保险精算学期末复习题目
保险精算试卷一

海南医学院试题(A)(2009-2010 学年第一学期期末)考试课程:保险精算考试年级:2006医保本考试日期: 2009年11月24日考试时间:120分钟卷面总分:100分A. 7.19B. 4.04C. 3.31D.5.212.关于单利与复利的比较,下列说法错误的是(D)A.单个度量期(t=1):1+it=(1+i)t,结果相同B.较长时期(t>1):(1+i)t>1+it ,复利产生更大积累值C.较短时期(t<1):(1+i)t<1+it ,单利产生更大积累值D.单利同样长时间积累值增长的相对比率保持为常数。
而复利同样长时间积累值增长的绝对金额为常数。
3. 某人寿保险的死亡给付受益人为三个子女,给付形式为永续年金,前两个孩子第1到n年每年末平分所领取的年金,n年后所有的年金只支付给第三个孩子,若三个孩子所领取的年金现值相等,那么13n⎛⎫⎪⎝⎭)A、新契约费,维持费,营业费用,理赔费用B、投资费用,维持费,营业费用,理赔费用C、投资费用,新契约费,维持费,营业费用D、新契约费,维持费,投资费用,理赔费用8.下列哪项不是计算保单红利的方法(B)A、经验调整法B 、保费和损失结合法C 、三元素法D 、经验保费法9. 表示的是(A ) A 、死亡年年末赔付寿险精算现值两全保险 B 、死亡年年末赔付寿险精算现值定期保险 C 、死亡年年末赔付寿险精算现值延期保险 D 、死亡年年末赔付生存保险10.下列哪项不属于非年金保险(A ) A 、定期保险 B 、定期死亡保险(×)8、寿险费率一般是指每万元保额的保费(×) 9、UDD 假设下死亡即刻赔付净趸缴纯保费是死亡年末赔付净趸缴纯保费的 倍。
(√)三、名词解释:(每题4分,共20分)1、贴现率——单位货币在单位时间内的贴现额,单位时间以年度衡量时,成为实际贴现率。
2、年金——在一定时期内,按一定时间间隔所产生的现金流3、生命表——反映在封闭人口的条件下,一批人从出生后陆续死亡的全部过程的一种统计表。
保险精算学期末复习题目

1.李华1990年1月1日在银行帐户上有5000元存款,(1)在每年10%的单利下,求1994年1月1日的存款额。
(2)在年利率8%的复利下,求1994年5月1日的存款额。
解:(1)5000×(1+4×10%)=7000(元)(2)5000×(1+10%)4.33=7556.8(元)2.把5000元存入银行,前5年的银行利率为8%,后5年年利率为11%,求10年末的存款累计额。
解:5000(1+8%)5×(1+11%)5=12385(元)3.李美1994年1月1日在银行帐户上有10000元存款。
(1)求在复利11%下1990年1月1日的现值。
(2)在11%的折现率下计算1990年1月1日的现值。
解:(1)10000×(1+11%)-4=5934.51(元)(2)10000×(1-11%)4=6274.22(元)4.假设1000元在半年后成为1200元,求⑴ )2(i ,⑵ i, ⑶ )3(d 。
解:⑴ 1200)21(1000)2(=+⨯i ;所以4.0)2(==i ⑵2)2()21(1i i +=+;所以44.0=i ⑶n n m m nd d i m i ---=-=+=+)1()1(1)1()(1)(;所以, 13)3()1()31(-+=-i d ;34335.0)3(=d5.当1>n 时,证明:i idd n n <<<<)()(δ。
证明:①)(n d d <因为,+⋅-⋅+⋅-⋅=-=-3)(32)(2)(10)()()(1)1(1nd C n d C n d C C n d d n n n n n n n n n)(1n d->所以得到,)(n d d <;②δ<)(n d)1()(mn em d δ--=;mm C m C m C m ennnmδδδδδδ->-⋅+⋅-⋅+-=-1)()()(1443322所以,δδ=--<)]1(1[)(mm dn③)(n i <δi n i n n +=+1]1[)(, 即,δ=+=+⋅)1ln()1ln()(i ni n n所以,)1()(-⋅=n n e n i δm m C m C m C m e nnnnδδδδδδ+>+⋅+⋅+⋅++=1)()()(1443322δδ=-+>]1)1[()(nn in④i in <)(i ni nn +=+1]1[)(,)(2)(2)(10)(1)(1]1[n n n n n n n n i n i C n i C C n i +>+⋅+⋅+⋅=+所以,i in <)(6.证明下列等式成立,并进行直观解释:⑴nmm n m a v a a +=+;解:iv a nm nm ++-=1,i v a m m-=1,iv v i v v a v nm m n m nm +-=-=1所以,n m nm m m nmm a ivv v a v a ++=-+-=+1⑵nmm n m s v a a -=-;解:iva nm nm ---=1,iv a mm-=1,iv v s v n m m n m--=-所以,nm nm mmn mma ivv v s v a --=-+-=-1⑶nmm n m a i s s )1(++=+;解:i i smm1)1(-+=,ii i i i i s i m n m n mnm )1()1(1)1()1()1(+-+=-++=++所以,n m mn m m n mms ii i i a i s ++=+-++-+=++)1()1(1)1()1(⑷nmm n m a i s s )1(+-=-。
保险精算习题

1.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。
(2)名义贴现率为每4年计息一次的年名义贴现率6%。
2.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。
3.基金A 以每月计息一次的年名义利率12%积累,基金B 以利息强度6t t δ=积累,在时刻t (t=0),两笔基金存入的款项相同,试确定两基金金额相等的下一时刻。
4. 基金X 中的投资以利息强度0.010.1t t δ=+(0≤t ≤20), 基金Y 中的投资以年实际利率i 积累;现分别投资1元,则基金X 和基金Y 在第20年年末的积累值相等,求第3年年末基金Y 的积累值。
5.某银行推出2年期存单,年利率为9%,存款者若提前支取则面临两种可供选择的惩罚方式:变为活期存款,年利率为7%;损失3个月的利息。
某存款人拥有这种存单但要在第18个月末时支取,试问该人该选择哪种惩罚方式?第二章:年金练习题1.证明()n m m n v v i a a -=-。
√2.某人购买一处住宅,价值16万元,首期付款额为A ,余下的部分自下月起每月月初付1000元,共付10年。
年计息12次的年名义利率为8.7% 。
计算购房首期付款额A 。
√3. 已知7 5.153a = , 117.036a =, 189.180a =, 计算 i 。
√4.某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。
年利率为10%,计算其每年生活费用。
√5.年金A 的给付情况是:1~10年,每年年末给付1000元;11~20年,每年年末给付2000元;21~30年,每年年末给付1000元。
年金B 在1~10年,每年给付额为K 元;11~20年给付额为0;21~30年,每年年末给付K 元,若A 与B 的现值相等,已知1012v =,计算K 。
保险精算试题与答案

保险精算试题与答案[注意:本文按照试题格式进行回答]试题一:保险精算的定义和作用是什么?保险精算是指运用数学、统计学和金融学等方法,对保险业务进行量化分析和评估的过程。
其作用主要体现在以下几个方面:1. 风险评估:通过对历史数据和概率模型的分析,保险精算师可以评估保险产品的风险水平,确定保费率和赔付准备金水平,为保险公司提供决策依据。
2. 产品开发与定价:保险精算师可以根据市场需求和风险情况,设计和开发新的保险产品,并确定合理的保费定价策略,以提高保险公司的竞争力和盈利能力。
3. 保险风险管理:保险精算师可以利用精算模型和方法,对保险风险进行全面的管理和控制,降低保险公司的不确定性和风险敞口。
4. 偿付能力评估:通过运用精算方法,保险精算师可以对保险公司的偿付能力进行评估和监测,保证公司能够按时履行合同中对被保险人的赔偿责任。
5. 盈余分配决策:精算师根据保险公司的盈利能力和风险状况,制定合理的盈余分配策略,确保公司的可持续经营和股东利益最大化。
试题二:简述保险精算的核心内容和方法保险精算的核心内容主要包括风险评估、损失模型、资本管理和盈余分配等方面。
1. 风险评估:通过风险测度和量化方法,评估保险产品的风险水平,并制定相应的风险管理策略,保证公司的偿付能力。
2. 损失模型:利用数理统计的方法,分析历史数据和风险模型,构建损失模型,预测未来潜在的赔偿风险,并根据模型结果进行资本分配和准备金计提。
3. 资本管理:通过资本分配和配置,保险精算师可以根据公司的风险状况和盈利能力,确定合理的资本水平和使用策略,提高公司的偿付能力和综合运营效益。
4. 盈余分配:保险精算师基于公司的盈利水平、资本状况和风险状况,制定合理的盈余分配政策,确保公司能够平衡盈利和风险、实现可持续发展。
保险精算的核心方法包括:1. 预测模型:利用历史数据和概率理论,建立预测模型,对未来保险损失进行预测和量化评估。
2. 风险度量方法:通过运用不同的风险测度方法,比如价值-at-Risk、条件VaR等,对保险风险进行度量和分析。
寿险精算期末试题

寿险精算一、填空题1、生命表依据编制对象的不同,可以分为:________和________。
2、根据保险标的的属性不同,保险可分为:________和______________。
3、寿险精算中的基本参数主要有:_________、_______________、_______________。
4、生命表的创始人是___________。
5、生命表方法的实质是_________________________________________________。
6、投保保额为1单位元数的终身寿险,按年度实质贴现率v 复利计息,赔付现值变量为:_____________________。
7、n 年定期两全险是___________和_____________的组合。
8、终身寿险死亡即刻赔付趸缴净保费公式为______________________________。
9、已知05.0,5a ,8a 2===δx x ,则=)(a |T a r V __________.10、1—_______|:n x ad =二、选择题1、世界上第一张简略生命表是( )A.1662年约翰•格兰编制的生命表 B .1693年埃德蒙•哈雷编制的生命表;C .詹姆斯•道森编制的生命表D .1724年亚伯拉罕•棣模佛编制的生命表2、保险精算遵循的最重要原则是( )A .补偿性原则B .资产负债匹配原则C .收支平衡原则D .均衡保费原则3、某10年期确定年金,每4月末给付800元,月利率为2%,则该年金的现值为( )。
4、 已知死力µ=0.045,利息力δ=0.055,则每年支付金额1,连续支付的终身生存年金的精算现值为( )。
A .9; B.10; C.11; D.12。
5、下列错误的公式是 ()A.()()x s x s ,x =μB.()()dtP d t x t T =f C.()()()x s t x s x s q x +-=t D.()x s x =p 0 6、设某地新生婴儿未来寿命随机变量X在区间[0,100]上服从均匀分布,x ∈(0,100) 则( )A.s(x)=x/100B.s(x)=1/100C.s(x)=1-x/100D.s(x)=100x7、8、9、下列不是有关分数年龄的假设常用的插值方法的是()A.线性插值B.调和插值C.几何插值D.牛顿插值10.下列关系不正确的是()A.x t x t x p l l •=+B.x x x q l d •=C.x x x L d m =D.tx x x l l p +=t 三、简答题1.你认为保险精算对保险经营有何重要意义?2.生存年金的定义及分类。
保险精算习题及答案

500a (3) = 500(1 + 3i1 ) = 620 ⇒ i1 = 0.08 ∴ 800a (5) = 800(1 + 5i1 ) = 1120 500a (3) = 500(1 + i2 )3 = 620 ⇒ i1 = 0.0743363 ∴ 800a (5) = 800(1 + i3 )5 = 1144.97
4.某人从 50 岁时起,每年年初在银行存入 5000 元,共存 10 年,自 60 岁起,每年年初从银行提出一笔 款作为生活费用,拟提取 10 年。年利率为 10%,计算其每年生活费用。
10
7
⎛ 1 ⎞ ̇̇10 = x ⎜ ̇̇10 5000a ⎟ a ⎝ 1+ i ⎠ ∴ x = 12968.7123
5|
q60 =
s ( 65) − s (66) s ( 65) = 0.1895, 5 p60 = = 0.92094 s (60) s (60) s ( 65) − s (66) = 0.2058 s (65)
已知 q80 = 0.07 , d80 = 3129 ,求 l81 。
∴ q65 =
3.
8.已知第 1 年的实际利率为 10%,第 2 年的实际贴现率为 8%,第 3 年的每季度计息的年名义利率为 6%, 第 4 年的每半年计息的年名义贴现率为 5%,求一常数实际利率,使它等价于这 4 年的投资利率。
i (4) 4 i (2) 2 ) (1 + ) 4 2 = 1.1*1.086956522 *1.061363551*1.050625 = 1.333265858 ⇒ i = 0.74556336
5.确定 10000 元在第 3 年年末的积累值: (1)名义利率为每季度计息一次的年名义利率 6%。 (2)名义贴现率为每 4 年计息一次的年名义贴现率 6%。
保险精算习题及答案

第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。
(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。
11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。
123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。
(2)名义贴现率为每4年计息一次的年名义贴现率6%。
(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。
保险精算-复习

一、概率密度
1、X的概率密度 用f(x)表示随机变量的密度函数,则:
f (x) F(x) s(x)
2、T的概率密度
f x (t) Fx (t)
s(x t) s(x)
二、平均寿命
X的期望值
E(x) 0 xf (x)dx
三、平均余命
T的期望值
0
ex
E[T (x)]
三、T分布函数(余命函数)
设x岁的人的剩余寿命为T(x),简 写为T。
T(x) X x T
1、(X)的余命函数 (死亡函数)
定义:(x)的人在t年内死亡的概率。
Fx (t) Pr(T t) (t 0)
F(x t) F(x) 1 F(x)
s(x) s(x t) s(x)
一、x分布函数
1、死亡函数
F(x) Pr(X x)
(x 0)
又称为0岁的人在 x 岁之前死亡的概率。通常假定
F(0) 0 F() 1
且F(x)是一个连续型随机变量。
2、生存函数
s(x)用表示0岁的人在x岁还活着的概率,则:
s(x) Pr(X x) x 0
显然:
s(x) 1 F(x)
A1 x:m
m
1
m x xm :n
k m
2)、延期m年的终身寿险趸缴纯保费
m Ax
v k 1 k
qx
Ax
A1 x:m
vm m px .Axm
k m
3)延期m年的n年定期寿险趸缴纯保费
m n 1
A m x:n
vk 1 k
qx
vmn mn
px
k m
A A1
x:mn
x:m
vm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.李华1990年1月1日在银行帐户上有5000元存款,(1)在每年10%的单利下,求1994年1月1日的存款额。
(2)在年利率8%的复利下,求1994年5月1日的存款额。
解:(1)5000×(1+4×10%)=7000(元)(2)5000×(1+10%)4.33=7556.8(元)2.把5000元存入银行,前5年的银行利率为8%,后5年年利率为11%,求10年末的存款累计额。
解:5000(1+8%)5×(1+11%)5=12385(元)3.李美1994年1月1日在银行帐户上有10000元存款。
(1)求在复利11%下1990年1月1日的现值。
(2)在11%的折现率下计算1990年1月1日的现值。
解:(1)10000×(1+11%)-4=5934.51(元)(2)10000×(1-11%)4=6274.22(元)4.假设1000元在半年后成为1200元,求⑴ )2(i ,⑵ i, ⑶ )3(d 。
解:⑴ 1200)21(1000)2(=+⨯i ;所以4.0)2(==i ⑵2)2()21(1i i +=+;所以44.0=i ⑶n n m m nd d i m i ---=-=+=+)1()1(1)1()(1)(;所以, 13)3()1()31(-+=-i d ;34335.0)3(=d5.当1>n 时,证明:i idd n n <<<<)()(δ。
证明:①)(n d d <因为,+⋅-⋅+⋅-⋅=-=-3)(32)(2)(10)()()(1)1(1nd C n d C n d C C n d d n n n n n n n n n)(1n d->所以得到,)(n d d <;②δ<)(n d)1()(mn em d δ--=;mm C m C m C m ennnmδδδδδδ->-⋅+⋅-⋅+-=-1)()()(1443322所以,δδ=--<)]1(1[)(mm dn③)(n i <δi n i n n +=+1]1[)(, 即,δ=+=+⋅)1ln()1ln()(i ni n n所以,)1()(-⋅=n n e n i δm m C m C m C m e nnnnδδδδδδ+>+⋅+⋅+⋅++=1)()()(1443322δδ=-+>]1)1[()(nn in④i in <)(i ni nn +=+1]1[)(,)(2)(2)(10)(1)(1]1[n n n n n n n n i n i C n i C C n i +>+⋅+⋅+⋅=+所以,i in <)(6.证明下列等式成立,并进行直观解释:⑴nmm n m a v a a +=+;解:iv a nm nm ++-=1,i v a m m-=1,iv v i v v a v nm m n m nm +-=-=1所以,n m nm m m nmm a ivv v a v a ++=-+-=+1⑵nmm n m s v a a -=-;解:iva nm nm ---=1,iv a mm-=1,iv v s v n m m n m--=-所以,nm nm mmn mma ivv v s v a --=-+-=-1⑶nmm n m a i s s )1(++=+;解:i i smm1)1(-+=,ii i i i i s i m n m n mnm )1()1(1)1()1()1(+-+=-++=++所以,n m mn m m n mms ii i i a i s ++=+-++-+=++)1()1(1)1()1(⑷nmm n m a i s s )1(+-=-。
解:(同上题)略。
7.某人今年30岁, 其计划每年初存300元,共存30年建立个人存款能从60岁退休开始每年年末得到固定金额,共能领取20年。
假设存款利率在前十年为6%,后20年为12%,求每年能取的养老金额。
解:210220211012020210301)1()1(1)1()1(i i i i i s i s s -+++⋅-+=++⋅=所以60岁时存款有5.5975930030=⋅s (元)由此知,2020s a X =⋅,可得X=7774.12(元)8.某单位在20年内每年存入银行5000元建立职工奖励基金。
从存入最后一笔款后的第2年起,每年提取固定金额奖励一名有突出贡献的职工,这种奖励形式将永远持续下去。
假设存款的利率为8%,求每次能够提取的最大金额。
解:82.2288095000120=⋅=⋅=⋅∞s iX A X 。
所以79.18304=X (元)9.证明:⑴nn n a s a ia ⨯==1δ;证明:nnnn a ii i v va ⋅=⋅-=-=δδδ11δδi i s =-+=1)1(1,所以n n a s a ⨯=1⑵δδn n ea --=1; δδδδδδn nnnn ee i va ----=-=+-=-=1)(1)1(11⑶δδ1-=n n es 。
证明:δδδδδ11)(1)1(-=-=-+=n nnn ee i s10.假设每年第一年收付200元,以后每隔一年增加收付100元,增加到一次收付1000元时不在增加,并一直保持每年1000元的水平连续收付。
假设年利率为12%,求这一年金的现值。
解:94.436211000)1(8100)1(1001000)(100100988191=⋅⋅++-++=++=--∞v iii ai a Ia a a1.依据生命表的基础填充下表:xx lx dx px q0 1000 100 0.9 0.1 1 900 150 5/6 1/6 2 750 150 0.8 0.2 3 600 300 0.5 0.5 4 300 180 0.4 0.6 5 120 120 0 1 63.已知)1201(1000xl x -=,计算: ⑴0l,120l ,33d ,3020p ,2030q ;⑵25岁的人至少再活20,最多活25年的概率; ⑶三个25岁的人均存活到80岁的概率。
解:⑴1000)1201(10000=-=l ;0)1201201(1000120=-=l 32512011000343333=⋅=-=l l d9730503020==l l p ;3.02050202030=-=l l l q ⑵19125504525520=-=l l l q⑶074646449.0)198()(3325802555===l l p4.若)(100000xc x c l x+-=,4400035=l ,求:⑴c 的值;⑵生命表中的最大年龄;⑶从出生存活到50岁的概率;⑷15岁的人在40~50岁之间死亡的概率。
解:⑴44000)3535(10000035=+-=c c l。
所以,c=90⑵0)9090(100000=+-=xxl x,所以,90=ω ⑶134050050==l l p ⑷32155040151052=-=l l l q 。
5.证明并作直观解释: ⑴xm n x n x mn p p q +-=;证明:x m n x n xmn x x n x x m n x n x xm n p p l l l l l l l q +++++++-=-=-=⑵n x x n x nq p q +⨯=;证明:n x x n nx n x x n x x n x x n x n x x nq p l l l l l l l l l q +++++++++⨯=⋅-=-=11⑶nx m x n x mn p p p ++⨯=。
证明:n x m x n nx mn x x n x x m n x x m n p p l l l l l l p ++++++++⨯=⋅== 6.证明:⑴⎰-++=xx t x t x l dt l ωμ0;⑵⎰-+=xt x x tdt p ωμ01;⑶)(t x x x t x t p p x+-⨯=∂∂μμ;⑷t x x t x t p p t+⨯=-∂∂μ。
证明:⑴x xx x x x t x t x l l l l l dt l =-=-=⎰--++++ωωωμ0⑵⎰⎰⎰--+-+-++++=-⋅-=⋅-=-=xx x x xxtx x xt x t x x t x t x x tl l l dl l dl l l l dt p ωωωωμ01)(1111;⑶)()()()(2t x x x t xx t x t x x t x x t x x t x x t x x x t x x tx x t p l Dl l Dl l l l Dl l Dl l l Dl l Dl l l x p x +++++++++-⨯=-=-=⋅-⋅=∂∂=∂∂μμ⑷t x x t tx t x x t x x t x x tx x t p l Dl l l l Dl l l x p t ++++++⨯=-⋅==∂∂==∂∂μ)(。
7.分别在死亡均匀分布,死亡力恒定和鲍德希假设下,用课本附表1给出的生命表计算:⑴2541q ;⑵40215q ;⑶3150μ。
解:⑴00030575.015.9565049802.1164112525252541=⋅=⋅=⋅=-=l d q t p q x t 略。
8.若774640=l ,768141=l ,计算4140μ:⑴死亡均匀分布假设;⑵鲍德希假设;⑶假设x l x-=1001000。
解:⑴008409068.0140404140=⋅-=q t qμ; ⑵008426834.0,140414140=∴=====-⋅-μμμμμe l l p t e p xtx t 可令⑶008444573.0)1(14140=--=xxq t q μ。
9.证明在鲍德希规律下,x n q 与n 无关。
证明:xx s n x s n x s q xx s x n-=++-+=-=ωω1)()1()(1)(所以,xn q与n 无关。
1. 某人10岁买了定期生存保险,这一保险使其从18岁到25岁每年得到2000元生存保险金,以附表2转换函数值计算这一年金现值。
解:5.45522775.0200020002000101881018101088=⋅=-=⋅+++++N N N a (元) 2.证明下列等式成立,并解释其含义。
⑴1+=x x x avp a ;证明:111++=-=-==x x x xxx x x x a vp aD D N D N a ⑵11++=x x x a vp a; 证明:11+=-x x x a vp a所以,11++=x x x a vp a⑶)1(::x n nx n x E a a -+= ; 证明:n x xnx x xn X n x x x x n X x n x x x n nx aD N N D D N D N D D D N NE a :1111:)()1()1( =-=+-+=-+-=-++++++++++⑷n x x n nx na p v a +⋅⋅=;证明:n x x n nn x n x x n n xn x n x x n x n x xn a p v D N p v E D N E D N a ++++++++⋅⋅=⋅⋅=⋅==111 ⑸nm x x m mm x m n x a p v a a :::++⋅⋅+=;证明:mn x xn m x x x n m x m x x m x x n m x x m m m x xn m x m x m x n m x m x x m nm x x m mxm x x mx xm n x x m n x a D N N D N N D N N a p v a D N N D N N E a p v D N N a D N N a ++++++++++++++++++++++++++++++++++=-=-+-=⋅⋅+∴-=-⋅=⋅⋅-=-=:111111::1111:11:11:⑹11)1(--+=⋅x x x a i ap证明:1111111111)1(---------+=⋅⋅⋅=⋅⋅=⋅=⋅x x x xx x x x x x x x x x a i D p v N p D E N p D N p a p 3.某人在50岁时以50000元的趸缴净保费购买了每月给付k 元的生存年金。