条件概率与事件的独立性(一)
条件概率与事件的独立性

P( AB)
P( A)
16 11
4 11
16
变式:若已知取得是玻璃球,求取得是篮球的概率.
4
P(A| B)
P( AB)
P(B)
16 6
4 6
16
例3.设 100 件产品中有 70 件一等品,25 件二等品, 规定一、二等品为合格品.从中任取1 件,求 (1) 取 得一等品的概率;(2) 已知取得的是合格品,求它是 一等品的概率.
∴P(A·B)=P(A)·P(B)=0.8×0.7=0.56
⑶1–P(A·B)=1-P(A)·P(B)=1-(1-0.8)(1-0.7)=0.94
⑷P(A·B)+P(A·B)=P(A)P(B)+P(A)P(B) =0.8(1-0.7)+(1-0.6)×0.7=0.38
答:两粒种子都能发芽的概率是0.56;至少有一粒种子能 发芽的概率是0.94;恰好有一粒种子能发芽的概率是0.38
P(A |
B)
P( AB) P(B)
52 1
1 13
P(A)
4
P(A | B) P(A)
P( AB) P( A) P(B)
B发生时A发生的条件概率
A发生的概率
P(AB) P(A)P(B)
则称A,B相互独立
相互独立事件 事件A(或B)是否发生对事件B(或A)发生的概率没 有影响,这样的两个事件叫做相互独立事件
中一等奖的概率为多少?
P
1
C
7 31
(2)如果在甲没有中一等奖后乙去买彩票,
则乙中一等奖的概率为多少?
P
1
C
ቤተ መጻሕፍቲ ባይዱ
7 31
2.一个袋子中有5个白球和3个黑球,从袋中分 两次取出2个球。设第1次取出的球是白球叫做 事件A,第2次取出的球是白球叫做事件B。
事件的独立性条件概率与全概率公式

事件的独立性条件概率与全概率公式事件的独立性是概率论中一个非常重要的概念。
当两个事件A和B的发生与否不会相互影响时,我们称这两个事件是独立的。
具体来说,事件A的发生与否不会对事件B的发生概率造成影响,同样,事件B的发生与否也不会对事件A的发生概率造成影响。
独立性是概率论中一种核心的概念,它可以帮助我们简化计算过程,提高计算的效率。
在实际问题中,我们通常会用到一些已知的概率,利用独立性可以快速计算出我们所关心的概率。
条件概率是指在另一个事件已经发生的条件下,一些事件发生的概率。
具体来说,设A和B是两个事件,已知事件B已经发生,那么事件A发生的概率记作P(A,B),读作“A在B发生的条件下发生的概率”。
条件概率可以通过以下公式计算:P(A,B)=P(A∩B)/P(B)其中,P(A∩B)表示事件A和B同时发生的概率,P(B)表示事件B发生的概率。
条件概率在实际问题中非常常见,它可以帮助我们确定一些事件在给定条件下的概率。
例如,在进行疾病检测时,我们可以根据患者的年龄、性别、家族病史等条件,计算出患病的概率,为疾病的早期预防提供重要依据。
全概率公式是概率论中一个非常重要的公式,它可以帮助我们计算复杂事件的概率。
全概率公式的核心思想是将一个事件分解为不同的互斥事件,并将这些事件的概率加和起来。
具体来说,设B1、B2、…、Bn是一组互斥事件,且它们的并集构成了样本空间S,那么对于任意一个事件A,全概率公式可以表示为:P(A)=P(A,B1)P(B1)+P(A,B2)P(B2)+…+P(A,Bn)P(Bn)全概率公式的应用场景非常广泛。
例如,在市场调查中,我们希望了解其中一特定群体的消费习惯,但由于无法直接获取到该群体的信息,我们可以通过对不同市场细分的消费者进行调查,然后利用全概率公式将这些细分市场的调查结果综合起来,推断出整个特定群体的消费习惯。
总结起来,事件的独立性、条件概率和全概率公式都是概率论中非常重要的概念和工具。
概率的计算方法条件概率事件独立性的计算方法

概率的计算方法条件概率事件独立性的计算方法概率的计算方法——条件概率和事件独立性的计算方法概率是数学中的一个重要概念,用于描述事件发生的可能性。
在概率的计算过程中,条件概率和事件独立性是两个重要的概念。
本文将介绍概率中的条件概率和事件独立性的计算方法。
一、条件概率的计算方法条件概率是指在已知某个条件下,事件发生的概率。
表示为P(A|B),读作事件B发生的条件下事件A发生的概率。
计算条件概率的方法:1. 根据条件概率的定义,可以得出P(A|B) = P(AB) / P(B)。
即事件A和事件B同时发生的概率除以事件B发生的概率。
2. 利用频率法进行计算。
通过实验或观察,记录事件A在事件B发生的条件下出现的频次,再除以事件B发生的频次。
举例说明:假设有一个扑克牌的标准牌组,从中随机抽取一张牌。
事件A表示抽到一张红心牌,事件B表示抽到一张大于等于10的牌。
求在事件B发生的条件下,事件A发生的概率。
根据条件概率的计算方法,我们可以得到:P(A|B) = P(AB) / P(B)首先,我们需要计算事件A和事件B同时发生的概率P(AB)。
在扑克牌标准牌组中,红心牌有13张,大于等于10的牌有16张。
其中,大于等于10的红心牌有3张。
因此,P(AB) = 3 / 52。
接下来,计算事件B发生的概率P(B)。
在扑克牌标准牌组中,大于等于10的牌有16张,总共的牌数是52张,所以P(B) = 16 / 52。
将以上结果代入条件概率的计算公式,我们可以得到:P(A|B) = (3 / 52) / (16 / 52) = 3 / 16所以,在事件B发生的条件下,事件A发生的概率为3/16。
二、事件独立性的计算方法事件独立性是指事件A和事件B的发生与否互相独立,即事件A 的发生与否不受事件B的影响。
计算事件独立性的方法:1. 如果P(A|B) = P(A),则事件A和事件B互相独立。
2. 如果P(A|B) ≠ P(A),则事件A和事件B不独立。
概率与统计中的事件独立性与条件概率

概率与统计中的事件独立性与条件概率概率与统计是数学中的一个重要分支,用于研究随机现象和不确定性问题。
在概率与统计的基础概念中,事件的独立性与条件概率是两个核心概念。
本文将对这两个概念进行详细解释,并探讨它们在实际问题中的应用。
一、事件的独立性在概率与统计中,事件的独立性是指两个或多个事件之间的关联程度。
如果两个事件A和B相互独立,意味着事件A的发生与否不会对事件B的发生概率产生影响,反之亦然。
换句话说,事件A和B的发生概率是相互独立的,它们之间不存在任何关联。
为了判断两个事件A和B是否相互独立,可以通过下列公式进行计算:P(A∩B) = P(A) × P(B)其中,P(A∩B)表示事件A和B同时发生的概率,P(A)和P(B)分别表示事件A和B发生的概率。
如果上式成立,则事件A和B相互独立;如果不成立,则事件A和B不相互独立。
事件的独立性在实际问题中具有广泛的应用。
例如,假设有一批产品,每个产品的质量合格的概率为0.9。
如果从该批产品中随机选取两个产品,事件A表示第一个产品质量合格,事件B表示第二个产品质量合格。
根据事件的独立性,我们可以通过计算概率来判断同时选中两个质量合格产品的概率。
二、条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
条件概率通常用P(B|A)表示,其中P(B|A)表示在事件A发生的条件下,事件B发生的概率。
条件概率的计算公式为:P(B|A) = P(A∩B) / P(A)其中,P(A∩B)表示事件A和B同时发生的概率,P(A)表示事件A发生的概率。
通过计算条件概率,我们可以得出在某种条件下发生某个事件的概率。
条件概率在实际问题中非常有用。
例如,假设有一个班级,其中40%的学生会参加音乐比赛,30%的学生参加体育比赛。
如果我们知道某个学生参加了音乐比赛,那么他参加体育比赛的概率是多少?根据条件概率的计算公式,我们可以得出这个概率。
三、事件独立性与条件概率的关系事件的独立性与条件概率密切相关。
条件概率与事件的独立性例题和知识点总结

条件概率与事件的独立性例题和知识点总结在概率论中,条件概率和事件的独立性是两个非常重要的概念。
理解它们对于解决各种概率问题至关重要。
下面,我们将通过一些具体的例题来深入探讨这两个概念,并对相关知识点进行总结。
一、条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
其定义为:设 A、B 是两个事件,且 P(A)>0,在事件 A 发生的条件下,事件 B 发生的条件概率记为 P(B|A),且 P(B|A) = P(AB) /P(A) 。
例 1:一个盒子里有 5 个红球和 3 个白球。
从中随机取出一个球,已知取出的是红球,求它是第二个红球的概率。
解:设 A 表示“第一次取出红球”,B 表示“第二次取出红球”。
则P(A) = 5/8 。
P(AB) 表示“第一次和第二次都取出红球”,其概率为 5/8 × 4/7 = 5/14 。
所以 P(B|A) = P(AB) / P(A) =(5/14) /(5/8) =4/7 。
例 2:某班级学生的数学成绩及格率为 80%,英语成绩及格率为70%,已知某学生数学成绩及格,求他英语成绩也及格的概率。
解:设 A 表示“数学成绩及格”,B 表示“英语成绩及格”。
P(A) =08 ,P(AB) 表示“数学和英语成绩都及格”,假设两者相互独立,则P(AB) = 08 × 07 = 056 。
所以 P(B|A) = P(AB) / P(A) = 056 / 08 =07 。
二、事件的独立性如果事件 A 的发生不影响事件 B 发生的概率,事件 B 的发生也不影响事件 A 发生的概率,那么称事件 A 和事件 B 相互独立。
即 P(B|A) = P(B) 且 P(A|B) = P(A) ,等价于 P(AB) = P(A)P(B) 。
例 3:抛掷两枚均匀的硬币,设事件 A 为“第一枚硬币正面朝上”,事件 B 为“第二枚硬币正面朝上”,判断 A、B 是否独立。
事件的相互独立性

设 A, B 是两事件 , 如果满足等式 P( AB) P( A) P(B)
则称事件 A, B 相互独立,简称 A, B 独立.
注. 1º若 P( A) 0,则
P(B A) P(B) P( AB) P( A)P(B)
说明 事件 A 与 B 相互独立,是指事件 A 的 发生与事件 B 发生的概率无关.
例4 若每个人血清中含有肝炎病毒的概率为 0.4%, 假设每个人血清中是否含有肝炎病毒 相互独立,混合100个人的血清,求此血清 中含有肝炎病毒的概率. 解
Ai {第i人的血清含有肝炎病毒},i 1, 2,...100
B {100个人的混合血清中含有肝炎病毒} 则 P( Ai ) 0.004
[r(2 r)]n rn(2 r)n
(2) 问:哪个系统的可靠性更大?
令 f ( x) xn (n 2),则
0r1
f ( x) n(n 1)xn2 0 ( x 0)
(2 r)n 2 rn
故曲线y f ( x)是凹的,从而 f (2 r) f (r) f ( (2 r) r ) f (1) 1
P(BC ) P(B)P(C ),
P(
AC
)
P( A)P(C ),
P( ABC ) P( A)P(B)P(C ),
则称事件 A, B,C 相互独立 .
3. n 个事件的独立性
定义 若事件 A1,A2 ,… ,An 中任意两个事件 相互独立,即对于一切 1 ≤i< j ≤n, 有
P( Ai Aj ) P( Ai )P( Aj )
通路上各元件
都正常工作
而 系统Ⅰ正常工作
两条通路中至少
有一条正常工作
B1 C D A1A2 An An1An2 A2n
事件的相互独立性与条件概率

TANJIUHEXINTIXING
探究核心题型
题型一 条件概率
例1 (1)某公司为方便员工停车,租了6个停车位,编号如图所示.公司规
定:每个车位只能停一辆车,每个员工只允许占用一个停车位.记事件A
为“员工小王的车停在编号为奇数的车位上”,事件B为“员工小李的
车停在编号为偶数的车位上”,则P(A|B)等于
思维升华
求相互独立事件同时发生的概率的方法 (1)相互独立事件同时发生的概率等于他们各自发生的概率 之积. (2)当正面计算较复杂或难以入手时,可从其对立事件入手 计算.
跟踪训练2 溺水、触电等与学生安全有关的问题越来越受到社会的关注
和重视,为了普及安全教育,某市组织了一次学生安全知识竞赛,规定
条件下,第二次拿到红球的概率为
√ 3
1
3
2
A.10 B.3 C.8 D.9
设A={甲第一次拿到白球}, B={甲第二次拿到红球}, 则 P(AB)=AA12A21013=115,P(A)=CC11120=15, 所以 P(B|A)=PPAAB=13.
思维升华
求条件概率的常用方法 (1)定义法:P(B|A)=PPAAB . (2)样本点法:P(B|A)=nAB .
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)对于任意两个事件,公式P(AB)=P(A)P(B)都成立.( × ) (2)若事件A,B相互独立,则P(B|A)=P(B).( √ )
(3)抛掷2枚质地均匀的硬币,“第一枚为正面”为事件A,“第2枚为正
面”为事件B,则A,B相互独立.( √ )
第十章
考试要求
1.了解两个事件相互独立的含义. 2.理解随机事件的独立性和条件概率的关系,会利用全概率公式计算概率.
高三第一轮复习条件概率与事件的相互独立性

条件概率与事件的相互独立性【提纲挈领】(请阅读下面文字,并在关键词下面记着重号)主干知识归纳 1.条件概率(1)一般地,若有两个事件A 和B ,在已知事件A 发生的条件下考虑事件B 发生的概率,称此概率为A 已发生的条件下B 的 ,记作 .(2)设A ,B 为两个事件,且P(A)>0,则事件A 已发生的条件下,事件B 发生的条件概率是P(B|A)= .(3)条件概率的性质: ①P(B|A)∈ ;②如果B 和C 是两个互斥事件,则P(B ∪C|A)=P(B|A)+P(C|A). 2.事件的相互独立性(1)设A ,B 为两个事件,如果P(AB)= ,则称事件A ,B 独立.(2)设A ,B 为两个事件,A 与B 相互独立,那么A 与B ,A 与B 、A 与B 也都 . (3)两个事件的独立性可以推广到n(n>2)个事件的独立性,且若事件A 1,A 2,…,A n 相互独立,则这n 个事件同时发生的概率P(A 1A 2…A n )= .3.独立重复试验(1)一般地,在 下重复做的n 次试验称为n 次独立重复试验.(2)在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率均为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P(X =k)= . 方法规律总结1.计算条件概率时,可按如下步骤进行:第一步,判断是否为条件概率,若题目中出现“已知”“在……前提下”等字眼,一般为条件概率.题目中若没有出现上述字眼,但已知事件的出现影响所求事件的概率时,也需注意是否为条件概率.第二步,计算概率,这里有两种思路. 思路一:缩小样本空间计算条件概率.如求P(A|B),可分别求出事件B ,AB 包含的基本事件的个数,再利用公式P(A|B)=n ABn B 计算.思路二:直接利用条件概率的计算公式计算条件概率,即先分别求出P(AB),P(B),再利用公式P(A|B)=P ABP B 计算.2.相互独立事件的概率计算要注意在应用相互独立事件的概率乘法公式时,要认真审题,注意关键词“至少有一个发生”、“至多有一个发生”、“恰有一个发生”的意义,正确地将其转化为互斥事件进行求解;正面计算较繁或难于入手时,可以从其对立事件入手进行计算.3.在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率均为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P(X =k)=C k n p k(1-p)n -k,k =0,1,2,…,n.在利用该公式时一定要审清公式中的n ,k 各是多少.【指点迷津】【类型一】条件概率【例1】:(2014·新课标卷Ⅱ)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.45【解析】:设“某天的空气质量为优良”为事件A ,“后一天空气质量为优良”为事件B ,则P(A)=0.75,P(AB)=0.6, 所以P(B|A)=P AB P A =0.60.75=0.8.答案:A【例2】:甲、乙两地都位于长江下游,根据一百多年的气象记录,知道甲、乙两地一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%.则(1)乙地为雨天时,甲地也为雨天的概率是 ; (2)甲地为雨天时,乙地也为雨天的概率是 .【解析】:设A 表示“甲地为雨天”,B 表示“乙地为雨天”,根据题意P(A)=0.20,P(B)=0.18,P(AB)=0.12.(1)乙地为雨天时,甲地也为雨天的概率是 P(A|B)=P AB P B =0.120.18=23≈0.67.(2)甲地为雨天时,乙地也为雨天的概率是 P(B|A)=P AB P A =0.120.20=0.6.答案: (1) 0.67 (2) 0.6【例3】:如右图△ABC 和△DEF 是同一圆的内接正三角形,且BC ∥EF .将一颗豆子随机地扔到该圆内,用M 表示事件“豆子落在△ABC 内”,N 表示事件“豆子落在△DEF 内”,则P (N |M )=( )A.334π B.32πC.13D.23【解析】:如下图作三条辅助线,根据已知条件得这些小三角形都全等,△ABC 包含9个小三角形,满足事件MN 的有6个小三角形,故P (N |M )=69=23.答案:23.【类型二】相互独立事件的概率【例1】:(2014·安徽卷改编)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲恰好4局赢得比赛的概率;(2)求甲在4局以内(含4局)赢得比赛的概率.【解析】:用A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P(A k )=23,P(B k )=13,k =1,2,3,4,5.(1)用A 表示“甲恰好4局赢得比赛”,则A =A 1B 2A 3A 4.根据事件的相互独立性得P(A)=P(A 1B 2A 3A 4)=P(A 1)P(B 2)P(A 3)P(A 4)=23×13×23×23=881.(2)用B 表示“甲在4局以内(含4局)赢得比赛”,则B =A 1A 2+B 1A 2A 3+A 1B 2A 3A 4.所以P(B)=P(A 1A 2)+P(B 1A 2A 3)+P(A 1B 2A 3A 4)=P(A 1)P(A 2)+P(B 1)P(A 2)P(A 3) +P(A 1)P(B 2)·P(A 3)P(A 4)=23×23+13×23×23+23×13×23×23=5681. 答案:(1) 881. (2) 5681.【例2】:某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).图9-61-3(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率. 【解析】:(1)两地区用户满意度评分的茎叶图如下:通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.(2)记C A1表示事件:“A 地区用户的满意度等级为满意或非常满意”; C A2表示事件“A 地区用户的满意度等级为非常满意”; C B1表示事件“B 地区用户的满意度等级为不满意”; C B2表示事件“B 地区用户的满意度等级为满意”.则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C =C B1C A1∪C B2C A2, 所以P (C )=P (C B1C A1∪C B2C A2) =P (C B1C A1)+P (C B2C A2) =P (C B1)P (C A1)+P (C B2)P (C A2).由所给数据得C A1,C A2,C B1,C B2发生的频率分别为1620,420,1020,820,故P (C A1)=1620,P (C A2)=420,P (C B1)=1020,P (C B2)=820, 所以P (C )=1020×1620+820×420=0.48. 答案:(1)通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.(2) 0.48.【类型三】n 次独立重复实验的概率【例1】:一同学投篮每次命中的概率是12,该同学连续投篮5次,每次投篮相互独立.(1)求连续命中4次的概率; (2)求命中4次的概率【解析】:(1)设“连续命中4次”的事件为A ,则A 包含“第1至第4次命中第5次没有命中”和“第1次没有命中但第2至第5次命中”两种情况,所以P(A)=(12)4·(1-12)+(1-12)·(12)4=2×(12)5=(12)4=116.(2)5次独立重复试验,恰好命中4次的概率为P(X =4), 所以P(X =4)=C 45(12)4·(1-12)=5×(12)5=532.答案:(1) 116. (2) 532.【例2】:某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.求顾客抽奖1次能获奖的概率【解析】:记事件A 1={从甲箱中摸出的1个球是红球},A 2={从乙箱中摸出的1个球是红球},B 1={顾客抽奖1次获一等奖},B 2={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}.由题意,A 1与A 2相互独立,21A A 与21A A 互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=21A A +21A A ,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2)=25×12=15,P (B 2)=P (21A A +21A A )=P (21A A )+P (21A A )=P (A 1)P (2A )+P (1A )P (A 2)=P (A 1)(1-P (A 2))+(1-P (A 1))P (A 2)=25×1-12+1-25×12=12.故所求概率P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710.答案:710.【同步训练】【一级目标】基础巩固组一.选择题1.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P(B|A)=( )A.18B.14C.25D.12【解析】:P(AB)=1C 25=110,P(A)=1+C 23C 25=410,由条件概率公式得P(B|A)=P (AB )P (A )=110410=14.答案:B.2.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球.现分别从甲、乙两袋中各随机抽取1个球,则取出的两球都是红球的概率为( )A.13B.12C.19D.16【解析】:用A ,B 表示分别表示从甲、乙袋子中随机抽取1个球,抽出的球是红球的事件,则P(A)=46,P(B)=16,因为分别从甲、乙两袋中各随机抽取1个球,取出的两球都是红球所对应事件为AB , 所以P(AB)=P(A)·P(B)=46×16=19.答案:C.3.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是( )A.512 B.12 C.712 D.34【解析】:用间接法考虑.事件A ,B 一个都不发生的概率为P(A -B -)=P(A -)·P(B -)=12×C 15C 16=512,所以所求的概率为1-P(A -B -)=1-512=712.答案:C.4.在6次独立重复试验中,每一次试验中成功的概率为12,则恰好成功3次的概率为( )A.316 B.516 C.716 D.58【解析】:P(X =3)=C 36(12)3(12)3=516.答案:B.5.(2015·新课标卷Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312【解析】:根据独立重复试验公式得,该同学通过测试的概率为C 230.62×0.4+0.63=0.648. 答案:A . 二.填空题6.在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,则在第一次抽到理科题的条件下,第二次抽到理科题的概率为________.【解析】:设“第一次抽到理科题”为事件A ,“第二次抽到理科题”为事件B ,则“第一次和第二次都抽到理科题”就是事件AB .依题意可得P (A )=A 31·A 41A 52=35,P (AB )=A 32A 52=310,所以P (B |A )=P (AB )P (A )=31035=12. 答案:12.7.已知某高三学生在某次数学考试中,A 和B 两道解答题同时做对的概率为13,在A 题做对的情况下,B 题也做对的概率为59,则A 题做对的概率为________.【解析】:设“做对A 题”为事件E ,“做对B 题”为事件F ,根据题意知P (EF )=13,P (F |E )=P (EF )P (E )=59,则P (E )=35,即A 题做对的概率为35. 答案:35.8.将一个半径适当的小球放入如图K611所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入甲袋或乙袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落入甲袋中的概率为________.图K611【解析】:记“小球落入甲袋中”为事件A ,“小球落入乙袋中”为事件B ,则事件A 的对立事件为B .若小球落入乙袋中,则小球必须一直向左或一直向右落下,故P (B )=()123+()123=14,从而P (A )=1-P (B )=1-14=34. 答案:34.三、解答题9.某旅游景点为方便游客游玩,设置自行车骑游出租点,收费标准如下:租车时间不超过2小时收费10元,超过2小时的部分按每小时10元收取(不足一小时按一小时计算).现甲、乙两人独立来该租车点租车骑游,各租车一次.设甲、乙不超过两小时还车的概率分别为13,12,2小时以上且不超过3小时还车的概率分别为12,13,且两人租车的时间都不超过4小时.求甲、乙两人所付租车费用相同的概率; 【解析】:甲、乙所付费用可以为10元、20元、30元.甲、乙两人所付费用都是10元的概率P 1=13×12=16,甲、乙两人所付费用都是20元的概率P 2=12×13=16,甲、乙两人所付费用都是30元的概率为 P 3=1-13-12×1-12-13=136,故甲、乙两人所付费用相等的概率P =P 1+P 2+P 3=1336.答案:1336. 10.有一种舞台灯,外形是正六棱柱,在其每一个侧面(编号为①②③④⑤⑥)上安装5只颜色各异的灯,假设每只灯正常发光的概率为12.若一个侧面上至少有3只灯发光,则不需要更换这个面,否则需要更换这个面,假定更换一个面需要100元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.几何定义法: 参课本P:136 ①基本思想:数形结合思想,事件图形化 ②使用前提:①0无限性 ②0等可能性
4.公理化定义法: 有待大学提高补充之
估计稳定是概率 古典概型个数比 几何概型测度比 有限无限是区分
(一)、定义法:
1.统计定义法 2.古典定义法 3.几何定义法 4.公理化定义法
(二)、模拟试验法:
1.物理机械法: 2.计算机(软件)法:
(三)、性质公式法:
1.性质法: ①范围性 ②总和性 2.公式法: ①加法公式 ②乘法公式 ③和积互补公式 ④对偶律
(三)、性质公式法:
1.性质法:
①范围性 0 P( A) 1
注:均匀分布是平等化概型
随机变量千千万 均匀分布平等化 多次成败伯努利 成分两类超几何
六大分布最常见 两点分布论成败 二项连续是正态 几何分布破天荒
两点分布(0-1分布)
形如 ξ 0 1 的分布列称为两点分布列 P 1-p p
又称0-1分布 ,称随机变量ξ服从两点分布 称 p 为成功概率 注:两点分布是结果“一分为二(成败,非黑即白)”概型
三、条件概率:
1.定义: 在事件A发生的条件下,事件B发生的概率称为条件概率 并记为P(B|A). 读作:A发生的条件下B发生的概率 2.性质:
① 0 P(B | A) 1;
②如果B和C是两个互斥事件,那么
P(B UC | A) P(B | A) P(C | A).
3.求法: ①定义法 P(B | A) P( AB)
§258 条件概率与事件的独立性(一)
一、求分布列的总思路:
繁 (大)
事 件
分类:互斥事件加法公式 分步:独立事件乘法公式
简 (小)
事 件
六大分布套公式 陌生事件三步法
二、事件的独立性:
1.定义: 2.性质: 3.判定:
三、条件概率: 1.定义: 2.性质: 3.求法:
随机变量及其分布列概述
随 细化数化分布列①
件
的 以小代大 的
概
概
率
率
定义法 模拟试验法 性质公式法
统计定义 古典概型 几何概型
计算概率常用的方法
定义法
统计定义法 古典定义法 几何定义法
模拟试验法
物理机械法 计算机(软件)法
性质法
范围性 总和性
性质公式法
加法公式
公式法
乘法公式 和积互补公式
对偶律
(一)、定义法:
1.统计定义法: 参课本P:110 频率是概率的估计;频率的稳定值是概率
①超几何分布是“结构一分为二(成分两大类)” 概型
②超几何分布的模型是不放回抽样
随机变量千千万 均匀分布平等化 多次成败伯努利 成分两类超几何
六大分布最常见 两点分布论成败 二项连续是正态 几何分布破天荒
二项分布——独立重复n次,恰好发生k次的概率 一、定义:参课本P:57
注1:互不影响为独立 概率相等即重复 重复n 次恰好 k 通项公式后项 p
不能同时为互斥 互斥特例为对立 互不影响为独立 一对独立全独立 互斥独立不相干 概率相等即重复
(3)课本P:55 练习3 析:设A,B分别表示甲,乙地降雨.则P(A)=0.2,P(B)=0.3
① P(AB) P(A)P(B) 020.3 0.06 ② P(AB) P(A)P(B)
[1 P(A)][1 P(B)] (1 0.2)(1 0.3) 0.56 ③ P(A B) P(A) P(B) 0.5
六大分布套公式 陌生事件三步法
①加法公式 P(A B) P(A) P(B) P(AB) 注:若A,B互斥,则 P(A B) P(A) P(B)
②乘法公式 P(AB) P(A)P(B | A) P(B)P(A | B) 注:若A,B独立,则 P(AB) P(A)P(B)
不能同时为互斥 互斥特例为对立 互不影响为独立 一对独立全独立 互斥独立不相干 概率相等即重复
k=0,1,2,…,m; m=min{M,n}
X
0
1
…
m
即P
C0MCNn- -0M CnN
C1MCNn- -1M CnN
…
CmM
Cn- m N- M
CNn
称该分布列称为超几何分布
称随机变量X服从超几何分布. 并记X~ H (n,M,N)
注:元素属性两大类 质量抽检是范例
①
②
大 N总数抽小 n 次品 M 含小 k
注:若A,B独立,则有 P( AB) P( A)P(B)
③和积互补公式 P(A1 A2 An ) 1 P(A1 • A2 • • An ) 注:若A,B对立,则有 P( A) P(B) 1,反之则不然
④对偶律 P(A• B •C) P(A B C) P(A• B •C) P(A B C)
A、B都不发生 A、B、C都不发生
⑤ A·B = A+ B
A、B不都发生
A·B·C = A+B+C A、B、C不都发生
离散型随机变量的分布列求法: 一选二算三列表
一选:根据题意灵活的选取随机变量所有可能的取值 二算:根据题意灵活的计算各随机变量相应的概率
计算概率常用的方法
复
简
杂 化繁为简 单
事
事
件
注:必然事件的概率为1 不可能事件的概率为0 反之则不然
②总和性
若Ω=A1+A2+…+An,且 A1,A2,…,An两两互斥,则
P(A1)+P(A2)+…+P(An)=1
(三)、性质公式法:
1.性质法: ①范围性
2.公式法
②总和性
①加法公式 P(A B) P(A) P(B) P(AB) 注:若A,B互斥,则有 P( A B) P( A) P(B) ②乘法公式 P(AB) P(A)P(B | A) P(B)P(A | B)
3 5
, P(AB)
4
A61 A41 A120
4 15
故 P(B | A) P(AB)
P( A)
15 3
4 9
缩小样本空间法:
5
第一次取到白球,则袋中剩余5个白球和4个黑球
故第二次取到黑球的概率是
P( A)
C41 C91
4 9
(5)课本P:53 例1
(6)课本P:54
①
P
C31 C511
3 51
P( A)
②缩小样本空间法 P(B | A) n( AB) n( A)
练习2.条件概率:
(4)一袋中装有6个白球、4个黑球,每次从中不放回地 任取1个,求在第一次取到白球的条件下,第二次取到 黑球的概率.
定义法:记“第一次取到白球”为事件A “第二次取到黑球”为事件B
则
P( A)
C61 C110
随机变量及其分布列概述
随 细化数化分布列①
机
一选二算三列表 ② 六大分布公式化 ③
分 布
事
件 期望方差确定化④
列
注②:一选二算三列表 求分布列的操作步骤
注③:六大分布公式化
(1)均匀分布
(2)两点(0—1)分布
(3)几何分布
(4)超几何分布
(5)二项分布
(6)正态分布
随机变量及其分布列概述
随 细化数化分布列①
随机变量千千万 均匀分布平等化 多次成败伯努利 成分两类超几何
六大分布最常见 两点分布论成败 二项连续是正态 几何分布破天荒
几何分布
如果事件A每次发生的概率均为p,则事件A在第k次首次
发生的概率为P(ξ=k)= (1-p) k-1p (k=1,2,3,…) 则称ξ服从几何分布,并记ξ~ G (p)
法2: P(A B) 1 P(AB) 0.44
法3: P(AB) P(AB) P(AB) 0.44
加法公式: P(A B) P(A) P(B) P(AB) 注:若A,B互斥,则 P(A B) P(A) P(B)
和积互补公式 P(A1 A2 An ) 1 P(A1 • A2 • • An )
二、事件的独立性:
1.定义:
若 P( AB) P(A)P(B) ,则称事件A与事B相互独立
2.性质:
若事件A与B相互独立,则事件 A与B,A与B,A与B
也相互独立 3.判定:
A与B独立 P(AB) P(A)P(B)
不能同时为互斥 互斥特例为对立 互不影响为独立 一对独立全独立 互斥独立不相干 概率相等即重复
注2:频率代概率 总数一大批 抽取要放回 二项分布也
二、常用的公式:
若 ~ B(n , p) ,则
① P( k) Cnk pk (1 p)nk (k 0,1,2,..., n)
② E( ) np
③ D( ) np(1 p)
§258 条件概率与事件的独立性(一)
一、求分布列的总思路:
繁 (大)
加法公式: P(A B) P(A) P(B) P(AB) 注:若A,B互斥,则 P(A B) P(A) P(B)
(3)课本P:55 练习3
析:设A,B分别表示甲,乙地降雨.则P(A)=0.2,P(B)=0.3
① P(AB) 0.06
② P(AB) 0.56
③ 法1:P(A B) P(A) P(B) P(AB) 0.44
离散型随机变量的分布列求法: 一选二算三列表
一选:根据题意灵活的选取随机变量所有可能的取值 二算:根据题意灵活的计算各随机变量相应的概率 三列表:
格式①
X x1 x2 x3 x4 … xi … p p1 p2 p3 p4 … pi …
格式②
X x1 x2 x3 x4 … xi … p p1 p2 p3 p4 … pi …