____________; (3)若AE =BF ,且CE =DF ,则△ACE ≌△BDF ,根据_____________; (4)若AC =BD ,AE =BF ,CE =DF .则△ACE ≌△BDF ,根据_______.【习题4】 如图,已知△ABC ≌△ADE , ∠CAD =15°,∠DFB =90°,∠B =25°.求∠E 和∠DGB 的度数.【习题5】 如图:A 、E 、F 、C 四点在同一条直线上,AE =CF ,过E 、F 分别作BE ⊥AC 、DF ⊥AC ,且AB ∥CD ,AB =CD .试说明:BD 平分EF .【习题6】 已知:如图,△ABC 是等边三角形,过AB 边上的点D 作DG ∥BC ,交AC于点G ,•在GD 的延长线上取点E ,使DE =DB ,连结AE 、CD . 试说明:△AGE ≌△DAC .ABCEDFABC D EFG ABCDE FGABCDE FG- 10 -【习题7】 在∠O 的两边上分别取点A 、D 和B 、C ,连接AC 、BD 相交于P .(1)若∠A =∠B ,P A =PB ,试说明OA =OB 的理由; (2)若OA =OB ,P A =PB ,试说明PC =PD 的理由.【作业1】 如图,△ABC ≌△ABD ,C 和D 是对应顶点,若AB =6cm ,AC =5cm ,BC =4cm ,则AD 的长为_________cm .【作业2】 如图,给出下列四组条件:①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF ===∠∠,,; ③B E BC EF C F ===∠∠∠∠,,; ④AB DE AC DF B E ===∠∠,,.其中,能使ABC DEF △≌△的条件共有 ( ) A .1组 B .2组 C .3组 D .4组【作业3】 下列各条件中,不能作出唯一三角形的是( )A .已知两边和夹角B .已知两角和夹边C .已知两边和其中一边的对角D .已知三边【作业4】 已知△ABC ≌△DEF ,若△ABC 的周长为32,AB =8,BC =12,则DE =_______,DF =_______,EF = _______.课后作业ABC DEFABCDPOAB CDP OABCD【作业5】 如图△ACE ≌△DBF ,AE =DF ,CE =BF ,AD =8,BC =2.(1)求AC 的长度;(2)说明CE ∥BF 的理由.【作业6】 如图,已知△ABC ≌△AED ,AE =AB ,AD =AC , ∠D -∠E =20°,∠BAC =60°,求∠C 的度数.【作业7】 如图,△DAC 和△EBC 均是等边三角形,点C 在线段AB 上,AE 、BD 分别与CD 、 CE 交于点M 、 N ,有如下结论①△ACE ≌△DCB ;② CM =CN ;③ AC =DN .其中正确的结论是 ,证明正确的结论.【作业8】 如图,AD ⊥AB ,AC ⊥AE ,且AD =AB ,AC =AE .试说明:DC =BE ,DC ⊥BE .ABCDEABCD EM NABC DEGABCDEF。
初中全等三角形知识点

初中全等三角形知识点一、全等三角形的概念。
1. 定义。
- 能够完全重合的两个三角形叫做全等三角形。
- 重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
例如,若ABC与DEF全等,点A与点D、点B与点E、点C与点F是对应顶点;AB 与DE、BC与EF、AC与DF是对应边;∠ A与∠ D、∠ B与∠ E、∠ C与∠ F是对应角。
2. 表示方法。
- 全等用符号“≅”表示,读作“全等于”。
例如ABC≅ DEF。
书写时要注意对应顶点写在对应的位置上。
二、全等三角形的性质。
1. 对应边相等。
- 若ABC≅ DEF,则AB = DE,BC=EF,AC = DF。
2. 对应角相等。
- 若ABC≅ DEF,则∠ A=∠ D,∠ B=∠ E,∠ C=∠ F。
三、全等三角形的判定。
1. SSS(边边边)- 内容:三边对应相等的两个三角形全等。
- 例如:在ABC和DEF中,若AB = DE,BC = EF,AC=DF,则ABC≅DEF。
2. SAS(边角边)- 内容:两边和它们的夹角对应相等的两个三角形全等。
- 例如:在ABC和DEF中,若AB = DE,∠ B=∠ E,BC = EF,则ABC≅DEF。
这里要注意必须是两边的夹角相等。
3. ASA(角边角)- 内容:两角和它们的夹边对应相等的两个三角形全等。
- 例如:在ABC和DEF中,若∠ A=∠ D,AB = DE,∠ B=∠ E,则ABC≅DEF。
4. AAS(角角边)- 内容:两角和其中一角的对边对应相等的两个三角形全等。
- 例如:在ABC和DEF中,若∠ A=∠ D,∠ B=∠ E,BC = EF,则ABC≅DEF。
5. HL(斜边、直角边)(只适用于直角三角形)- 内容:斜边和一条直角边对应相等的两个直角三角形全等。
- 例如:在Rt ABC和Rt DEF中,若AB = DE(斜边),AC = DF(直角边),则Rt ABC≅ Rt DEF。
全等三角形判定经典

11.2三角形全等的判定ABC DEF(1)三边对应相等的两个三角形全等,简写为“边边边”或“SSS ”。
表示方法:如图所示,在△ABC 和△DEF 中,AB DEAC DF BC EF=⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF (SSS )。
例1. 如图所示,AB =CD ,AC =DB 。
求证:△ABC ≌△DCB 。
A BCD分析:由已知可得AB =CD ,AC =DB ,又因为BC 是两个三角形的公共边,所以根据SSS 可得出△ABC ≌△DCB 。
证明:在△ABC 和△DCB 中,∵⎩⎨⎧AB =CD AC =DB BC =CB,∴△ABC ≌△DCB (SSS )评析:证明格式:①点明要证明的两个三角形;②列举两个三角形全等的条件(注意写在前面的三角形,条件也放在前面),用大括号括起来;③条件按照“SSS ”顺序排序;④得出结论,并把判断的依据注在后面。
“ASA ”。
表示方法:如图所示,在△ABC 和△DEF 中,B E BC EF C F∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA )。
例2. 如图所示,AB ∥CD ,AF ∥DE ,BE =CF ,求证:AB =CD 。
ABEFCD分析:要证明AB =CD ,由于AB 、CD 分别是△ABF 和△DCE 的边,可尝试证明△ABF ≌△DCE ,由已知易证:∠B =∠C ,∠AFB =∠DEC ,下面只需证明有一边对应相等即可。
事实上,由BE =CF 可证得BF =CE ,由ASA 即可证明两三角形全等。
证明:∵AB ∥CD ,∴∠B =∠C (两直线平行,内错角相等) 又∵AF ∥DE ,∴∠AFC =∠DEB (同上) ∴∠AFB =∠CED (等角的补角相等)又∵BE =CF ,∴BE -EF =CF -EF ,即BF =CE 在△ABF 和△DCE 中,()()()B C BF CE AFB CED ∠=∠⎧⎪=⎨⎪∠=∠⎩已证已证已证∴△ABF ≌△DCE (ASA )∴AB =CD (全等三角形对应边相等)角边”或“AAS ”。
全等三角形知识点归纳

全等三角形知识点归纳全等三角形是初中数学中的重要内容,它对于解决几何问题有着关键作用。
下面就来对全等三角形的相关知识点进行一个全面的归纳。
一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。
全等用符号“≌”表示,读作“全等于”。
二、全等三角形的性质1、全等三角形的对应边相等。
也就是说,如果两个三角形全等,那么它们相对应的边的长度是一样的。
2、全等三角形的对应角相等。
对应角的度数完全相同。
3、全等三角形的周长相等。
因为对应边相等,所以三条边相加的总和也相等。
4、全等三角形的面积相等。
由于形状和大小完全相同,所占的空间大小也就一样。
三、全等三角形的判定方法1、“边边边”(SSS):三边对应相等的两个三角形全等。
比如有三角形 ABC 和三角形 DEF,如果 AB = DE,BC = EF,AC = DF,那么三角形 ABC ≌三角形 DEF。
2、“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。
例如在三角形 ABC 和三角形 DEF 中,AB = DE,∠A =∠D,AC = DF,那么这两个三角形全等。
3、“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。
假设三角形 ABC 和三角形 DEF 中,∠A =∠D,AB = DE,∠B =∠E,那么三角形 ABC ≌三角形 DEF。
4、“角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。
比如三角形 ABC 和三角形 DEF 中,∠A =∠D,∠B =∠E,BC = EF,这两个三角形就是全等的。
5、“斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。
在直角三角形 ABC 和直角三角形 DEF 中,如果斜边 AC =斜边DF,直角边 BC =直角边 EF,那么这两个直角三角形全等。
四、寻找全等三角形的对应边和对应角的方法1、有公共边的,公共边是对应边。
例如三角形 ABC 和三角形 ABD,AB 就是两个三角形的公共边,是对应边。
全等三角形证明经典30题

全等三角形证明经典30题1. 两角和相等定理证明:设△ABC 和△DEF 是两个三角形,如果∠A = ∠D 且∠B = ∠E,则可以通过以下步骤证明△ABC ≌△DEF:步骤一:通过顶角顶点 C 、 F、和共边 CF 作直线段 CF,延长直线段 CF 至点 X,使得 CX = CE。
步骤二:连接线段 AX。
步骤三:证明∠AXB = ∠EXF:由于∠A = ∠D,所以∠AXB = ∠DXE(共同的角度)。
又由于∠B = ∠E,所以∠DXE = ∠EXF。
因此,∠AXB = ∠EXF。
步骤四:证明∠ABX = ∠EFX:由于∠B = ∠E,所以∠ABX = ∠EXF(共同的角度)。
因此,∠ABX = ∠EFX。
步骤五:证明 AB = EF:由于 CX = CE,且∠ABX = ∠EFX,根据 SSS(边-边-边)全等三角形定理,则可得∆ABX ≌ ∆EFX。
因此,AB = EF。
综上所述,根据两角和相等定理,已经证明了△ABC ≌△DEF。
2. SAS全等三角形定理证明:设△ABC 和△DEF 是两个三角形,如果 AB = DE,∠A = ∠D,且 AC = DF,则可以通过以下步骤证明△ABC ≌△DEF:步骤一:连接线段 BC 和 EF。
步骤二:证明∠ABC = ∠DEF:由于 AB = DE,且∠A = ∠D,根据线段角度定理,可得∠ABC = ∠DEF。
步骤三:证明 BC = EF:由于 AC = DF,且∠ABC = ∠DEF,根据 SAS(边-角-边)全等三角形定理,可得△ABC ≌△DEF。
综上所述,根据SAS全等三角形定理,已经证明了△ABC ≌△DEF。
3. SSS全等三角形定理证明:设△ABC 和△DEF 是两个三角形,如果 AB = DE,BC = EF,且AC = DF,则可以通过以下步骤证明△ABC ≌△DEF:步骤一:连接线段 AC 和 DF。
步骤二:连接线段 BC 和 EF。
全等三角形经典证明方法归类

全等三角形经典证明方法归类1.SSS法则(边边边):给定两个三角形,如果它们的三条边分别相等,那么这两个三角形全等。
2.SAS法则(边角边):给定两个三角形,如果它们的两条边和夹角分别相等,那么这两个三角形全等。
3.ASA法则(角边角):给定两个三角形,如果它们的两条角和一边分别相等,那么这两个三角形全等。
4.AAS法则(角角边):给定两个三角形,如果它们的两条角和另一条边的对应角分别相等,那么这两个三角形全等。
5.RHS法则(直角边和斜边):给定两个三角形,如果它们的一个角是直角,而且两个直角的边分别相等,那么这两个三角形全等。
6.HL法则(斜边和斜边对应的直角):给定两个直角三角形,如果它们的斜边相等,而且其中一个直角边和另一个直角边分别相等,那么这两个三角形全等。
除了以上六种经典的证明方法外,还存在一些其他的证明方法,如:7.余弦定理:如果在两个三角形中,对应的两边和夹角的余弦值都相等,那么这两个三角形全等。
8.正弦定理:如果在两个三角形中,对应的两边和夹角的正弦值都相等,那么这两个三角形全等。
9.星形相等法则:如果两个三角形的对应边分别相等,而且两组对边之间的夹角相等,那么这两个三角形全等。
10.平移法:如果两个三角形中一对边平行且等长,并且另外两对边也分别平行,则这两个三角形全等。
11.旋转法:如果两个三角形中一对边对应相等,并且另外两个角分别相等,则这两个三角形全等。
12.镜像对称法:如果两个三角形对应边的长度相等,并且一个三角形的两个角和对应的另一个三角形的两个角之和都等于180度,则这两个三角形全等。
这些全等三角形的证明方法在几何学中被广泛应用,并且有着重要的理论和实际意义。
通过这些证明方法,我们可以判断两个三角形是否全等,从而在解决几何问题时提供有效的理论依据。
全等三角形的基础和经典例题含有答案

第十一章:全等三角形一、基础知识1.全等图形的有关概念 (1)全等图形的定义能够完全重合的两个图形就是全等图形。
例如:图13-1和图13-2就是全等图形图13-1图13-2 (2)全等多边形的定义两个多边形是全等图形,则称为全等多边形。
例如:图13-3和图13-4中的两对多边形就是全等多边形。
图13-3 图13-4(3)全等多边形的对应顶点、对应角、对应边两个全等的多边形,经过运动而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角。
(4)全等多边形的表示例如:图13-5中的两个五边形是全等的,记作五边形ABCDE ≌五边形A ’B ’C ’D ’E ’(这里符号“≌”表示全等,读作“全等于”)。
图13-5表示图形的全等时,要把对应顶点写在对应的位置。
(5)全等多边形的性质全等多边形的对应边、对应角分别相等。
A B DC E B ’A ’ C ’ D ’ E ’(6)全等多边形的识别多边形相等、对应角相等的两个多边形全等。
2.全等三角形的识别(1)根据定义若两个三角形的边、角分别对应相等,则这两个三角形全等。
(2)根据SSS如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
相似三角形的识别法中有一个与(SSS)全等识别法相类似,即三条边对应成比例的两个三角形相似,而相似比为1时,就成为全等三角形。
(3)根据SAS如果两个三角形有两边机器夹角分别对应相等,那么这两个三角形全等。
相似三角形的识别法中同样有一个是与(SAS)全等识别法相类似,即一角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,即为全等三角形。
(4)根据ASA如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
(5)根据AAS如果两个三角形有两个角及其中一角的对边分别对应相等,那么这两个三角形全等。
3.直角三角形全等的识别(1)根据HL如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。
初中数学-全等三角形判定经典例题

段,向什么方向延长,用“截取”的方法时,要考虑如何截取.
例 08.如图(a),已知:在 ABC 中, AB AC ,AD 是 A 的平分线,P 是 AD 上
任意一点.
求证: AB AC PB PC .
分析:本例涉及四条线段差的不等关系,要使用“三角形任意两边的差小于第三边” 这一定理,为了能够使用这一定理,必须把本题中的四条线段的差转化为三角形中三边关系 的问题. 可用截取的方法,也可用延长的方法. 用截取法,可在 AB 边上取一点 C,使
和)
∴ BDC C . ∴ BD BC BD . ∴ AC AB BC AB BD 说明:要证明线段 AB CD EF ,可用“延长”的方法:延长 AB 到 G,使 BC CD , 然后证明 AG EF . 也可用“截取”的方法:在 EF 上取点 H,使 EH AB ,然后证明 HF CD . 在具体问题中要考虑哪种方法可行. 用“延长”的方法时,要考虑延长哪条线
证明:在 AC 上取点 B ,使 AB AB ,连结 BD ,则在 ABD 和 ABD 中. AB AB(已作) BAD BAD(角平分线定义) AD AD(公共边)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形综合练习题知识点睛1、三角形全等的条件〔1〕边边边公理:如果两个三角形的三条边分别对应相等,那么这两个三角形全等,简记为SSS 〔2〕边角边公理:如果两个三角形的两边与其夹角分别对应相等,那么这两个三角形全等,简记为SAS〔3〕角边角公理:如果两个三角形的两个角与其夹边分别对应相等,那么这两个三角形全等,简记为ASA〔4〕角角边公理:有两个角和其中一角的对边对应相等的两个三角形全等,简记为AAS2、直角三角形全等的特殊条件:斜边和一条直角边对应相等的两个直角三角形全等,简写成"斜边、直角边"或"HL"3、选择证明三角形全等的方法〔"题目中找,图形中看"〕〔1〕已知两边对应相等①证第三边相等,再用SSS证全等②证已知边的夹角相等,再用SAS证全等③找直角,再用HL证全等〔2〕已知一角与其邻边相等①证已知角的另一邻边相等,再用SAS证全等②证已知边的另一邻角相等,再用ASA证全等③证已知边的对角相等,再用AAS证全等〔3〕已知一角与其对边相等证另一角相等,再用AAS证全等<4>已知两角对应相等①证其夹边相等,再用ASA证全等②证一已知角的对边相等,再用AAS证全等4、全等三角形中的基本图形的构造与运用〔1〕出现角平分线时,常在角的两边截取相等的线段,构造全等三角形〔2〕出现线段的中点〔或三角形的中线〕时,可利用中点构造全等三角形〔常用加倍延长中线〕 〔3〕利用加长〔或截取〕的方法解决线段的和、倍问题〔转移线段〕1. 已知:如图,点B,E,C,F 在同一直线上,AB ∥DE,且AB=DE,BE=CF.求证:AC ∥DF .2. 如图,已知: AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .3. 如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC=DF .求证:AC=EF .4. 如图,在ΔABC 中,AC=AB,AD 是BC 边上的中线,则AD ⊥BC,请说明理由.5. 如图,已知AB=DE,BC=EF,AF=DC,则∠EFD=∠BCA,请说明理由.6. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC,在AB 上截取AE=AC,连结DE,已知DE=2cm,BD=3cm,求线段BC 的长.经典例题FGEDCBAA BC D E F A B C DF EDCBA7. 如图,ΔABC 的两条高AD 、BE 相交于H,且AD=BD,试说明下列结论成立的理由. 〔1〕∠DBH=∠DAC ; 〔2〕ΔBDH ≌ΔADC.8. 如图,已知ABC ∆为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且DEF ∆也是等边三角形.(1) 除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的; (2) 你所证明相等的线段,可以通过怎样的变化相互得到?写出变化过程.9. 已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小.10. 如图,在矩形ABCD 中,F 是BC 边上的一点,AF 的延长线交DC 的延长线于G,DE ⊥AG 于E,且DE =DC,根据上述条件,请你在图中找出一对全等三角形,并证明你的结论.A B C DE A BCDE H11. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC,点P 在BD 上,PM ⊥AD于M,•PN ⊥CD 于N,判断PM 与PN 的关系.12. 如图所示,P 为∠AOB 的平分线上一点,PC ⊥OA 于C,•∠OAP+∠OBP=180°,若OC=4cm,求AO+BO的值.13. 如图,∠ABC=90°,AB=BC,BP 为一条射线,AD ⊥BP,CE ⊥PB,若AD=4,EC=2.求DE 的长.i.14. 如图所示,A,E,F,C 在一条直线上,AE=CF,过E,F 分别作DE•⊥AC,BF ⊥AC,若AB=CD,可以得到BD平分EF,为什么?若将△DEC 的边EC 沿AC 方向移动,变为如图所示时,其余条件不变,上述结论是否成立?请说明理由.15. 如图,OE=OF,OC=OD,CF 与DE 交于点A,求证: AC=AD.16. 已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC.P D A C BM N P D AC B O GD FA CB E G DF A CBE F ED C AO(1)求证:∠ABE=∠C;(2)若∠BAE的平分线AF交BE于F,FD∥BC交AC于D,设AB=5,AC=8,求DC的长.17.如图∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2、5cm,DE=1.7cm,求BE的长18.如图,在△ABE中,AB=AE,AD=AC,∠BAD=∠EAC, BC、DE交于点O.求证:<1> △ABC≌△AED;<2> OB=OE .19.如图,D是等边△ABC的边AB上的一动点,以CD为一边向上作等边△EDC,连接AE,找出图中的一组全等三角形,并说明理由.20.已知:如图,B、E、F、C四点在同一条直线上,AB=DC,BE=CF,∠B=∠C.求证:OA=OD.EDC BA21. 如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .22. 如图,,AB AC AD BC D AD AE AB DAE DE F =⊥=∠于点,,平分交于点,请你写出图中三对..全等三角形,并选取其中一对加以证明.23. 如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1) 求证:MB =MD ,ME =MF (2) 当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.24. 如图,已知在△ABC 中,∠BAC 为直角,AB=AC,D 为AC 上一点,CE ⊥BD 于E .(1) 若BD 平分∠ABC,求证CE=错误!BD ;(2) 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围;若不变,求出它的度数,并说明理由.25、〔7分〕在△ABC 中,,AB=AC, 在AB 边上取点D,在AC 延长线上了取点E ,使CE=BD , 连接DE 交BC 于点F,求证DF=EF .B DC FAEF E D C B AE DCBADA F26、〔8分〕如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F,交AC 的平行线BG 于G 点, DE ⊥DF,交AB 于点E,连结EG 、EF.(1) 求证:EG=EF;(2) 请你判断BE+CF 与EF 的大小关系,并说明理由.27、 如图△ABC ≌△A `B`C,∠ACB=90°,∠A=25°,点B 在A `B`上,求∠ACA `的度数.28、 如图:四边形ABCD 中,AD ∥BC ,AB=AD+BC ,E 是CD 的中点,求证:AE ⊥BE .29、 如图所示,△ABC 中,∠ACB=90°,AC=BC,AE 是BC 边上的中线,过C 作CF ⊥AE, 垂足为F,过B 作BD ⊥BC 交CF 的延长线于D.BA`B B C E F E DC B A Gi.求证:<1>AE=CD;<2>若AC=12cm,求BD 的长.30、 在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF=BE.i. 求证:CE=CF.ii. 在图中,若G 点在AD 上,且∠GCE=45° ,则GE=BE+GD 成立吗?为什么?31、 如图<1>, 已知△ABC 中, ∠BAC=900, AB=AC, AE 是过A 的一条直线, 且B 、C在A 、E 的异侧, BD ⊥AE 于D, CE ⊥AE 于E 试说明: BD=DE+CE.若直线AE 绕A 点旋转到图<2>位置时<BD<CE>, 其余条件不变, 问BD 与DE 、CE 的关系如何? 为什么?若直线AE 绕A 点旋转到图<3>位置时<BD>CE>, 其余条件不变, 问BD 与DE 、CE 的关系如何? 请直接写出结果, 不需说明.归纳前二个问得出BD 、DE 、CE 关系.用简洁的语言加以说明.DCEGE D C B A M F32、 如图所示,已知D 是等腰△ABC 底边BC 上的一点,它到两腰AB 、AC 的距离分别为DE 、DF,CM⊥AB,垂足为M,请你探索一下线段DE 、DF 、CM 三者之间的数量关系, 并给予证明.33、 在Rt △ABC 中,AB=AC,∠BAC=90°,O 为BC 的中点.写出点O 到△ABC 的三个顶点A 、B 、C 的距离的大小关系,并说明理由.若点M 、N 分别是AB 、AC 上的点,且BM=AN,试判断△OMN 形状,并证明你的结论. 34、 如图,ABCD 是正方形,点G 是BC 上的任意一点,DE AG ⊥于E ,BF DE ∥,交AG 于F .求证:AF=BF+EF .35、如图10,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连结AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F . 求证:〔1〕FC =AD ;〔2〕AB =BC +AD .36、如图①,将边长为4cm 的正方形纸片ABCD 沿EF 折叠<点E 、F 分别在边AB 、CD 上>,使点B 落在DC BA EFGAD边上的点 M处,点C落在点N处,MN与CD交于点P, 连接EP.<1>如图②,若M为AD边的中点,①,△AEM的周长=_____cm;②求证:EP=AE+DP;<2>随着落点M在AD边上取遍所有的位置<点M不与A、D重合>,△PDM的周长是否发生变化?请说明理由.。