飞机的气动布局与机翼的几何参数

合集下载

翼型及其气动性能参数的基本概念及应用

翼型及其气动性能参数的基本概念及应用

翼型及其气动性能参数的基本概念及应用翼型是指飞机、鸟类等载体所采用的具有特定截面形状的部件,它决定了载体的飞行性能。

在飞行器领域,翼型的气动性能参数是设计和优化翼型的基础。

本文将介绍翼型及其气动性能参数的基本概念及其应用。

1. 翼型翼型是由上、下表面、前缘和后缘构成的一个二维曲面,在飞行器领域有着广泛的应用。

翼型的形状对飞行器的气动性能影响非常大,关系着飞行器的升力、阻力、气动失速特性等。

2. 翼型气动性能参数翼型气动性能参数是指翼型概念设计和优化的基础,常见的翼型气动性能参数有:2.1 升力系数升力系数是指翼型受气动力作用产生的升力与翼展面积之比,记为Cl。

在翼型设计中,通常需要通过改变翼型的几何形状、攻角等因素来达到一定的升力系数。

升力系数可以用来评估翼型的升力性能,并与翼型的阻力系数相结合来评估翼型的性能。

2.2 阻力系数阻力系数是指翼型受气动力作用产生的阻力与翼展面积之比,记为Cd。

阻力系数是评估翼型阻力性能的重要参数,与翼型的升力系数一起可以用来评估翼型的综合气动性能。

2.3 气动中心位置气动中心位置是指翼型在气动力作用下产生的力和力矩中心,它是设计翼型和确定飞行器平衡特性的重要参数。

2.4 失速速度失速速度是指翼型在攻角增加到一定程度时失去升力的速度。

失速速度是评估翼型失速性能的关键参数之一。

3. 应用翼型的气动性能参数对于飞行器的设计、优化和性能评估都有着重要的应用价值。

例如,在飞机设计和优化中,可以通过改变翼型几何形状、攻角等因素来达到一定的升力、阻力和失速性能要求。

在飞行器的性能评估中,可以通过分析翼型的气动性能参数来评估飞行器的升力、阻力、气动稳定性等性能特征。

总之,翼型及其气动性能参数是飞行器设计和优化的基础,深入了解和掌握翼型的基本概念和气动性能参数,对于提高飞行器的性能、减小飞行器的阻力和增加飞行器的升力等都具有重要的意义。

飞机翼型的主要几何参数

飞机翼型的主要几何参数

飞机翼型的主要几何参数
1.翼展:翼展是指飞机两个翼端之间的距离。

它决定了翼的长度和形状,是飞机的重要尺寸参数之一、翼展直接影响了飞机的机动性和操纵性能。

2.翼弦:翼弦是指垂直于机身的尺寸,在飞机翼的前缘和后缘之间的距离。

翼弦的变化会影响翼型的厚度和剖面以及气动性能。

3.翼展梢长:翼展梢长是指翼的后缘从翼根到梢端的长度。

翼展梢长的变化会影响飞机的升力分布和阻力特性,对行驶和进近时的操纵性能具有重要影响。

4.翼面积:翼面积是指飞机翼的总表面积。

它是计算飞机升力的重要参数,也直接影响飞机的起飞和降落性能以及滑行阻力。

5.翼厚:翼厚是指飞机高度方向上翼的厚度。

翼厚对飞机的升力和阻力产生影响。

较厚的翼厚能够提供更大的升力,但也会增加阻力。

6.剖面:飞机翼的剖面是指飞机翼在垂直于翼弦方向上的形状。

这个形状通常由一系列的气动和几何特性参数描述,如前缘、后缘、最大厚度位置等。

剖面的形状决定了飞机在飞行过程中的气动性能和阻力特征。

除了以上主要的几何参数,还有一些次要的几何参数也对飞机翼型的设计和性能产生影响,如后掠角、前掠角、扭曲角等。

这些参数描述了翼的倾斜和变形情况,对飞机的操纵性、稳定性和阻力特性产生影响。

总结起来,飞机翼型的主要几何参数包括翼展、翼弦、翼展梢长、翼面积、翼厚和剖面等。

这些参数共同决定了飞机的机动性、升力和阻力特性,对飞机设计和性能有着重要的影响。

飞机的气动布局和机翼几何参数

飞机的气动布局和机翼几何参数

与机翼的几何参数往飞行是从模仿鸟类飞行开始的。

但是由于鸟类飞行机理的复杂性,至今未能对扑翼机模仿成功。

促使人们遨游天空的,也许是受中国风筝的启发,在航空之父凯利的科学理论指导下,将动力和升力面分开考虑,而发明了固定翼飞机。

二十世纪人类史最伟大的科学成就。

是人类最快捷、舒适、高效、安全的交通运输工具,在国家安全、社会和国民经济的发展中占有极其重要的地位。

史之乱蒙冤沦为囚犯,被流放到白帝城后,朝廷大赦天下,他立刻返舟东下,重出三峡,欣喜的心情无法言表:帝彩云间,千里江陵一日还。

两岸猿声啼不住,轻舟已过万重山。

白乘飞机,不知如何写佳作。

是否同意写成如下:帝彩云间,千里江陵一时还。

两耳风声鸣不住,轻机已过万重山。

飞翔,必须做到:的气动外形的结构的动力定的速度的操纵机构系统同,飞机在空中能够飞行是依靠与空气的相对运动,而产生作用在飞机上的力和力矩来实现的。

如对于水平等速直线飞行而言,从飞机受力条件,有L V¥(升力与重力平衡)D//V¥(推力与阻力平衡)(俯仰力矩保持守恒)必须具备的条件:飞机在空中飞行是靠作用于飞机上的空气动力)。

此外,喷气发动机的氧气也是取源于空气。

一定的飞行速度(飞机和空气之间要有一定的相对运动,产生空气动力)。

的气动外形、受力大小和飞行姿态。

保持和改变飞行状态的能力。

布局型的飞机、不同的速度、不同的飞行任务,飞机的气动布局是不同的。

机的气动布局?飞机主要部件的尺寸、形状、数量、及其相互位置。

件有:推进系统、机翼、机身、尾翼(平尾、立尾)、起落架等。

连接的相互位置分为:有无上反角分为:分为:的相对纵向位置分为:花八门、多种多样,有平直的,有三角的,有后掠的,也有前掠的等等。

然而,不论采用什么样的形状,设计者都必须使飞机具有良好的气动外形,并且使良好的气动外形,是指升力大、阻力小、稳定操纵性好。

美国战术运输机C-130上单翼、平直机翼、4发翼下吊布置、正常式布局F-22猛禽—当今世界最先进的第四代战斗机中单翼、双发、梯形翼、双立尾正常式喷火战斗机—英国第二次世界大战名机下单翼、椭圆形机翼、正常式布局B-52远程战略轰炸机(同温层堡垒)上单翼、4发翼下吊、后掠翼、正常式布局协和号超声速客机(Ma=2.04)双发三角形机翼布局A380客机远程宽身运输机下单翼、四发翼下吊、后掠翼、正常式布局S37前掠翼战斗机(三翼面布局)数采用上单翼(便于装货)--下单翼布局、后掠翼、正常式布局运行经济,座舱噪声低,视野宽)部放置货物)数采用中或下单翼,三角翼、大后掠翼正常或鸭式布局力小、机动灵活、失速迎角大),沿机翼对称面翼型弦线,向后为正;,机翼对称面内,与x轴正交,向上为正;,与x、y轴构成右手坐标系,向左为正。

机翼的几何外形和气动力和气动力矩

机翼的几何外形和气动力和气动力矩

2.2超音速翼型的升力 如图是超音速以小迎角绕双弧翼型的流动
当α <δ ,前缘上下均受压缩,形 成强度不同的斜激波;当α>δ ,上
面形成膨胀波 ,下面形成斜激波;
经一系列膨胀波后,由于在后缘处 流动方向和压强不一致,从而形成 两道斜激波,或一道斜激波一族膨 胀波。由于上翼面压强低于下翼面, 因此形成升力。
垂直于翼面)和摩擦切应力(与翼面相切),它们将产生一 个合力R,合力的作用点称为压力中心,合力在来流方向的分 量为阻力X,在垂直于来流方向的分量为升力Y。
N ( p cos sin )ds A ( cos p sin )ds
R
A2 N 2
1.4
翼型的空气动力系数
1.3 低速翼型的低速气动特性概述
(4)随着迎角的增大,驻点逐渐后移,最大速度点越靠近前 缘,最大速度值越大,上下翼面的压差越大,因而升力越大。 (5)气流到后缘处,从上下翼面平顺流出,因此后缘点不一
定是后驻点。
1.5 低速翼型的低速气动特性概述
翼型绕流气动力系数随迎角的变化曲线 一个翼型的气动特性,通常用曲线表示。有升力系数
S c pj c
1. 2 机翼的平面几何参数
展弦比:翼展b和平均几何弦长cpj的比值叫做展弦比,用λ表 示,其计算公式可表示为:
b c pj
展弦比也可以表示为翼展的平方于机翼面积的比值。
b2 S
展弦比越大,机翼的升力系数越大,但阻力也增大。高速飞 机一般采用小展弦比的机翼。 根梢比:根梢比是翼根弦长c0与翼尖弦长c1的比值,一般用η
表示,
c0 c1
1.2 机翼的平面几何参数
梢根比:梢根比是翼尖弦长c1与翼根弦长c0的比值,一般用ξ 表示,

常见飞行器气动参数或气动模型

常见飞行器气动参数或气动模型

常见飞行器气动参数或气动模型一、气动参数1. 参考面积(Reference Area):指飞行器所受气动力和气动力矩计算所采用的参考面积,通常以机翼参考面积为主。

2. 升力系数(Lift Coefficient):是描述飞行器升力大小的无量纲参数,用CL表示。

它是升力与动压和参考面积的比值,即CL = Lift / (0.5 * ρ * V^2 * S),其中ρ为空气密度,V为飞行速度,S为参考面积。

3. 阻力系数(Drag Coefficient):是描述飞行器阻力大小的无量纲参数,用CD表示。

它是阻力与动压和参考面积的比值,即CD = Drag / (0.5 * ρ * V^2 * S)。

4. 升阻比(L/D Ratio):指飞行器产生升力与阻力的比值,即L/D = Lift / Drag。

升阻比越大,飞行器的滑行距离越短,燃油消耗也越低。

5. 抗阻形状系数(Form Drag Coefficient):描述飞行器由于外形造成的阻力大小,包括与速度平方成正比的压力阻力和与速度的一次方成正比的摩擦阻力。

6. 诱导阻力系数(Induced Drag Coefficient):描述飞行器由于产生升力而产生的阻力大小,主要与升力系数和升力分布相关。

诱导阻力主要由翼尖涡引起。

7. 压力阻力系数(Pressure Drag Coefficient):描述飞行器由于气流压力变化而产生的阻力大小,主要与形状相关。

8. 摩擦阻力系数(Skin Friction Drag Coefficient):描述飞行器由于气流与飞行器表面摩擦而产生的阻力大小,主要与表面粗糙度相关。

9. 升力线性度(Linearity of Lift):指飞行器升力系数与迎角之间的线性关系程度。

线性度越好,飞行器的稳定性和控制性能越好。

10. 迎角(Angle of Attack):指飞行器机身或机翼与飞行方向之间的夹角。

适当的迎角可以增加升力和阻力,但超过一定范围会导致失速。

翼型的几何参数及其发展

翼型的几何参数及其发展

翼型的几何参数及其发展1、翼型的定义与研究发展在飞机的各种飞行状态下,机翼是飞机承受升力的主要部件,而立尾和平尾是飞机保持安定性和操纵性的气动部件。

一般飞机都有对称面,如果平行于对称面在机翼展向任意位置切一刀,切下来的机翼剖面称作为翼剖面或翼型。

翼型是机翼和尾翼成形重要组成部分,其直接影响到飞机的气动性能和飞行品质。

通常飞机设计要求,机翼和尾翼的尽可能升力大、阻力小、并有小的零升俯仰力矩。

因此,对于不同的飞行速度,机翼的翼型形状是不同的。

对于低亚声速飞机,为了提高升力系数,翼型形状为圆头尖尾形;对于高亚声速飞机,为了提高阻力发散Ma数,采用超临界翼型,其特点是前缘丰满、上翼面平坦、后缘向下凹;对于超声速飞机,为了减小激波阻力,采用尖头、尖尾形翼型。

第一次最早的机翼是模仿风筝的,在骨架上张蒙布,基本上是平板。

在实践中发现弯板比平板好,能用于较大的迎角范围。

1903年莱特兄弟研制出薄而带正弯度的翼型。

儒可夫斯基的机翼理论出来之后,明确低速翼型应是圆头,应该有上下缘翼面。

圆头能适应于更大的迎角范围。

一战期间,交战各国都在实践中摸索出一些性能很好的翼型。

如儒可夫斯基翼型、德国Gottingen 翼型,英国的RAF 翼型(Royal Air Force 英国空军;后改为RAE 翼型---Royal Aircraft Estabilishment 皇家飞机研究院),美国的Clark-Y 。

三十年代以后,美国的NACA 翼型(National Advisory Committee for Aeronautics ,后来为NASA ,National Aeronautics and Space Administration ),前苏联的ЦАΓИ翼型(中央空气流体研究院)。

2、翼型的几何参数翼型的最前端点称为前缘点,最后端点称为后缘点。

前缘点也可定义为:以后缘点为圆心, 画一圆弧,此弧和翼型的相切点即是前缘点。

前后缘点的连线称为翼型的几何弦。

固定翼无人机技术-机翼空气动力特性

固定翼无人机技术-机翼空气动力特性

脱体涡的法洗效应和切洗效应
涡升力的产生及对升力系数的影响
展弦比为1,迎角为20°的三角翼各个横截面上的压力分布图。从图上可以看出, 机翼上表面在脱体涡覆盖的区域内,吸力很大。。
4.4
翼型的亚声速气动特性
机翼高速气动特性
翼型的跨声速气动特性 翼型的超声速气动特性
后掠翼和三角翼的高速气动特性
翼型的亚声速气动特性
机翼的有关角度
01
后掠角(χ)
后掠角是指机翼上有代 表性的等百分弦线在xOz 平面上的投影与Oz轴之 间的夹角。后掠角的大 小表示机翼向后倾斜的 程度。称为前缘后掠角 ,称为1/4弦线后掠角, 称为后缘后掠角。
02
03
04
几何扭转角(φ) 上(下)反角(Ψ)
机翼安装角
机翼展向任一剖面处翼型 弦线与翼根剖面处弦线的 夹角称为几何扭转角。上 扭为正,下扭为负。除了 几何扭转角以外还有气动 扭转角,指平行于机翼对 称面的任一翼剖面的零升 力线与翼根剖面零升力线 之间的夹角。
空气流过后掠翼的流动情形
通过实验可以看到,空气流过后掠翼,流线将左右偏斜呈“S”形。
经过前缘以后,空气在流向最低压力 点的途中,有效分速又逐渐加快,平 行分速仍保持不变,气流方向又从翼 尖转向翼根。随后,又因有效分速逐 渐减慢,气流方向转向原来方向。于 是,整个流线呈“S”形弯曲。
后掠翼的翼根效应和翼尖效应
CL
d CL d
d(CL n cos2 ) d(n cos)
dCL n dn
cos
(CL )n
cos
后掠翼升阻特性
各种不同后掠角的机翼升力系数斜率(Cy )随展弦比(λ)的变化曲线。由图 可以看出,当λ一定时,后掠角增大,Cy 减小。而当后掠角一定时,λ减小,Cy 也减小。这是由于展弦比减小时,翼尖涡对机翼上下表面均压作用增强的缘故。

翼型的几何参数及其发展

翼型的几何参数及其发展

翼型的几何参数及其发展1、翼型的定义与研究发展在飞机的各种飞行状态下,机翼是飞机承受升力的主要部件,而立尾和平尾是飞机保持安定性和操纵性的气动部件。

一般飞机都有对称面,如果平行于对称面在机翼展向任意位置切一刀,切下来的机翼剖面称作为翼剖面或翼型。

翼型是机翼和尾翼成形重要组成部分,其直接影响到飞机的气动性能和飞行品质。

通常飞机设计要求,机翼和尾翼的尽可能升力大、阻力小、并有小的零升俯仰力矩。

因此,对于不同的飞行速度,机翼的翼型形状是不同的。

对于低亚声速飞机,为了提高升力系数,翼型形状为圆头尖尾形;对于高亚声速飞机,为了提高阻力发散Ma数,采用超临界翼型,其特点是前缘丰满、上翼面平坦、后缘向下凹;对于超声速飞机,为了减小激波阻力,采用尖头、尖尾形翼型。

第一次最早的机翼是模仿风筝的,在骨架上张蒙布,基本上是平板。

在实践中发现弯板比平板好,能用于较大的迎角范围。

1903年莱特兄弟研制出薄而带正弯度的翼型。

儒可夫斯基的机翼理论出来之后,明确低速翼型应是圆头,应该有上下缘翼面。

圆头能适应于更大的迎角范围。

一战期间,交战各国都在实践中摸索出一些性能很好的翼型。

如儒可夫斯基翼型、德国Gottingen翼型,英国的RAF翼型(Royal Air Force英国空军;后改为RAE翼型---Royal Aircraft Estabilishment 皇家飞机研究院),美国的Clark-Y。

三十年代以后,美国的NACA翼型(National AdvisoryCommittee for Aeronautics,后来为NASA,National Aeronautics and Space Administration ),前苏联的ЦАΓИ翼型(中央空气流体研究院)。

2、翼型的几何参数翼型的最前端点称为前缘点,最后端点称为后缘点。

前缘点也可定义为:以后缘点为圆心,画一圆弧,此弧和翼型的相切点即是前缘点。

前后缘点的连线称为翼型的几何弦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

飞机的气动布局与机翼的几何参数
人类向往飞行是从模仿鸟类飞行开始的。

但是由于鸟类飞行机理的复杂性,至今未能对扑翼机模仿成功。

而真正促使人们遨游天空的,也许是受中国风筝的启发,在航空之父凯利的科学理论指导下,将动力和升力面分开考虑,而发明了固定翼飞机。

飞机是二十世纪人类史最伟大的科学成就。

是人类最快捷、舒适、高效、安全的交通运输工具,在国家安全、社会和国民经济的发展中占有极其重要的地位。

当年李白受安史之乱蒙冤沦为囚犯,被流放到白帝城后,朝廷大赦天下,他立刻返舟东下,重出三峡,欣喜的心情无法言表:
朝辞白帝彩云间,千里江陵一日还。

两岸猿声啼不住,轻舟已过万重山。

如果李白乘飞机,不知如何写佳作。

是否同意写成如下:
朝辞白帝彩云间,千里江陵一时还。

两耳风声鸣不住,轻机已过万重山。

人类要想自由飞翔,必须做到:
1、必须有良好的气动外形
2、必须有轻巧的结构
3、必须有相当的动力
4、必须达到一定的速度
5、必须有机敏的操纵机构
6、必须有导航系统
与鸟的飞行不同,飞机在空中能够飞行是依靠与空气的相对运动,而产生作用在飞机上的力和力矩来实现的。

如对于水平等速直线飞行而言,从飞机受力条件,有 L=G L V(升力与重力平衡)
F=D D//V(推力与阻力平衡)
M=0 (俯仰力矩保持守恒)
飞机产生升力必须具备的条件:
(1)有空气(飞机在空中飞行是靠作用于飞机上的空气动力)。

此外,喷气发动机的氧气也是取源于空气。

(2)必须存在一定的飞行速度(飞机和空气之间要有一定的相对运动,产生空气动力)。

(3)要有适当的气动外形、受力大小和飞行姿态。

(4)必须存在保持和改变飞行状态的能力。

1、飞机的气动布局
不同类型的飞机、不同的速度、不同的飞行任务,飞机的气动布局是不同的。

何为飞机的气动布局?
广义而言:指飞机主要部件的尺寸、形状、数量、及其相互位置。

飞机的主要部件有:推进系统、机翼、机身、尾翼(平尾、立尾)、起落架等。

按机翼和机身连接的相互位置分为:
按机翼弦平面有无上反角分为:
按立尾的数量分为:
按机翼与平尾的相对纵向位置分为:
2、机翼的形状
机翼的外形五花八门、多种多样,有平直的,有三角的,有后掠的,也有前掠的等等。

然而,不论采用什么样的形状,设计者都必须使飞机具有良好的气动外形,并且使结构重量尽可能的轻。

所谓良好的气动外形,是指升力大、阻力小、稳定操纵性好。

美国战术运输机C-130
上单翼、平直机翼、4发翼下吊布置、正常式布局
F-22猛禽—当今世界最先进的第四代战斗机中单翼、双发、梯形翼、双立尾正常式
喷火战斗机—英国第二次世界大战名机
下单翼、椭圆形机翼、正常式布局
B-52远程战略轰炸机(同温层堡垒)
上单翼、4发翼下吊、后掠翼、正常式布局
协和号超声速客机(Ma=2.04)
双发三角形机翼布局
A380客机远程宽身运输机
下单翼、四发翼下吊、后掠翼、正常式布局
S37前掠翼战斗机(三翼面布局)
一般而言:
运输机----多数采用上单翼(便于装货)
高亚音速客机---下单翼布局、后掠翼、正常式布局
(升阻比大,运行经济,座舱噪声低,视野宽)
(在机身下半部放置货物)
战斗机----多数采用中或下单翼,三角翼、大后掠翼正常或鸭式布局
(速度快、阻力小、机动灵活、失速迎角大)
3、坐标系定义
x轴:机翼纵轴,沿机翼对称面翼型弦线,向后为正;
y轴:机翼竖轴,机翼对称面内,与x轴正交,向上为正;
z轴:机翼横轴,与x、y轴构成右手坐标系,向左为正。

机翼平面形状机翼上反角机翼几何扭转以下是用来衡量机翼气动外形的主要几何参数:
翼展:翼展是指机翼左右翼尖之间的长度,一般用l表示。

机翼面积:是指机翼在oxz平面上的投影面积,一般用S表示。

翼弦:翼弦是指机翼沿机身方向的弦长。

除了矩形机翼外,机翼不同地方的翼弦不一样,有翼根弦长b0、翼尖弦长b。

几何平均弦长b定义为
展弦比:翼展l和平均几何弦长b的比值叫做展弦比,用λ表示,其计算公式可表示为:
展弦比也可以表示为翼展的平方与翼面积的比值。

展弦比越大,机翼的升力系数越大,但阻力也增大。

高速飞机一般采用小展弦比的机翼。

根梢比:根梢比是翼根弦长b0与翼尖弦长b的比值,一般用η表示,
梢根比:是指翼尖弦长b与翼根弦长b0的比值,一般用ξ表示。

上反角 ---指机翼弦平面和xoz平面的夹角,当机翼有扭转时,则是指扭转轴和xoz平面的夹角。

当上反角为负时,就变成了下反角。

低速机翼采用一定的上反角可改善横向稳定性。

=+70 --- -30。

后掠角:后掠角是指机翼与机身轴线的垂线之间的夹角。

后掠角又包括:
前缘后掠角-------机翼前缘与机身轴线的垂线之间的夹角,一般用χ0表示。

后缘后掠角--------机翼后缘与机身轴线的垂线之间的夹角,一般用χ表示。

1/4弦线后掠角------机翼1 /4弦线与机身轴线的垂线之间的夹角,一般用χ表示。

如果飞机的机翼向前掠,则后
掠角就为负值,变成了前掠角。

几何扭转角:机翼上平行于对称面的翼剖面的弦线
相对于翼根翼剖面弦线的角度称为机翼的几何扭转角;如右图所示。

若该翼剖面的局部迎角大于翼根翼剖面的迎角,则扭转角
为正。

沿展向翼剖面的局部迎角从翼根到翼梢是减少的扭转称为外洗,扭转角为负。

反之成为内洗。

除了几何扭转角之外还有气动扭转角,指的是平行于机翼对称面任一翼剖面的零升力线和翼根翼剖面的零升力线之间的夹角。

安装角:机翼安装在机身上时,翼根翼剖面弦线与机身轴线之间的夹角称为安装角。

相关文档
最新文档