IIR数字滤波器的设计外文文献以与翻译
iir数字滤波器设计原理

iir数字滤波器设计原理IIR数字滤波器设计原理IIR(Infinite Impulse Response)数字滤波器是一种常用的数字滤波器,其设计原理基于无限冲激响应。
与FIR(Finite Impulse Response)数字滤波器相比,IIR数字滤波器具有更低的计算复杂度和更窄的频率过渡带。
在信号处理和通信系统中,IIR数字滤波器被广泛应用于滤波、陷波、均衡等领域。
IIR数字滤波器的设计原理主要涉及两个方面:滤波器的结构和滤波器的参数。
一、滤波器的结构IIR数字滤波器的结构通常基于差分方程来描述。
最常见的结构是直接型I和直接型II结构。
直接型I结构是基于直接计算差分方程的形式,而直接型II结构则是通过级联和并联方式来实现。
直接型I结构的特点是简单直接,适用于一阶和二阶滤波器。
它的计算复杂度较低,但对于高阶滤波器会存在数值不稳定性的问题。
直接型II结构通过级联和并联方式来实现,可以有效地解决数值不稳定性的问题。
它的计算复杂度相对较高,但适用于高阶滤波器的设计。
二、滤波器的参数IIR数字滤波器的参数包括滤波器的阶数、截止频率、增益等。
这些参数根据实际需求来确定。
滤波器的阶数决定了滤波器的复杂度和性能。
阶数越高,滤波器的频率响应越陡峭,但计算复杂度也越高。
截止频率是指滤波器的频率响应开始衰减的频率。
截止频率可以分为低通、高通、带通和带阻滤波器。
根据实际需求,选择合适的截止频率可以实现对信号的滤波效果。
增益是指滤波器在特定频率上的增益或衰减程度。
增益可以用于滤波器的频率响应的平坦化或强调某些频率。
IIR数字滤波器的设计通常包括以下几个步骤:1. 确定滤波器的类型和结构,如直接型I或直接型II结构;2. 确定滤波器的阶数,根据要求的频率响应和计算复杂度来选择;3. 设计滤波器的差分方程,可以使用脉冲响应不变法、双线性变换法等方法;4. 根据差分方程的系数,实现滤波器的级联和并联结构;5. 进行滤波器的参数调整和优化,如截止频率、增益等;6. 对滤波器进行性能测试和验证,确保设计满足要求。
iir数字滤波器的设计原理

iir数字滤波器的设计原理
IIR(Infinite Impulse Response)数字滤波器是一种常见的数字滤波器类型,其设计基于具有无限冲激响应的差分方程。
相比于FIR(Finite Impulse Response)数字滤波器,IIR滤波器通常可以用更少的系数实现相似的频率响应,但也可能引入稳定性和相位延迟等问题。
以下是设计IIR数字滤波器的原理:
选择滤波器类型:首先,确定所需的滤波器类型,例如低通滤波器、高通滤波器、带通滤波器或带阻滤波器。
确定规格:定义滤波器的规格,包括截止频率、通带和阻带的幅度响应要求、群延迟要求等。
选择滤波器结构: IIR滤波器有不同的结构,如Butterworth、Chebyshev Type I和 Type II、Elliptic等。
选择适当的滤波器结构取决于应用的要求。
模拟滤波器设计:利用模拟滤波器设计技术,例如频率变换法或波纹变换法,设计出满足规格要求的模拟滤波器。
离散化:使用数字滤波器设计方法,将模拟滤波器离散化为数字滤波器。
这通常涉及将模拟滤波器的差分方程转换为差分方程,通常使用褶积法或双线性变换等方法。
频率响应调整:通过调整设计参数,如截止频率、阻带衰减等,以满足实际需求。
稳定性分析:对设计的数字滤波器进行稳定性分析,确保它在所有输入条件下都是稳定的。
实现和优化:最后,将设计好的数字滤波器实现为计算机程序或硬件电路,并进行必要的性能优化。
总体而言,IIR数字滤波器设计是一个复杂的过程,涉及到模拟滤波器设计、频域和时域变换、数字化和稳定性分析等多个步骤。
在实际应用中,通常使用专业的工具和软件来辅助设计和分析。
【最新推荐】基于DSP的IIR滤波器设计外文文献

学科分类号本科毕业设计题目(中文):基于DSP的IIR滤波器设计(英文):The Design of IIR Filter Basedon DSP Chip姓名学号院(系)专业、年级指导教师二〇年月目录摘要 (1)Abstract. (2)1 绪论 (2)1.1 认识数字信号处理和IIR数字滤波器 (3)1.2 数字滤波器的实现方法 (4)1.3 主要研究内容 (6)2 滤波器原理基础 (6)2.1 IIR数字滤波器的优缺点 (7)2.2 IIR数字滤波器的设计方法和原理 (9)2.2.1 脉冲响应不变法 (12)2.2.2 双线性变换法 (14)2.3 IIR滤波器的基本结构 (17)3 IIR滤波器的设计过程及DSP的实现 (21)3.1 IIR滤波器的设计过程 (21)3.2 DSP系统的设计流程 (22)3.3 IIR数字滤波器在DSP上的实现 (22)参考文献 (27)附录 (28)致谢 (31)外文文献译文......................................................................................... 1-3 外文文献原文基于DSP的IIR滤波器设计摘要:数字信号处理(Digital Signal Processing,DSP)是一门涉及许多学科而又广泛应用于众多领域的新兴学科。
早在20世纪60年代,数字信号处理(即信号的数字化及数字处理)理论已经被被提出,到20世纪70年代,DSP理论和算法基础才被人提出。
不久之后,1982年世界上第一枚DSP芯片诞生了。
这枚DSP芯片在当时运算速度很快,尤其是在编码解码和语音合成方面得到广泛应用。
随着科学技术的飞速发展,数字化硬件技术得到长足的发展,这就带动了数字信号处理的飞速发展,也使得它得到了很多的实际应用,由此奠定了DSP这一词的地位。
之后,DSP芯片的科研不断推陈出新,每一代的DSP芯片都向着使运算速度更快、精度更高的目标发展,应用于通信、语音、医疗、仪器仪表和家用电器等人类生产生活的各个领域。
IIR数字滤波器的设计

IIR数字滤波器的设计电子信息科学与技术专业学生:鲁剑波指导老师:乔闹生摘要:IIR数字滤波器是经典数字滤波器的一种。
介绍了怎样运用MATLAB这一编程效率高、形象直观的可视化软件来设计无限脉冲响应(IIR)数字滤波器的方法和步骤。
给出了运用MATLAB设计无限脉冲响应(IIR)数字滤波器的方法:间接法。
该方法主要是先设计模拟滤波器,再进行s-z平面转换而达到设计目的。
关键词:滤波器,IIR数字滤波器,设计,MATLABDesign of IIR Digital FilterElectronics and Information Science and TechnologyCandidate: Lu JianboAdvisor: Qiao NaoshengAbstract: IIR digital filter is one kind of the classical digital filter. Method and step of limitless pulse respond digital filter are introduced by MATLAB that have high efficiency and visual as an image visual software. Indirect method of designing infinite impulse respond digital filter by MATLAB is given. The method is to design the simulation filter at first, and then change s-z level to achieve the design purpose. Keywords: filter, IIR digital filter, design, MA TLAB引言IIR数字滤波器属于经典数字滤波器中的一种,在很多领域中有着广泛的应用。
matlab iir低通滤波器设计

I. 简介Matlab是一种非常常用的科学计算软件,它广泛用于信号处理、图像处理、控制系统等领域。
在信号处理中,IIR(Infinite Impulse Response)滤波器是一种常见的数字滤波器,常被用于模拟滤波、数字滤波等应用中。
这篇文章将介绍如何使用Matlab进行IIR低通滤波器的设计。
II. 什么是IIR低通滤波器1. IIR滤波器IIR滤波器是一种数字滤波器,其特点是其单位脉冲响应是无限长的。
它通常具有较为复杂的频率响应特性,且具有较小的阶数,能够更好地逼近某些复杂的频率响应曲线。
IIR滤波器分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
2. 低通滤波器低通滤波器是一种常见的滤波器,其特点是只允许低频信号通过,而抑制高频信号。
在信号处理中,低通滤波器常被用于去除高频噪声、提取低频信号等应用中。
III. Matlab中的IIR低通滤波器设计1. 使用Matlab进行IIR低通滤波器设计Matlab提供了丰富的信号处理工具箱,包括了数字滤波器设计工具。
在Matlab中,可以使用函数butter、cheby1、cheby2、ellip等来设计IIR低通滤波器。
2. 设计步骤设计IIR低通滤波器的一般步骤如下:a. 确定通带和阻带的频率范围b. 选择滤波器的通带和阻带的最大允许衰减c. 选择滤波器的类型(Butterworth、Chebyshev等)以及阶数d. 使用Matlab中相应的函数设计滤波器e. 对设计的滤波器进行频率响应分析IV. 实例分析以下是一个在Matlab中设计IIR低通滤波器的简单实例:设计IIR低通滤波器fs = 1000; 采样频率fpass = 100; 通带截止频率fstop = 200; 阻带截止频率apass = 1; 通带最大允许衰减astop = 80; 阻带最小要求衰减[num, den] = butter(4, fpass/(fs/2), 'low');freqz(num, den, 512, fs); 绘制滤波器频率响应曲线V. 结论使用Matlab进行IIR低通滤波器设计是一种简单而有效的方法。
iir数字滤波器的文献综述

文献综述一、前言数字滤波器具有稳定、重复性好、适应性强、性能优异、线性相位等优点。
数字滤波器以冲激响应延续长度可分为两类:FIR滤波器(有限冲激响应滤波器)、IIR滤波器(无限冲激响应滤波器)。
其中FIR滤波器的优点是:稳定性好,因为没有极点;精度高,因为它对以前的事件只有有限的记忆,积累误差小;易于计算机辅助设计,保证精度和线性相位。
缺点是:要达到高性能,需要许多系数,要做较多的乘法操作,计算量大。
而IIR滤波器的优点是:结构简单、系数少乘法操作少、效率高;与模拟滤波器有对应关系;可以解析控制,强制系统在特定点为零点;易于计算机辅助设计。
缺点是:因为有极点,设计时要小心稳定性;因为它对以前的事件有长的记忆,易产生溢出、噪声、误差。
数字滤波器的设计一般都要经过3个步骤:确定指标、逼近和实现。
(1)确定指标:在设计一个滤波器之前,必须首先确定一些技术指标,这些技术指标需要根据工程实际的需要来制定。
指标的形式一般确定为频域中的幅度和相位响应;(2)逼近:确定了滤波器的技术指标后,就可以利用数学和DSP的基本原理提出一个滤波器模型来逼近给定的目标;(3)实现:我们得到了以差分或系统函数或冲激响应描述的滤波器,可以通过硬件或软件来实现。
FIR数字滤波器设计方法有窗函数、频率取样和切比雪夫等波纹优化设计方法:(1)窗函数法:窗函数法设计的基本思想是把给定的频率响应通过IDTFT (Inverse Discrete Time Fourier Transform ),求得脉冲响应,然后利用加窗函数对它进行截断和平滑,以实现一个物理可实现且具有线性相位的HR滤波器的设计目的。
其核心是从给定的频率特性,通过加窗确定有限长单位脉冲响应序列h(n);(2)频率取样法:频率取样法设计的基本思想是把给出的理想频率响应进行取样,通过IDFT从频谱样点直接求得有限脉冲响应;(3)优化设计法:FIR滤波器的优化设计采用“等波纹最佳一致逼近”理论,利用MATLAB 提供的remez函数实现Parks McClellan算法,设计滤波器逼近理想频率响应。
数字信号处理滤波器中英对照翻译

这种重新分组对应于将图 7.1.1 的直接形式实现的大加法器分成两部分,如 图 7.2.1 所示。
图 7.2..1
直接形式项的重新组合
我们可以把得到的实现看作两个滤波器的级联:一个仅由前馈项组成,另一 个由反馈项组成。很容易验证这两个滤波器是分子 N(z)和分母 1/D(z)的逆,因此 它们的级联将是
(7.1.4) 具有 L 次幂的分子和 M 次幂的分母。相应的 I/O 差分方程为:
(7.1.5)
图 7.1.2 示出了 L=m 的情况,导出了一般情况下的样本处理算法,定义了 内部状态信号: (7.1.6)
图 7.1..2 m 阶 IIR 滤波器的直接实现
它们及时更新为 (7.1.7) 这些可以很容易地显示出来,例如:
V1(n)、V2(n)、W1(n)、W2(n)的数量是滤波器的内部状态,表示在时间 n 处的 框图的延迟寄存器的内容。在以上定义中将 n 替换为 n+1,我们发现时间更新:
因此,我们可以用系统代替等式.(7.1.2):
它可以用以下重复的样本处理算法代替:
(7.1.3)
请注意,状态更新必须以相反的顺序进行(从框图中的自下而上) 。 直接形式实现可以容易地推广到任意分子和分母多项式的情形。 一个简单地 通过增加更多的延迟和相应的乘法器来扩展结构向下。在一般情况下,传递函数 是:
对于 W(z)和 Y(z)可以求解:
消除 W(z),我们发现 X(z)到 Y(z)的传递函数是原来的,即 N(z)/D(z):
在每个时间 n 中,等式(7.2.1)中的量 W(n-1)和 W(n-2)是两个共享延迟寄存
器的内容。因此,它们是滤波器的内部状态。为了确定相应的样本处理算法,我 们通过以下方式重新定义这些内部状态:
IIR数字滤波器设计有英文摘要

IIR数字滤波器设计摘要数字滤波器是具有一定传输选择特性的数字信号处理装置,其输入、输出均为数字信号,实质上是一个由有限精度算法实现的线性时不变离散系统。
它的基本工作原理是利用离散系统特性对系统输入信号进行加工和变换,改变输入序列的频谱或信号波形,让有用频率的信号分量通过,抑制无用的信号分量输出。
数字滤波器和模拟滤波器有着相同的滤波概念,根据其频率响应特性可分为低通、高通、带通、带阻等类型,与模拟滤波器相比,数字滤波器除了具有数字信号处理的固有优点外,还有滤波精度高(与系统字长有关)、稳定性好(仅运行在0与l 两个电平状态)、灵活性强等优点。
数字滤波器按单位脉冲响应的性质可分为无限长单位脉冲响应滤波器IIR和有限长单位脉冲响应滤波器(FIR)两种。
本文介绍IIR数字滤波器的设计[4]。
关键词:IIR FIRAbstractDigital filter is a digital filter has the certain transmission choicecharacteristic isdigital signal processing device, signal processing device has the certain transmission choicecharacteristic,Is essentially a realization by the finite precision arithmetic and linear time invariant discrete systems。
Its basic principle is to use the characteristics of discrete system for processing and transformation of system input signal,To change the input sequence spectrum or signal waveform,Let the signal components useful frequency by suppression of signal components, the output of useless。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
IIRDigitaFilterDesignAn important step in the development of a digital filter is the determination of a realizable transfer function G(z) approximating the given frequency response specifications. If an IIR filter is desired,it is also necessary to ensure that G(z) is stable. The process of deriving the transfer function G(z) is called digital filter design. After G(z) has been obtained, the next step is to realize it in the form of a suitable filter structure. In chapter 8,we outlined a variety of basic structures for the realization of FIR and IIR transfer functions. In this chapter,we consider the IIR digital filter design problem. The design of FIR digital filters is treated in chapter 10.First we review some of the issues associated with the filter design problem. A widely used approach to IIR filter design based on the conversion of a prototype analog transfer function to a digital transfer function is discussed next. Typical design examples are included to illustrate this approach. We then consider the transformation of one type of IIR filter transfer function into another type, which is achieved by replacing the complex variable z by a function of z. Four commonly used transformations are summarized. Finally we consider the computer-aided design of IIR digital filter. To this end, we restrict our discussion to the use of matlab in determining the transfer functions.9.1 preliminary considerationsThere are two major issues that need to be answered before one can develop the digital transfer function G(z). The first and foremost issue is the development of a reasonable filter frequency response specification from the requirements of the overall system in which the digital filter is to be employed. The second issue is to determine whether an FIR or IIR digital filter is to be designed. In the section ,we examine these two issues first .Next we review the basic analytical approach to the design of IIR digital filters and then consider the determination of the filter order that meets the prescribed specifications. We also discuss appropriate scaling of the transfer function.9.1.1 Digital Filter SpecificationsAs in the case of the analog filter,either the magnitude and/or the phase(delay) response is specified for the design of a digital filter for most applications. In some situations, the unit sample response or step response may be specified. In most practical applications, the problem of interest is the development of a realizable approximation to a given magnitude response specification. As indicated in section 4.6.3, the phase response of the designed filter can be corrected by cascading it with an allpass section. The design of allpass phase equalizers has received a fair amount of attention in the last few years. We restrict our attention in this chapter to the magnitude approximation problem only. We pointed out in section 4.4.1 that there are four basic types of filters,whose magnitude responses are shown in Figure 4.10. Since the impulse response corresponding to each of these is noncausal and of infinite length, these ideal filters are not realizable. One way of developing a realizable approximation to these filter would be to truncate the impulse response as indicated in Eq.(4.72) for a lowpass filter. The magnitude response of the FIR lowpass filter obtained by truncating the impulse response of the ideal lowpass filter does not have a sharp transition from passband to stopband but, rather, exhibits a gradual "roll-off."Thus, as in the case of the analog filter design problem outlined in section 5.4.1, the magnitude response specifications of a digital filter in the passband and in the stopband are given with some acceptable tolerances. In addition, a transition band is specified between the passband and the stopband to permit the magnitude to drop off smoothly. For example, the magnitude )(j e G of a lowpass filter may be given as shown in Figure7.1. As indicated in the figure, in the passband defined by 0p ωω≤≤, we require that the magnitude approximates unity with an error of p δ±,i.e.,p p j p for e G ωωδδω≤+≤≤-,1)(1.In the stopband, defined by πωω≤≤s ,we require that the magnitude approximates zero with an error of i s ,δ.e.,,)(s j e G δω≤ forπωω≤≤s . The frequencies p ω and s ω are , respectively, called the passband edge frequency and the stopband edge frequency. The limits of the tolerances in the passband and stopband, p δ and s δ, are usually called the peak ripple values. Note that the frequency response )(ωj e G of a digital filter is a periodic function of ω,and the magnitude response of a real-coefficient digital filter is an even function ofω. As a result, the digital filter specifications are given only for the range πω≤≤0.Digital filter specifications are often given in terms of the loss function,)(log 20)(10ωωζj e G -=, in dB. Here the peak passband ripplep α and the minimum stopband attenuations α are given in dB,i.e., the loss specifications of a digitalfilter are given bydB p p )1(log 2010δα--=,dB s s )(log 2010δα-=.9.1 Preliminary ConsiderationsAs in the case of an analog lowpass filter, the specifications for a digital lowpass filter may alternatively be given in terms of its magnitude response, as in Figure 7.2. Here the maximum value of the magnitude in the passband is assumed to be unity, and themaximum passband deviation, denoted as 1/21ε+,is given by the minimum value of the magnitude in the passband. The maximum stopband magnitude is denoted by 1/A.For the normalized specification, the maximum value of the gain function or the minimum value of the loss function is therefore 0 dB. The quantity max α given bydB )1(log 20210max εα+=Is called the maximum passband attenuation. Forp δ<<1, as is typically the case, itcan be shown thatp p αδα2)21(log 2010max ≅--≅ The passband and stopband edge frequencies, in most applications, are specified in Hz, along with the sampling rate of the digital filter. Since all filter design techniques are developed in terms of normalized angular frequencies p ω and s ω,the sepcified critical frequencies need to be normalized before a specific filter design algorithm can be applied. Let T F denote the sampling frequency in Hz, and F P and F s denote, respectively,the passband and stopband edge frequencies in Hz. Then the normalized angular edge frequencies in radians are given byT F F F F p TpT p p ππω22==Ω= T F F F F s T s T s s ππω22==Ω= 9.1.2 Selection of the Filter TypeThe second issue of interest is the selection of the digital filter type,i.e.,whether an IIR or an FIR digital filter is to be employed. The objective of digital filter design is to develop a causal transfer function H(z) meeting the frequency response specifications. For IIR digital filter design, the IIR transfer function is a real rational function of 1-z . H(z)=N MdNzz d z d d pMz z p z p p ------++++++++ (2211022110)Moreover, H(z) must be a stable transfer function, and for reduced computational complexity, it must be of lowest order N. On the other hand, for FIR filter design, the FIR transfer function is a polynomial in 1-z:∑=-=Nnnz nhzH] [)(For reduced computational complexity, the degree N of H(z) must be as small as possible.In addition, if a linear phase is desired, then the FIR filter coefficients must satisfy the constraint:][][Nnhnh-±=T here are several advantages in using an FIR filter, since it can be designed with exact linear phase and the filter structure is always stable with quantized filter coefficients. However, in most cases, the order N FIR of an FIR filter is considerably higher than the order N IIR of an equivalent IIR filter meeting the same magnitude specifications. In general, the implementation of the FIR filter requires approximately N FIR multiplications per output sample, whereas the IIR filter requires 2N IIR+1 multiplications per output sample. In the former case, if the FIR filter is designed with a linear phase, then the number of multiplications per output sample reduces to approximately (N FIR+1)/2. Likewise, most IIR filter designs result in transfer functions with zeros on the unit circle,and the cascade realization of an IIR filter of orderIIRN with all of the zeros on the unitcircle requires [(3IIRN+3)/2] multiplications per output sample. It has been shown that for most practical filter specifications, the ratio N FIR/N IIR is typically of the order of tens or more and, as a result, the IIR filter usually is computationally more efficient[Rab75]. However ,if the group delay of the IIR filter is equalized by cascading it with an allpass equalizer, then the savings in computation may no longer be that significant [Rab75]. In many applications, the linearity of the phase response of the digital filter is not an issue,making the IIR filter preferable because of the lower computational requirements.9.1.3 Basic Approaches to Digital Filter DesignIn the case of IIR filter design, the most common practice is to convert the digital filter specifications into analog lowpass prototype filter specifications, and then to transform it into the desired digital filter transfer function G(z). This approach has been widely used for many reasons:(a) Analog approximation techniques are highly advanced.(b) They usually yield closed-form solutions.(c) Extensive tables are available for analog filter design.(d) Many applications require the digital simulation of analog filters.In the sequel, we denote an analog transfer function as)()()(s D s P s H a a a =, Where the subscript "a" specifically indicates the analog domain. The digital transfer function derived form H a (s) is denoted by)()()(z D z P z G = The basic idea behind the conversion of an analog prototype transfer function H a (s) into a digital IIR transfer function G(z) is to apply a mapping from the s-domain to the z-domain so that the essential properties of the analog frequency response are preserved. The implies that the mapping function should be such that(a) The imaginary(j Ω) axis in the s-plane be mapped onto the circle of the z-plane.(b) A stable analog transfer function be transformed into a stable digital transfer function.To this end,the most widely used transformation is the bilinear transformation described in Section 9.2.Unlike IIR digital filter design,the FIR filter design does not have any connection with the design of analog filters. The design of FIR filter design does not have anyconnection with the design of analog filters. The design of FIR filters is therefore based on a direct approximation of the specified magnitude response,with the often added requirement that the phase response be linear. As pointed out in Eq.(7.10), a causal FIR transfer function H(z) of length N+1 is a polynomial in z -1 of degree N. The corresponding frequency response is given by∑=-=N n n j j en h e H 0][)(ωω.It has been shown in Section 3.2.1 that any finite duration sequence x[n] of length N+1 is completely characterized by N+1 samples of its discrete-time Fourier transfer X(ωj e ). As a result, the design of an FIR filter of length N+1 may be accomplished by finding either the impulse response sequence {h[n]} or N+1 samples of its frequency response )H(e j ω. Also, to ensure a linear-phase design, the condition of Eq.(7.11) must be satisfied. Two direct approaches to the design of FIR filters are the windowed Fourier series approach and the frequency sampling approach. We describe the former approach in Section 7.6. The second approach is treated in Problem 7.6. In Section 7.7 we outline computer-based digital filter design methods.作者:Sanjit K.Mitra国籍:USA出处:Digital Signal Processing -A Computer-Based Approach 3eIIR数字滤波器的设计在一个数字滤波器发展的重要步骤是可实现的传递函数G(z)的接近给定的频率响应规格。