八年级上人教版乘法公式

合集下载

八年级上册数学乘法公式

八年级上册数学乘法公式

八年级上册数学乘法公式一、乘法公式的基本内容。

(一)平方差公式。

1. 公式内容。

- (a + b)(a - b)=a^2-b^2。

2. 公式的几何解释(以人教版教材为例)- 我们可以通过一个边长为a的大正方形,在其中一角去掉一个边长为b的小正方形来理解。

- 大正方形的面积是a^2,小正方形的面积是b^2。

- 剩下的图形可以看作是一个长为(a + b),宽为(a - b)的长方形,其面积为(a +b)(a - b),所以(a + b)(a - b)=a^2-b^2。

3. 公式的应用示例。

- 例1:计算(3x+2y)(3x - 2y)。

- 解:这里a = 3x,b=2y,根据平方差公式(a + b)(a - b)=a^2-b^2,可得(3x+2y)(3x - 2y)=(3x)^2-(2y)^2=9x^2-4y^2。

- 例2:计算( - 5m+4n)( - 5m - 4n)。

- 解:a=-5m,b = 4n,则( - 5m+4n)( - 5m - 4n)=(-5m)^2-(4n)^2=25m^2-16n^2。

(二)完全平方公式。

1. 公式内容。

- (a + b)^2=a^2+2ab + b^2;(a - b)^2=a^2-2ab + b^2。

2. 公式的几何解释(人教版)- 对于(a + b)^2,可以看作边长为(a + b)的正方形的面积。

- 这个正方形的面积可以分成四部分:边长为a的正方形面积a^2,两个长为a宽为b的长方形面积2ab,边长为b的正方形面积b^2,所以(a + b)^2=a^2+2ab +b^2。

- 对于(a - b)^2,可以看作边长为a的正方形去掉两个长为a宽为b的长方形(这两个长方形有一个边长为b的公共部分)后再加上边长为b的正方形的面积,即(a - b)^2=a^2-2ab + b^2。

3. 公式的应用示例。

- 例1:计算(2x+3y)^2。

- 解:这里a = 2x,b = 3y,根据(a + b)^2=a^2+2ab + b^2,可得(2x+3y)^2=(2x)^2+2×(2x)×(3y)+(3y)^2=4x^2+12xy + 9y^2。

人教版初中数学八年级上册第十四章整式的乘法与因式分解《乘法公式》PPT课件

人教版初中数学八年级上册第十四章整式的乘法与因式分解《乘法公式》PPT课件


a
2
( a b) a +2ab +b
完全平方公式的数学表达式:
(a+b)2= a2 +b2 +2ab
完全平方公式的文字叙述:
两个数的和的平方,等于它们 的平方和,加上它们的积的2倍。
• • • •
模仿练习: (a+1)2= (3+x)2= (2a+3b)2=
提问:(a-b)2等于什么? 是否可以写成[a+(-b)]2? 你能继续做下去吗?
(a+b)2= a2 +2ab+b2
(a-b)2= a2 - 2ab+b2
公式变形为 (首±尾)2=首2±2×首×尾+尾2
首平方,尾平方,首尾两倍中间放
例1
运用完全平方公式计算:
(1)(x+2y)2;
2 (3)-2s+t) ;
(2)(2a-5)2;
2 (4)-3x-4y) .
例2、运用完全平方公式计算:
(1) (
2 4a
-
2 2 b )
(2)
2 2 (-2a +b)
(3)
2 (2a-3b) -2a(a-b)
1、比较下列各式之间的关系:
(1) (-a
2 -b)
2 与(a+b)
相等 相等 2
(2) (a - b)2 与 (b - a)2
(3)(-b
2 +a)
与(-a +b)
2、下面各式的计算是否正确?如果不正 确,应当怎样改正?
2 (a-b) = 2 a
-
2 2ab+b
(a-b)2= a2 - 2ab+b2的图形理解
完全平方差公式:

人教版八年级数学上册第14章2 乘法公式

人教版八年级数学上册第14章2 乘法公式

知2-练
例 3 计算: (1)(x+7y)2; (2)(-4a+5b)2; (3)(-2m-n)2; (4)(2x+3y)(-2x-3y).
解题秘方:确定公式中的“a”和“b”,利用完全平方 公式进行计算.
(1)(x+7y)2;
知2-练
解:(x+7y)2=x2+2·x·(7y)+(7y)2 =x2+14xy+49y2;
知2-练
解:原式=4y2-4y+1; 原式=9a2+12ab+4b2; 原式=x2-4xy+4y2; 原式=4x2y2+4xy+1.
2
例4
计算:(1)9992;(2)
30
1 3
.
知2-练
解题秘方:将原数转化成符合完全平方公式的形式,再 利用完全平方公式展开计算即可.
(1)9992;
知2-练
解:9992=(1 000-1)2=1 0002-2×1 000×1+12
增项变化 (a-b+c)(a-b-c)=(a-b)2-c2
连用公式 (a+b)(a-b)(a2+b2)=(a2-b2)(a2+b2)=a4-b4
特别解读
知1-讲
公式的特征:
1. 等号左边是两个二项式相乘,这两个二项式中有一项完
全相同,另一项互为相反数.
2. 等号右边是乘式中两项的平方差,即相同项的平方减去
=1 000 000-2 000+1=998 001;
2
(2)
30
1 3
.
2
2
2
30
1 3

30+
1 3
=302+2×30×13+
1 3
=900+20+
19=920 19.
4-1. 运用完全平方公式进行简便计算:

【精品讲义】人教版 八年级上册数学 乘法公式与因数分解 知识点讲解+练习题

【精品讲义】人教版  八年级上册数学 乘法公式与因数分解    知识点讲解+练习题

讲 义(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④ 系数变化,(2a +b )(2a -b )=4a 2-b 2 ⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m )=x 2y 2-(z 2+zm +zm +m 2)=x 2y 2-z 2-2zm -m 2⑥ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4 1、计算下列各式:(1)[(x +y)3]4 ; (2) (a 4n )n -1 ;(3) (-a 3)2+(-a 2)3-(-a 2)·(-a)4 ;(4) x 3·x 2·x 4+(-x 4)2+4(-x 2)4例. 计算:()()53532222x y x y +-(二)、连用:连续使用同一公式或连用两个以上公式解题。

例. 计算:()()()()111124-+++a a a a例. 计算:()()57857822a b c a b c +---+例.(1)已知a b ab -==45,,求a b 22+的值。

(2) 已知2=+b a ,1=ab ,求22b a +的值。

(3) 已知8=+b a ,2=ab ,求2)(b a -的值。

(4) 已知x-y=2,y-z=2,x+z=14。

求x 2-z 2的值。

例:计算19992-2000×1998 例.已知13x x-=,求441x x +的值。

人教版八年级数学上册《乘法公式》

人教版八年级数学上册《乘法公式》
=m2+m•(-2)+(-2)•m+(-2)×(-2)=m2-4m+4 (5)(a+b)2=(a+b)(a+b)=a2+ab+ba+b2=a2+2ab+b2 (6)(a-b)2=(a-b)(a-b)=a2-ab-ab+b2=a2-2ab+b2
二、探求新知
通过上面的研究,你能用语言叙述完全平方公式吗?
整式的乘除与因式分解
乘法公式
活动1 知识复习
多项式与多项式相乘的法则:多项式与多项式 相乘,先用一个多项式的每一项乘另一个多项式的 每一项,再把所得的积相加.
(a+b)(m+n)=am+an+bm+bn.
活动2 计算下列各题,你能发现什么规律?
(1) (x+1)(x-1); (3) (3-x)(3+x) ;
大家谈收获
(a+b)(a-b)=a2-b2 两个数的和与这两个数的差的积等于 这两个数的平方差。
平方差公式中字母 a、b可代表一个数、一 个单项式或多项式。
拓展探究
再谢 谢见!!
人教版 ·数学 ·八年级(上)
乘法公式
—完全平方公式
一、情景引入
请同学们探究下列问题:一位老人非常喜欢孩子.每 当有孩子到他家做客时,老人都要拿出糖果招待他 们.来一个孩子,老人就给这个孩子一块糖,来两个 孩子,老人就给每个孩子两块塘,…(1)第一天有a 个男孩去了老人家,老人一共给了这些孩子多少块糖? (2)第二天有b个女孩去了老人家,老人一共给了这 些孩子多少块糖?(3)第三天这(a+b)个孩子一起 去看老人,老人一共给了这些孩子多少块糖?(4)这 些孩子第三天得到的糖果数与前两天他们得到的糖果 总数哪个多?多多少?为什么?

人教版初中数学八年级上册14.2乘法公式优秀教学案例示例

人教版初中数学八年级上册14.2乘法公式优秀教学案例示例
二、教学目标
(一)知识与技能
1.学生能够掌握完全平方公式、平方差公式的概念及推导过程。
2.学生能够运用乘法公式解决实际问题,提高解决问题的能力。
3.学生了解乘法公式的应用范围,熟练运用公式进行计算和证明。
(二)过程与方法
1.引导学生通过观察、分析、归纳、推理等方法发现乘法公式的规律。
2.培养学生运用数学符号表示乘法公式,提高符号表达能力。
4.课堂练习:设计具有梯度的练习题,巩固乘法公式的运用。
5.总结提升:引导学生总结乘法公式的运用规律,提高解题能力。
6.课后作业:布置适量作业,巩固所学知识,提高应用能力。
五、教学评价
1.学生对乘法公式的掌握程度,包括公式记忆、理解与应用。
2.学生在解决问题时的创新能力,能否灵活运用乘法公式。
3.学生合作交流的能力,以及在团队协作中发挥的作用。
2.学生尝试解答:让学生独立思考,尝试运用已学知识解决问题。
3.教师引导:总结学生解答过程中存在的问题,引出本节课要学习的内容——乘法公式。
(二)讲授新知
1.介绍完全平方公式、平方差公式的概念及推导过程。
2.举例说明:通过具体例题,展示乘法公式的应用。
3.公式总结:引导学生总结乘法公式的特点,明确其适用范围。
3.学生合作交流的能力,以及在团队协作中发挥的作用。
五、教学反思
本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学质量。同时,关注学生的个体差异,针对不同学生制定合适的辅导措施,确保每一位学生都能在数学学习中取得进步。
四、教学内容与过程
(一)导入新课
1.创设生活情境:以商场打折促销为背景,引导学生关注乘法公式在实际问题中的应用。如:某商品原价为200元,现进行8折优惠,求优惠后的价格。

人教版八年级上册1.乘法公式课件

人教版八年级上册1.乘法公式课件
14. [2x2-(x+y)(x-y)][(z-x)(x+z)+(y-z)(y+z)];
15. 已知△ABC的三边a、b、c满足a2+b2+c2-ab-bc-ac=0,试 判断△ABC的形状.
16. 利用乘法公式进行简便运算: ①20042; ②999.82; ③(2+1)(22+1)(24+1)(28+1)(216+1)+1
9. 下列各式中,不能用平方差公式计算的是( ) A.(−2b−5)(2b−5) B.(b2+2x2)(2x2−b2) C.(−1− 4a)(1− 4a) D.(−m2n+2)(m2n−2)
10. 若x2-y2=100, x+y= -25,则x-y的值是( ) A.5 B. 4 C. -4 D. 以上都不对
观察上述算式,你能发现什么规律?运算出结果后,你又发现什么 规律?
平方差公式
(a+b)(a- b)=a2- ab+ab- b2= a2- b2.
即两个数的和与这两个数的差的积,等于这两个数的平方差. 平方差公式的逆用: a2-b2 = (a+b)(a-b)
证明
请从这个正方形纸板上,剪下一个边长为b的小正方形,如图1,拼
5. 用简便方法计算: 503×497=_______;1.02×0.98=______
6. 计算: (1)(3a-2b)(9a+6b) (2)(2y-1)(4y2+1)(2y+1)
7. 已知a2-b2=8,a+b=4,求a、b的值
8. 下列计算正确的是( ) A.( 2a+b)( 2a−b) = 2a2−b2 B.(0.3x+0.2)(0.3x−0.2) = 0.9x2−0.4 C.(a2+3b3)(3b3−a2) = a4−9b6 D.( 3a−bc)(−bc− 3a) = − 9a2+b 2c2

八年级数学人教版上册14.2.乘法公式平方差公式优秀教学案例

八年级数学人教版上册14.2.乘法公式平方差公式优秀教学案例
三、教学策略
(一)情景创设
为了让学生更好地理解和掌握平方差公式,我将在课堂上创设与学生生活息息相关的问题情境。例如,可以设计这样一个问题:小明和小华进行跳远比赛,小明的起跳点距离比小华多1米,他们的跳远成绩分别为a米和b米,你能用数学公式表示出两人成绩差的两倍吗?通过这样的问题,让学生感受到数学知识在实际生活中的应用,激发他们学习的兴趣。
2.平方差公式的结构特点:教师引导学生总结平方差公式的结构特点,即“相同项的平方减去相反项的平方”。
3.应用平方差公式进行因式分解:教师通过例题,演示如何运用平方差公式进行因式分解,并强调注意事项。
(三)学生小组讨论
1.教师给出讨论题目:请同学们运用平方差公式,尝试解决以下问题:(1)x^2 - 9;(2)16 - y^2;(3)a^2 - 4b^2。
2.学生尝试解答,教师引导:我们可以通过列出算式来表示这个问题,即2(a - b)。接下来,我们看看如何运用平方差公式来简化这个算式。
(二)讲授新知
1.平方差公式的推导:教师引导学生观察以下算式:
(a + b)(a - b) = a^2 - ab + ab - b^2 = a^2 - b^2
通过观察,学生发现:两个二项式相乘,其中一项相同,另一项互为相反数,结果为相同项的平方减去相反项的平方。
(四)反思与评价
1.课堂小结:在课堂结束前,我会引导学生进行课堂小结,总结平方差公式的知识点、推导过程和应用技巧,巩固所学内容。
2.学生自评:鼓励学生对自己的学习过程进行评价,反思自己在学习平方差公式过程中的优点和不足,为今后的学习制定合理的目标。
3.同伴互评:组织学生进行同伴互评,让他们在互相评价中学习他人的优点,发现自身的不足,提高自我认知能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前面是“-”号,括到括号的各项都要改变符号
1.下列变形正确的有( )个。
① a+b-c+a=(b+c)
②a-b+c=a-(b+c) ③a+b+c=a-(-b-c) ④a-b-c=a-(b+c)
2、运用乘法公式计算。
( )(
思维拓展:
1、已知

的值。
2、已知
,求
的值。
3、已知 a+b=6,ab=-7 求下列各式的值。
知识点一:平方差公式


湖北省随州市随县新街镇洪霞
乘法公式
知识点二:完全平方公式 (2)
(4)
任何时候,行为习惯和心理品质都是大树的根,而学习成绩只是树叶、花果。只有根深,才能叶茂,才有果实。
湖北省随州市随县新街镇洪霞
知识点三:添括号(去括号)法则
添括号时,如果括号前面是“ +”号,括到括号的各项都不改变符号,如果括号
4、设求和源自的值任何时候,行为习惯和心理品质都是大树的根,而学习成绩只是树叶、花果。只有根深,才能叶茂,才有果实。
5、计算 6、计算
湖北省随州市随县新街镇洪霞


7、观察下面的规律:
()


()


()


…… 写出第 n 行的式子,并证明你的结论。
任何时候,行为习惯和心理品质都是大树的根,而学习成绩只是树叶、花果。只有根深,才能叶茂,才有果实。
相关文档
最新文档