八年级数学上册乘法公式94

合集下载

初二乘法公式

初二乘法公式

初二乘法公式
乘法公式是数学中的一种基本公式,用于计算两个数的乘积。

在初二数学中学习的乘法公式为:
乘法公式1:两个整数相乘
例如,如果要计算2和3的乘积,我们可以使用乘法公式1:
2 ×
3 = 6
乘法公式2:两个整数的积与它们的一部分相乘
例如,如果要计算3和5的积与2相乘,我们可以使用乘法公式2:(3 × 5) × 2 = 30
乘法公式3:两个整数和一个分数相乘
例如,如果要计算4和7以及1/2的乘积,我们可以使用乘法公式3:(4 × 7) × 1/2 = 14
乘法公式4:两个分数相乘
例如,如果要计算1/3和2/5的乘积,我们可以使用乘法公式4:
(1/3) × (2/5) = 2/15
以上是初二乘法公式的简单介绍,希望对你有帮助!。

【精品讲义】人教版 八年级上册数学 乘法公式与因数分解 知识点讲解+练习题

【精品讲义】人教版  八年级上册数学 乘法公式与因数分解    知识点讲解+练习题

讲 义(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④ 系数变化,(2a +b )(2a -b )=4a 2-b 2 ⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m )=x 2y 2-(z 2+zm +zm +m 2)=x 2y 2-z 2-2zm -m 2⑥ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4 1、计算下列各式:(1)[(x +y)3]4 ; (2) (a 4n )n -1 ;(3) (-a 3)2+(-a 2)3-(-a 2)·(-a)4 ;(4) x 3·x 2·x 4+(-x 4)2+4(-x 2)4例. 计算:()()53532222x y x y +-(二)、连用:连续使用同一公式或连用两个以上公式解题。

例. 计算:()()()()111124-+++a a a a例. 计算:()()57857822a b c a b c +---+例.(1)已知a b ab -==45,,求a b 22+的值。

(2) 已知2=+b a ,1=ab ,求22b a +的值。

(3) 已知8=+b a ,2=ab ,求2)(b a -的值。

(4) 已知x-y=2,y-z=2,x+z=14。

求x 2-z 2的值。

例:计算19992-2000×1998 例.已知13x x-=,求441x x +的值。

八年级数学整式乘除与乘法公式

八年级数学整式乘除与乘法公式

3、有一块长方形耕地ABCD ,其长为a 米,宽为b 米,现要在该耕地上种植两块防风带,如图的阴影部分,其中横向防风带为长方形,纵向防风带为平行四边形,则剩余耕地面积为 。

知识梳理二 平方差公式平方差公式:()()22a b a b a b +-=-,即“两数和乘两数差,等于两数平方差”。

【注】平方差公式中的a 、b 既可以是具体的数,也可以是单项式、多项式,即a 、b 可以是任意一个整式。

【拓展】平方差公式的变形①位置变化 ()()()()22b a b a a b a b a b +-+=+-=-②符号变化 ()()()2222a b a b b a b a ﹣--=﹣-=-③系数变化 ()()()()222232323294a b a b a b a b +-=-=-④指数变化 ()()()()2223232346a b a b a b a b +-=-=-⑤增项变化 ()()()22222a b c a b c a b c +--+=--⑥增因式变化 ()()()()()()()2222222a b a b a b a b a b a b a b ⎡⎤⎣⎦﹣+﹣-+-=﹣--=- ⑦连用公式变化 ()()()()()22222244a b a b a b a b a b a b +-+=-+=-⑧逆用公式变化()()22a b a b a b -=+-【例题精讲二】考点一:平方差公式的直接运用【例题1】计算:(1)()()4334a b b a +- (2)()()5115x x ﹣+﹣-3、已知2x -y =10,求代数式()()()22224x y x y y x y y ⎡⎤÷⎣⎦+--+-的值。

【方法总结】化简求值问题常见的两种类型:①先化简,然后将各字母的值代入求值;②先化简,再采用整体代入的方法求值。

1、要使()()2316x ax x ⋅++﹣的展开式中不含4x 项,则a = 。

人教版八年级数学上册 整式的乘法与因式分解知识点总结及同步练习

人教版八年级数学上册 整式的乘法与因式分解知识点总结及同步练习

整式乘除与因式分解一.知识点 (重点) 1.幂的运算性质:a m ·a n =a m +n (m 、n 为正整数) 同底数幂相乘,底数不变,指数相加. 例:(-2a )2(-3a 2)3 2.()nm a = a mn (m 、n 为正整数)幂的乘方,底数不变,指数相乘. 例: (-a 5)53.()n n nb a ab = (n 为正整数) 积的乘方等于各因式乘方的积. 例:(-a 2b )3 练习:(1)y x x 2325⋅ (2))4(32b ab -⋅- (3)a ab 23⋅(4)222z y yz ⋅ (5))4()2(232xy y x -⋅ (6)22253)(631ac c b a b a -⋅⋅4.nm a a ÷= a m -n (a ≠0,m 、n 都是正整数,且m >n )同底数幂相除,底数不变,指数相减. 例:(1)x 8÷x 2 (2)a 4÷a (3)(a b )5÷(a b )2(4)(-a )7÷(-a )5 (5) (-b ) 5÷(-b )25.零指数幂的概念: a 0=1 (a ≠0)任何一个不等于零的数的零指数幂都等于l . 例:若1)32(0=-b a 成立,则b a ,满足什么条件?6.负指数幂的概念:a -p =pa 1 (a ≠0,p 是正整数)任何一个不等于零的数的-p (p 是正整数)指数幂,等于这个数的p 指数幂的倒数.也可表示为:ppn m m n ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-(m ≠0,n ≠0,p 为正整数)7.单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.例:(1)223123abc abc b a ⋅⋅ (2)4233)2()21(n m n m -⋅-8.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.例:(1))35(222b a ab ab + (2)ab ab ab 21)232(2⋅-(3))32()5(-22n m n n m -+⋅ (4)xyz z xy z y x ⋅++)(23229.多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.例:(1))6.0(1x x --)( (2)))(2(y x y x -+ (3)2)2n m +-( 练习:1.计算2x 3·(-2xy)(-12xy) 3的结果是2.(3×10 8)×(-4×10 4)=3.若n 为正整数,且x 2n =3,则(3x 3n ) 2的值为 4.如果(a n b ·ab m ) 3=a 9b 15,那么mn 的值是5.-[-a 2(2a 3-a)]=6.(-4x 2+6x -8)·(-12x 2)= 7.2n(-1+3mn 2)=8.若k(2k -5)+2k(1-k)=32,则k = 9.(-3x 2)+(2x -3y)(2x -5y)-3y(4x -5y)=10.在(ax 2+bx -3)(x 2-12x +8)的结果中不含x 3和x 项,则a = ,b =11.一个长方体的长为(a +4)cm ,宽为(a -3)cm ,高为(a +5)cm ,则它的表面积为,体积为。

数学八年级上册《平方差公式》《完全平方公式》乘法公式完全平方公式

数学八年级上册《平方差公式》《完全平方公式》乘法公式完全平方公式
a-b-c= a-(b+c)
添括号时, 1.如果括号前面是正号,括到括号里的各项都不变号 2.如果括号前面是负号,括到括号里的各项都改变符号
练习
1.在等号右边的括号内填上适当的项:
(1) a + b + c = a + ( b + c ); (2) a – b – c = a – ( b + c ) ; (3) a - b + c = a – ( b - c ); (4) a + b + c = a - ( -b - c ).
例3 计算:
(1) 102×98;
(2) (y+2) (y-2) – (y-1) (y+5) .
解: (1) 102×98 =(100+2)(100-2) = 1002-22 =1000 – 4 =9996 (2)(y+2)(y-2)- (y-1)(y+5) = y2-22-(y2+4y-5) = y2-4-y2-4y+5 = - 4y + 1.
a2-b2
(a+b)2= a2 +b2 +2ab (a-b)2= a2 +b2 - 2ab
头平方,尾平方,积的2倍在中间。
例1、运用完全平方公式计算:
(1) ( 4a2 - b2 )2 2= a2 -2ab +b2 (a-b) 分析: a 4a2 b2 b
解:( 4a2 - b2)2
=( 4a2 )2-2( 4a2 )·( b2 )+( b2 )2 =16a4-8a2b2+b4
平方差公式: (a+b)(a-b)=a2-b2
即两数和与这两数差的积等于这两个数的平方差. 做一做: 将图甲中阴影部分的小长方形变换到图乙位置,你 能根据两个图形的面积关系直观地说明平方差公 式吗? a

2024乘法公式人教版数学八年级上册教案

2024乘法公式人教版数学八年级上册教案

2024乘法公式人教版数学八年级上册教案一、教学目标1.让学生掌握多项式乘以多项式的法则。

2.能够灵活运用乘法公式解决实际问题。

3.培养学生的观察能力、逻辑思维能力和解决问题的能力。

二、教学重点与难点重点:多项式乘以多项式的法则。

难点:运用乘法公式解决实际问题。

三、教学过程1.导入新课(1)回顾已学的平方公式和立方公式。

(2)引导学生思考:如何将多项式相乘转化为平方和立方公式来解决?2.探究新知(1)引导学生观察多项式乘以多项式的特点,如(a+b)(c+d)。

(2)引导学生利用平方公式和立方公式,将(a+b)(c+d)转化为平方和立方公式的形式。

3.应用练习(1)让学生独立完成课本P30页的练习题1、2。

(2)教师选取部分学生板演,讲解解题过程。

(2)让学生举例说明如何运用乘法公式解决实际问题。

5.课堂小结(1)回顾本节课所学内容,让学生复述多项式乘以多项式的法则。

(2)强调乘法公式在解决实际问题中的应用。

6.课后作业(1)完成课本P31页的练习题3、4、5。

(2)预习下一节课的内容,思考如何运用乘法公式解决实际问题。

四、教学反思2.在探究环节,教师引导学生观察、思考,充分调动了学生的积极性,提高了课堂参与度。

3.在应用练习环节,教师选取部分学生板演,讲解解题过程,让学生在实践中巩固所学知识。

4.课堂小结环节,教师引导学生回顾所学内容,强化了知识点,提高了学生的学习效果。

五、教学策略1.采用启发式教学,引导学生主动探究、发现规律。

2.利用实例讲解,让学生在具体情境中感受乘法公式的应用。

3.注重课后作业的布置,巩固所学知识,提高学生的实际运用能力。

六、教学评价1.课堂参与度:观察学生在课堂上的发言、提问情况,了解学生的参与程度。

2.作业完成情况:检查学生的作业完成情况,了解学生对知识点的掌握程度。

3.测试成绩:通过测试,了解学生对乘法公式的掌握情况,评估教学效果。

重难点补充:1.教学重点:多项式乘以多项式的法则(1)难点解释:学生可能会混淆多项式乘法的步骤,比如在分配律的应用上出错。

人教版八年级数学上册(教案):14.2 乘法公式

人教版八年级数学上册(教案):14.2 乘法公式

乘法公式一、说教材1、教材所处的地位及前后联系本节课是《整式的乘除》的内容,是在学习了多项式和多项式相乘和平方差公式之后引入的又一种比较特殊多项式乘以多项式,即完全平方公式。

它和平方差公式一样,也是数学中最基本的一个公式,理解和运用完全平方公式,对于以后学习因式分解,解一元二次方程都具有举足轻重的作用。

2、教学目标:1)通过合作学习探索得到完全平方公式,培养学生认识由一般法则到特殊法则的能力。

2)通过体念、观察并发现完全平方公式的结构特征,并能从广义上理解公式中字母的含义。

3)初步学会运用完全平方公式进行计算。

3、教材的重点难点:本节课的重点是理解完全平方公式,运用公式进行计算。

难点是从广泛意义上理解公式中的字母,判明要计算的代数式是哪两个数的和(差)的平方。

二、说教法针对初一学生的形象思维大于抽象思维,注意力不能持久等年龄特点,及本节课实际,采用自主探索,启发引导,合作交流展开教学,引导学生主动地进行观察、猜测、验证和交流。

同时考虑到学生的认知方式、思维水平和学习能力的差异进行分层次教学,让不同层次的学生都能主动参与并都能得到充分的发展。

边启发,边探索边归纳,突出以学生为主体的探索性学习活动和因材施教原则,教师努力为学生的探索性学习创造知识环境和氛围,遵循知识产生过程,从特殊→一般→特殊,将所学的知识用于实践中。

另外本节课采用计算机辅助教学,利用多彩的图形世界引导学生完全平方公式的发现和推导,使代数教学不再枯燥。

三、说学法在学法上,教师应引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,自己归纳出运算法则,培养学生学习的主动性和积极性。

四、说教学程序(一)合作学习,探求新知用投影片显示:1、如图所示,你能用不同的方法表示下面图形的面积吗?2、把学生回答的结果的不同形式板书在黑板上,提问这些表示的结果都相等吗?3、指出:即完全平方和公式。

4、模仿练习:(用两数和的完全平方公式计算(填空))1)=2)=5、换元拓展提问:等于什么?是否可以写成?你能继续做下去吗?通过讨论,尝试得到(二)探求规律,巩固练习1、探求规律在模仿运用公式的基础上,结合两个公式的特征,可用一句顺口溜来强化记忆:“首平方,尾平方,首尾两倍中间放。

人教版八年级数学上册第十四章整式的乘法与因式分解小结与复习教学课件

人教版八年级数学上册第十四章整式的乘法与因式分解小结与复习教学课件
∴420>1510.
考点二 整式的运算
例3 计算:[x(x2y2-xy)-y(x2-x3y)] ÷3x2y,其中x=1,y=3.
解析:在计算整式的加、减、乘、除、乘方的运算中,一要注意运算顺序;二要熟练
正确地运用运算法则.
解:原式=(x3y2-x2y-x2y+x3y2) ÷3x2y
=(2x3y2-2x2y) ÷3x2y
例6 把多项式2x2-8分解因式,结果正确的是( C )
A.2(x2-8)
B.2(x-2)2
C.2(x+2)(x-2) D.2x(x- )
4 x
归纳总结
因式分解是把一个多项式化成几个整式的积的形式,它与整式乘法互为逆 运算,因式分解时,一般要先提公因式,再用公式法分解,因式分解要求 分解到每一个因式都不能再分解为止.
3.(1)已知3m=6,9n=2,求3m+2n,32m-4n的值. (2)比较大小:420与1510. 解:(1)∵3m=6,9n=2, ∴3m+2n=3m·32n=3m·(32)n=3m·9n=6×2=12. 32m-4n=32m÷34n=(3m)2÷(32n)2=(3m)2÷(9n)2=62÷22=9. (2) ∵420=(42)10=1610, ∵1610>1510,
=a2-(b-3)2=a2-b2+6b-9. (3)原式=[(3x-2y)(3x+2y)]2
=(9x2-4y2)2=81x4-72x2y2+16y4
11.用简便方法计算
(1)2002-400×199+1992; (2)999×1 001. 解:(1)原式=(200-199)2=1;
(2) 原式=(1000-1)(1000+1) =10002-1 =999999.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档