概率 2 条件概率与相互独立事件

合集下载

概率与统计中的条件概率与独立事件

概率与统计中的条件概率与独立事件

概率与统计中的条件概率与独立事件概率与统计是数学的一个重要分支,探究了随机事件的规律与规定。

条件概率与独立事件是概率与统计中两个基本概念,它们在实际问题的解决中具有重要的应用价值。

一、条件概率条件概率是指在已知事件A发生的条件下,事件B发生的概率。

用数学符号表示为P(B|A),读作“在A发生的条件下B发生的概率”。

条件概率的计算公式为:P(B|A) = P(A∩B) / P(A)其中,P(A∩B)表示A和B同时发生的概率,而P(A)表示A发生的概率。

条件概率的计算方法可以通过实际问题进行理解。

例如,假设有一批产品,其中20%是次品。

现在从中随机挑出一个产品,如果已知该产品是次品,那么该产品是A事件,次品的概率是B事件,我们想要计算条件概率P(B|A),即在已知产品是次品的条件下,该产品为次品的概率。

根据条件概率的计算公式,我们可以得到:P(B|A) = P(A∩B) / P(A) = (次品的产品数)/ (总产品数)通过计算,我们可以得到具体的条件概率值。

二、独立事件独立事件是指两个事件A和B相互之间没有影响的事件。

即事件A 的发生与否不会影响事件B的发生概率,事件B的发生与否也不会影响事件A的发生概率。

用数学符号表示为P(A) = P(A|B),P(B) =P(B|A)。

对于独立事件来说,它们的联合概率等于各自的概率的乘积。

即:P(A∩B) = P(A) * P(B)例如,假设有一批产品,其中80%是合格品。

现从中随机取一件产品,不放回地取,再取一件产品。

如果两次取出的产品都是合格品,那么第一次取出的产品为事件A,第二次取出的产品为事件B。

我们希望计算P(A∩B),即两次取出的产品都为合格品的概率。

由于两次取出产品的过程是不放回的,所以第一次取出产品是合格品的概率是80%,第二次取出产品是合格品的概率也是80%。

根据独立事件的概念,我们可以得到:P(A∩B) = P(A) * P(B) = 0.8 * 0.8 = 0.64通过计算,我们得到两次取出产品都是合格品的概率为0.64。

概率的条件与独立总结

概率的条件与独立总结

概率的条件与独立总结概率论是数学的一个重要分支,主要研究随机事件的发生规律以及计算其可能性大小。

在概率论中,条件概率与独立事件是两个基本的概念。

本文将从这两个角度出发,对条件概率与独立事件进行总结和讨论。

一、条件概率的概念与计算方法条件概率是指在给定某一条件下,事件发生的概率。

设A、B为两个事件,且P(B)≠0 ,则在事件B发生的条件下,事件A发生的概率记为P(A|B)。

计算条件概率的方法如下:P(A|B) = P(AB) / P(B)其中P(AB)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。

二、条件概率的性质条件概率具有一些重要的性质。

首先,当两事件A、B相互独立时,条件概率P(A|B)与事件A的概率P(A)是相等的,即P(A|B) = P(A)。

其次,条件概率满足乘法公式,即 P(AB) = P(A|B) * P(B)。

最后,根据全概率公式,我们可以得到P(A) = P(AB1) + P(AB2) + ... + P(ABn),其中B1、B2、...、Bn为一系列互不相容的事件,并且它们的并集为全集。

三、独立事件的概念与判定方法独立事件是指两个事件相互之间不受对方发生与否的影响。

设A、B为两个事件,如果P(A|B) = P(A),则事件A与事件B相互独立。

同时,根据乘法公式可以得到P(AB) = P(A) * P(B)。

根据这个公式,我们可以判断两个事件是否独立。

四、条件概率与独立事件的关系条件概率与独立事件之间有密切的关系。

如果事件A与事件B是独立的,那么条件概率P(A|B)与事件A的概率P(A)相等。

反过来,如果条件概率P(A|B)与事件A的概率P(A)相等,那么可以推导出事件A与事件B是独立的。

五、实际应用与案例分析概率论中的条件概率与独立事件在实际生活中有广泛的应用。

例如,考虑一个学生复习某门课程的情况。

如果我们已知该学生复习了课本,并且能够独立地完成每个练习题的概率为0.8,那么考试中该学生能够得到好成绩的概率是多少?根据条件概率的定义,我们可以计算出该概率为 P(好成绩|复习) = 0.8 * P(好成绩)。

概率的计算方法条件概率事件独立性的计算方法

概率的计算方法条件概率事件独立性的计算方法

概率的计算方法条件概率事件独立性的计算方法概率的计算方法——条件概率和事件独立性的计算方法概率是数学中的一个重要概念,用于描述事件发生的可能性。

在概率的计算过程中,条件概率和事件独立性是两个重要的概念。

本文将介绍概率中的条件概率和事件独立性的计算方法。

一、条件概率的计算方法条件概率是指在已知某个条件下,事件发生的概率。

表示为P(A|B),读作事件B发生的条件下事件A发生的概率。

计算条件概率的方法:1. 根据条件概率的定义,可以得出P(A|B) = P(AB) / P(B)。

即事件A和事件B同时发生的概率除以事件B发生的概率。

2. 利用频率法进行计算。

通过实验或观察,记录事件A在事件B发生的条件下出现的频次,再除以事件B发生的频次。

举例说明:假设有一个扑克牌的标准牌组,从中随机抽取一张牌。

事件A表示抽到一张红心牌,事件B表示抽到一张大于等于10的牌。

求在事件B发生的条件下,事件A发生的概率。

根据条件概率的计算方法,我们可以得到:P(A|B) = P(AB) / P(B)首先,我们需要计算事件A和事件B同时发生的概率P(AB)。

在扑克牌标准牌组中,红心牌有13张,大于等于10的牌有16张。

其中,大于等于10的红心牌有3张。

因此,P(AB) = 3 / 52。

接下来,计算事件B发生的概率P(B)。

在扑克牌标准牌组中,大于等于10的牌有16张,总共的牌数是52张,所以P(B) = 16 / 52。

将以上结果代入条件概率的计算公式,我们可以得到:P(A|B) = (3 / 52) / (16 / 52) = 3 / 16所以,在事件B发生的条件下,事件A发生的概率为3/16。

二、事件独立性的计算方法事件独立性是指事件A和事件B的发生与否互相独立,即事件A 的发生与否不受事件B的影响。

计算事件独立性的方法:1. 如果P(A|B) = P(A),则事件A和事件B互相独立。

2. 如果P(A|B) ≠ P(A),则事件A和事件B不独立。

高中数学第二章概率2.2条件概率与事件的独立性2.2.1-2.2.2条件概率与事件的独立性课堂导学案

高中数学第二章概率2.2条件概率与事件的独立性2.2.1-2.2.2条件概率与事件的独立性课堂导学案

-2.2.2 条件概率与事件独立性课堂导学三点剖析一、条件概率【例1】一个家庭中有两个小孩,假定生男、生女是等可能,这个家庭有一个是女孩,问这时另一个小孩是男孩概率是多少?解析:一个家庭两个小孩子只有4种可能:{两个都是男孩子},{第一个是男孩,第二个是女孩},{第一个是女孩,第二个是男孩},{两个都是女孩},由题目假定可知这4个根本领件发生是等可能.根据题意,设根本领件空间为Ω,A=“其中一个是女孩〞,B=“其中一个是男孩〞,那么Ω={〔男,男〕,〔男,女〕,〔女,男〕,〔女,女〕}, A={〔男,女〕,〔女,男〕,〔女,女〕},B={〔男,男〕,〔男,女〕,〔女,男〕},AB={〔男,女〕,〔女,男〕},问题是求在事件A 发生情况下,事件B 发生概率,即求P 〔B|A 〕.由上面分析可知P 〔A 〕=43,P 〔AB 〕=42. 由公式②可得P 〔B|A 〕=, 因此所求条件概率为32. 温馨提示关键是弄清楚P 〔A·B〕及P 〔A 〕.二、事件独立性应用【例2】甲、乙两名篮球运发动分别进展一次投篮,如果两人投中概率都是0.6,计算: 〔1〕两人都投中概率;〔2〕其中恰有一人投中概率;〔3〕至少有一人投中概率.思路分析:甲、乙两人各投篮一次,甲〔或乙〕是否投中,对乙〔或甲〕投中概率是没有影响,也就是说,“甲投篮一次,投中〞与“乙投篮一次,投中〞是相互独立事件.因此,可以求出这两个事件同时发生概率.同理可以分别求出,甲投中与乙未投中,甲未投中与乙投中,甲未投中与乙未投中同时发生概率,从而可以得到所求各个事件概率.解:〔1〕设A=“甲投篮一次,投中〞,B=“乙投篮一次,投中〞,那么AB=“两人各投篮一次,都投中〞.由题意知,事件A 与B 相互独立,根据公式③所求概率为 P 〔AB 〕=P 〔A 〕·P(B)=0.6×0.6=0.36.(2)事件“两人各投篮一次,恰好有一人投中〞包括两种情况:一种是甲投中、乙未投中〔事件A∩B 发生〕,另一种是甲未投中、乙投中〔事件A∩B 发生〕。

事件的相互独立性、条件概率与全概率公式-高考数学复习

事件的相互独立性、条件概率与全概率公式-高考数学复习
“两次取出的球的数字之和是7”,则(

A. 甲与丙相互独立
B. 甲与丁相互独立
C. 乙与丙相互独立
D. 丙与丁相互独立
目录
解析:
1
事件甲发生的概率 P (甲)= ,事件乙发生的概率 P
6
1
5
5
(乙)= ,事件丙发生的概率 P (丙)=
= ,事件丁发生的概
6
6×6
36
6
1
率 P (丁)=
= .事件甲与事件丙同时发生的概率为0, P (甲
)=(1-0.6)×0.5×0.5×0.4+0.6×(1-0.5)×0.5×0.4+
0.6×0.5×(1-0.5)×0.4+0.6×0.5×0.5×(1-0.4)=0.25,4人需
使用设备的概率 P 2=0.6×0.5×0.5×0.4=0.06,故所求的概率 P =
3
2
3
5
( )·P ( )·P ( )=(1- )(1- )(1- )= .
4
3
8
96
因为事件“甲、乙、丙三人都回答错误”与事件“甲、乙、丙
三人中,至少有一人答对这道题”是对立事件,
5
91
所以所求事件的概率为 P ( M )=1- = .
96
96
目录
解题技法
1. 求相互独立事件同时发生的概率的步骤
2∪…∪ An =Ω,且 P ( Ai )>0, i =1,2,…, n ,则对任意的事

件 B ⊆Ω,有 P ( B )=
∑ P ( Ai ) P ( B | Ai )
i=1
,我们称上面
的公式为全概率公式.
目录
1. 判断正误.(正确的画“√”,错误的画“×”)

概率与统计中的独立事件与条件概率

概率与统计中的独立事件与条件概率

概率与统计中的独立事件与条件概率概率与统计是一门研究事物发生概率和规律的学科,独立事件和条件概率是其中的两个重要概念。

独立事件指的是两个或多个事件之间互不影响,而条件概率则是在已知某个事件发生的前提下,另一个事件发生的概率。

以下将对概率与统计中的独立事件和条件概率进行详细阐述。

一、独立事件独立事件是指两个或多个事件之间没有相互影响的情况。

在概率与统计中,我们用P(A)表示事件A发生的概率,P(B)表示事件B发生的概率。

如果两个事件A和B相互独立,那么事件A和B同时发生的概率就等于事件A发生的概率乘以事件B发生的概率,即P(A∩B) = P(A) × P(B)。

例如,假设有一枚公平的硬币,掷硬币的结果有两个可能性,正面和反面,分别记为事件A和事件B。

如果事件A表示掷硬币结果为正面的概率,事件B表示掷硬币结果为反面的概率,那么根据独立事件的定义,我们可以得到P(A∩B) = P(A) × P(B) = 1/2 × 1/2 = 1/4,即事件A和事件B同时发生的概率为1/4。

二、条件概率条件概率是在已知某个事件发生的条件下,另一个事件发生的概率。

条件概率用P(A|B)表示,读作“在事件B发生的条件下,事件A发生的概率”。

条件概率的计算公式为P(A|B) = P(A∩B)/P(B)。

举例来说,假设有一批产品,其中10%的产品有缺陷,现在随机抽取一件产品,事件A表示这件产品有缺陷,事件B表示这件产品是某个特定品牌的产品。

如果已知这件产品是该品牌的产品,我们想要知道它有缺陷的概率,即求解P(A|B)。

根据条件概率的定义,我们可以通过计算P(A∩B)/P(B)来得到答案。

假设该品牌的产品有总体占比为20%,即P(B) = 0.2。

又已知有缺陷的产品占总体的10%,即P(A∩B) = 0.1,将这些数据代入条件概率的计算公式,我们可以得到P(A|B) = P(A∩B)/P(B) = 0.1/0.2 = 0.5。

概率与统计中的事件独立性与条件概率

概率与统计中的事件独立性与条件概率

概率与统计中的事件独立性与条件概率概率与统计是数学中的一个重要分支,用于研究随机现象和不确定性问题。

在概率与统计的基础概念中,事件的独立性与条件概率是两个核心概念。

本文将对这两个概念进行详细解释,并探讨它们在实际问题中的应用。

一、事件的独立性在概率与统计中,事件的独立性是指两个或多个事件之间的关联程度。

如果两个事件A和B相互独立,意味着事件A的发生与否不会对事件B的发生概率产生影响,反之亦然。

换句话说,事件A和B的发生概率是相互独立的,它们之间不存在任何关联。

为了判断两个事件A和B是否相互独立,可以通过下列公式进行计算:P(A∩B) = P(A) × P(B)其中,P(A∩B)表示事件A和B同时发生的概率,P(A)和P(B)分别表示事件A和B发生的概率。

如果上式成立,则事件A和B相互独立;如果不成立,则事件A和B不相互独立。

事件的独立性在实际问题中具有广泛的应用。

例如,假设有一批产品,每个产品的质量合格的概率为0.9。

如果从该批产品中随机选取两个产品,事件A表示第一个产品质量合格,事件B表示第二个产品质量合格。

根据事件的独立性,我们可以通过计算概率来判断同时选中两个质量合格产品的概率。

二、条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。

条件概率通常用P(B|A)表示,其中P(B|A)表示在事件A发生的条件下,事件B发生的概率。

条件概率的计算公式为:P(B|A) = P(A∩B) / P(A)其中,P(A∩B)表示事件A和B同时发生的概率,P(A)表示事件A发生的概率。

通过计算条件概率,我们可以得出在某种条件下发生某个事件的概率。

条件概率在实际问题中非常有用。

例如,假设有一个班级,其中40%的学生会参加音乐比赛,30%的学生参加体育比赛。

如果我们知道某个学生参加了音乐比赛,那么他参加体育比赛的概率是多少?根据条件概率的计算公式,我们可以得出这个概率。

三、事件独立性与条件概率的关系事件的独立性与条件概率密切相关。

事件的相互独立性与条件概率

事件的相互独立性与条件概率

TANJIUHEXINTIXING
探究核心题型
题型一 条件概率
例1 (1)某公司为方便员工停车,租了6个停车位,编号如图所示.公司规
定:每个车位只能停一辆车,每个员工只允许占用一个停车位.记事件A
为“员工小王的车停在编号为奇数的车位上”,事件B为“员工小李的
车停在编号为偶数的车位上”,则P(A|B)等于
思维升华
求相互独立事件同时发生的概率的方法 (1)相互独立事件同时发生的概率等于他们各自发生的概率 之积. (2)当正面计算较复杂或难以入手时,可从其对立事件入手 计算.
跟踪训练2 溺水、触电等与学生安全有关的问题越来越受到社会的关注
和重视,为了普及安全教育,某市组织了一次学生安全知识竞赛,规定
条件下,第二次拿到红球的概率为
√ 3
1
3
2
A.10 B.3 C.8 D.9
设A={甲第一次拿到白球}, B={甲第二次拿到红球}, 则 P(AB)=AA12A21013=115,P(A)=CC11120=15, 所以 P(B|A)=PPAAB=13.
思维升华
求条件概率的常用方法 (1)定义法:P(B|A)=PPAAB . (2)样本点法:P(B|A)=nAB .
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)对于任意两个事件,公式P(AB)=P(A)P(B)都成立.( × ) (2)若事件A,B相互独立,则P(B|A)=P(B).( √ )
(3)抛掷2枚质地均匀的硬币,“第一枚为正面”为事件A,“第2枚为正
面”为事件B,则A,B相互独立.( √ )
第十章
考试要求
1.了解两个事件相互独立的含义. 2.理解随机事件的独立性和条件概率的关系,会利用全概率公式计算概率.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率 2 条件概率与相互独立事件
基础梳理
1.条件概率及其性质
(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=
P (AB )
P (A )
. 在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (AB )
n (A )
. (2)条件概率具有的性质: ①0≤P (B |A )≤1;
② 如果B 和C 是两互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件
(1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (B |A )·P (A )=P (A )·P (B ).
(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若P (AB )=P (A )P (B ),则A 与B 相互独立.
基础训练
1.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ). A.34 B.23 C.35 D.12
2.如图,用K 、A 1、A 2三类不同的元件连接成一个系统,当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作,已知K 、A 1、A 2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为( ).
A .0.960
B .0.864
C .0.720
D .0.576
3.把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ).
A.12
B.14
C.16
D.18
4.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )等于( ). A.18 B.14 C.25 D.12
5.已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率是
A .错误!未找到引用源。

B .错误!未找到引用源。

C .错误!未找到引用源。

D .错误!未找到引用源。

6.为了分流地铁高峰的压力,市发改委通过听众会,决定实施低峰优惠票价制度.不超过错误!未找到引用源。

公里的地铁票价如下表:
现有甲、乙两位乘客,他们乘坐的里程都不超过错误!未找到引用源。

公里.已知甲、乙乘车不超过错误!未找到引用源。

公里的概率分别为错误!未找到引用源。

,错误!未找到引用源。

,甲、乙乘车超过错误!未找到引用源。

公里且不超过错误!未找到引用源。

公里的概率分别为错误!未找到引用源。

,错误!未找到引用源。

.求甲、乙两人所付乘车费用不相同的概率;
提升训练
1.如图,EFGH是以O为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,B表示事件“豆子落在扇形OHE(阴影部分)内”,则
(1)P(A)=________;(2)P(B|A)=________.
2.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.
3.设各车主购买保险相互独立.
(1)求该地1位车主至少购买甲、乙两种保险中的一种的概率;
(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率
3.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
已知这100位顾客中的一次购物量超过8件的顾客占55%.
(Ⅰ)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
(Ⅱ)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)
4.如图,A 地到火车站共有两条路径1L 和2L ,现随机抽取100位从A 地到达火车站的人进行调查,调查结果
如下:
(1)试估计40分钟内不能..
赶到火车站的概率; (2 )分别求通过路径1L 和2L 所用时间落在上表中各时间段内的频率;
(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽量大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.
5.本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车不
超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算).有甲、乙人互相独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14、1
2
;两小时以上且不超过三小时还车的概率分别为
12、1
4
;两人租车时间都不会超过四小时. (Ⅰ)分别求出甲、乙在三小时以上且不超过四小时还车的概率; (Ⅱ)求甲、乙两人所付的租车费用之和小于6元的概率.。

相关文档
最新文档