人教版 八年级数学讲义 乘法公式 (含解析)
八年级上册数学人教版乘法公式讲解

八年级上册数学人教版乘法公式讲解
乘法公式是整式乘法的一个重要内容,它是指将一些特殊的多项式相乘,得到的结果用一个公式表达出来,这样可以简化计算过程,提高计算效率。
在乘法公式的教学中,首先需要了解什么是乘法公式。
乘法公式是形如(a+b)(a-b)的式子,它可以用来计算两个数的和与差的积。
接下来,需要掌握乘法公式的两种形式。
一种是平方差公式,即(a+b)(a-b)=a²-b²,该公式可以通过多项式乘法的法则进行验证;另一种是完全平方公式,即(a+b)²=a²+2ab+b²,(a-b)²=a²-2ab+b²,该公式可以通过多项式乘法的法则进行推导。
在应用乘法公式时,需要注意以下几点:
1. 掌握公式的结构特征,知道公式的左边是两个二项式相乘,右边是三个单项式的积。
2. 正确理解公式的意义,知道左边是两个数的和与差的积,右边是这两个数的
平方和与平方差的积。
3. 正确运用公式的条件,知道只有当左边是两个二项式相乘,右边是三个单项式的积时才能使用该公式。
4. 正确运用公式的逆用,知道将一些特殊的多项式相乘时,可以使用公式的逆用简化计算。
最后,为了巩固所学知识,可以进行适量的习题练习,以加深对乘法公式的理解和掌握。
同时,在做题时应该认真审题,注意观察公式的结构特征,以便能够正确运用公式进行计算。
(初二数学课件)人教版初中八年级数学上册第14章整式的乘法与因式分解14.2.1 平方差公式教学课件

=a4–16.
(2) (x–y)(x+y)(x2+y2)(x4+y4). 解:原式=(x2–y2)(x2+y2)(x4+y4)
=(x4–y4)(x4+y4) =x8–y8.
课堂检测
能力提升题
先化简,再求值:(x+1)(x–1)+x2(1–x)+x3, 其中x=2.
1. 公式中的a和b,既可以是具体的数,也可以是单项 式或者多项式;
2. 左边是两个二项式的积,并且有一项完全相同,另 一项互为相反数;
3. 右边是相同项的平方减去相反项的绝对值的平方.
探究新知
(a–b)(a+b)
(1+x)(1–x) (–3+a)(–3–a) (1+a)(–1+a) (0.3x–1)(1+0.3x)
证明:(2n+1)2–(2n–1)2 =[(2n+1)+(2n–1)][(2n+1)–(2n–1)] =(2n+1+2n–1)(2n+1–2n+1) =4n×2 =8n 因为8n是8的倍数,所以结实际问题
例5 王大伯家把一块边长为a米的正方形土地租给了邻居 李大妈.今年王大伯对李大妈说:“我把这块地一边减少 4米,另外一边增加4米,继续租给你,你看如何?”李大 妈一听,就答应了.你认为李大妈吃亏了吗?为什么?
1.(a – b ) ( a + b) = a2 – b2 2.(b + a )( –b + a ) = a2 – b2
探究新知
平方差公式
相同为a
【精品讲义】人教版 八年级上册数学 乘法公式与因数分解 知识点讲解+练习题

讲 义(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④ 系数变化,(2a +b )(2a -b )=4a 2-b 2 ⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m )=x 2y 2-(z 2+zm +zm +m 2)=x 2y 2-z 2-2zm -m 2⑥ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4 1、计算下列各式:(1)[(x +y)3]4 ; (2) (a 4n )n -1 ;(3) (-a 3)2+(-a 2)3-(-a 2)·(-a)4 ;(4) x 3·x 2·x 4+(-x 4)2+4(-x 2)4例. 计算:()()53532222x y x y +-(二)、连用:连续使用同一公式或连用两个以上公式解题。
例. 计算:()()()()111124-+++a a a a例. 计算:()()57857822a b c a b c +---+例.(1)已知a b ab -==45,,求a b 22+的值。
(2) 已知2=+b a ,1=ab ,求22b a +的值。
(3) 已知8=+b a ,2=ab ,求2)(b a -的值。
(4) 已知x-y=2,y-z=2,x+z=14。
求x 2-z 2的值。
例:计算19992-2000×1998 例.已知13x x-=,求441x x +的值。
人教版八年级上册数学《公式法》整式的乘法与因式分解PPT课件(第2课时)

因此x=-5是原分式方程的解.
随堂练习
1.下列方程是分式方程的是( B )
A.
一元一次方程
B.
C. x2-1=0
D. 2x+1=3x 一元二次方程
一元一次方程
2.(2020·海南中考)分式方程 的解是(
A. x=-1
B. x=1 C. x=5
x-2=3
D. x=2
x=5
) C
解分式方程时,不要忘记检验哦.
用平方差公式分解因式 由于整式的乘法与因式分解是方向相反的变形,把整 式乘法的平方差公式(a+b)(a-b)=a2-b2的等号两边互换位 置,就得到了 a2-b2=(a+b)(a-b)
语言叙述:两个数的平方差,等于这两个数的和与这 两个数的差的积.
用完全平方公式分解因式 把整式乘法的完全平方公式 (a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2 的等号两边互换位置,就可以得到 a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2. 语言叙述:两个数的平方和加上(或减去)这两个数 的积的2倍,等于这两个数的和(或差)的平方.
分析:将b2看成一个整体a,则原式变形为(b2)2-b2-12,
可以看作a2-b-12.
1 -4
b4-b2-12 =(b2-4)(b2+3) =(b+2)(b-2)(b2+3).
13 1×3+1×(-4)=-1
2.(2020·乐山)已知y≠0,且x2-3xy-4y2=0,则 的值是
__4_或__-_1__.
分析:因为x2-3xy-4y2=0, 即(x-4y)(x+y)=0, 可得x=4y或x=-y, 所以 =4或 =−1.
人教版-八年级(初二)数学上册-整式的乘法与因式分解章节讲义-十字相乘、选主元、双十字相乘法(二)讲义

板块一:选主元【例1】 分解因式:1a b c ab ac bc abc +++++++【例2】 分解因式:2222223a b ab a c ac abc b c bc -+--++【例3】 分解因式:22(1)(1)(221)y y x x y y +++++【例4】 分解因式:222222()()(1)()()ab x y a b xy a b x y ---+-++【例5】 分解因式:322222422x x z x y xyz xy y z --++-板块二:双十字相乘双十字相乘法: 对于某些二元二次六项式22ax bxy cy dx ey f +++++,可以看作先将关于x 的二次三项式22()ax by d x cy ey f +++++的“常数项”2cy ey f ++用十字相乘法分解,然后再次运用十字相乘法将关于x 的二次三项式分解。
由于这种方法两次使用了十字相乘法,故称之为双十字相乘法.【例6】 分解因式:222332x xy y x y +-+++【例7】 分解因式:22344883x xy y x y +-+--【例8】 分解因式:2265622320x xy y x y --++-例题精讲十字相乘、选主元、双十字相乘(二)【例9】 分解因式:22276212x xy y x y -++--【例10】 分解因式:22121021152x xy y x y -++-+【例11】 分解因式:22243x y x y ----【例12】 分解因式:22534x y x y -+++【例13】 分解因式:2222()3103x a b x a ab b ++-+-【例14】 分解因式:22265622320x xy y xz yz z -----【例15】 已知:a 、b 、c 为三角形的三条边,且222433720a ac c ab bc b ++--+=,求证:2b a c =+【例16】 分解因式:222695156x xy y xz yz z -+-++1.分解因式:(6114)(31)2a a b b b +++--2.分解因式:2222a b ab bc ac --++3.分解因式:2262288x xy y x y +-+--4.分解因式:223224x xy y x y ++++课后练习。
八年级数学竞赛例题专题讲解:乘法公式(含答案)

专题02 乘法公式阅读与思考乘法公式是多项式相乘得出的既有特殊性、又有实用性的具体结论,在整式的乘除、数值计算、代数式的化简求值、代数式的证明等方面有广泛的应用,学习乘法公式应注意:1.熟悉每个公式的结构特征;2.正用 即根据待求式的结构特征,模仿公式进行直接的简单的套用; 3.逆用 即将公式反过来逆向使用; 4.变用 即能将公式变换形式使用;5.活用 即根据待求式的结构特征,探索规律,创造条件连续综合运用公式.例题与求解【例1】 1,2,3,…,98共98个自然数中,能够表示成两个整数的平方差的个数是 .(全国初中数字联赛试题)解题思路:因22()()a b a b a b -=+-,而a b +a b -的奇偶性相同,故能表示成两个整数的平方差的数,要么为奇数,要么能被4整除.【例2】(1)已知,a b 满足等式2220,4(2)x a b y b a =++=-,则,x y 的大小关系是( )A .x y ≤B .x y ≥C .x y <D .x y >(山西省太原市竞赛试题)(2)已知,,a b c 满足22227,21,617a b b c c a +=-=--=-,则a b c ++的值等于( ) A .2B .3C .4D .5(河北省竞赛试题)解题思路:对于(1),作差比较,x y 的大小,解题的关键是逆用完全平方公式,揭示式子的非负性;对于(2),由条件等式联想到完全平方式,解题的切入点是整体考虑.【例3】计算下列各题:(1) 2486(71)(71)(71)(71)1+++++;(天津市竞赛试题) (2)221.23450.76552.4690.7655++⨯;(“希望杯”邀请赛试题)(3)22222222(13599)(246100)++++-++++.解题思路:若按部就班运算,显然较繁,能否用乘法公式简化计算过程,关键是对待求式恰当变形,使之符合乘法公式的结构特征.【例4】设221,2a b a b +=+=,求77a b +的值. (西安市竞赛试题)解题思路:由常用公式不能直接求出77a b +的结构,必须把77a b +表示相关多项式的运算形式,而这些多项式的值由常用公式易求出其结果.【例5】观察:222123415;2345111;3456119;⨯⨯⨯+=⨯⨯⨯+=⨯⨯⨯+=(1)请写出一个具有普遍性的结论,并给出证明;(2)根据(1),计算20002001200220031⨯⨯⨯+的结果(用一个最简式子表示).(黄冈市竞赛试题)解题思路:从特殊情况入手,观察找规律.【例6】设,,a b c 满足2223331,2,3,a b c a b c a b c ++=++=++=求:(1)abc 的值; (2)444a b c ++的值.(江苏省竞赛试题)解题思路:本题可运用公式解答,要牢记乘法公式,并灵活运用.能力训练A 级1.已知22(3)9x m x --+是一个多项式的平方,则m = . (广东省中考试题) 2.数4831-能被30以内的两位偶数整除的是 .3.已知222246140,x y z x y z ++-+-+=那么x y z ++= .(天津市竞赛试题)4.若3310,100,x y x y +=+=则22x y += .5.已知,,,a b x y 满足3,5,ax by ax by +=-=则2222()()a b x y ++的值为 .(河北省竞赛试题)6.若n 满足22(2004)(2005)1,n n -+-=则(2005)(2004)n n --等于 . 7.22221111(1)(1)(1)(1)2319992000----等于( ) A .19992000 B .20012000 C .19994000D .200140008.若222210276,251M a b a N a b a =+-+=+++,则M N -的值是( )A .正数B .负数C .非负数D .可正可负9.若222,4,x y x y -=+=则19921992xy +的值是( )A .4B .19922C .21992D .4199210.某校举行春季运动会时,由若干名同学组成一个8列的长方形队列.如果原队列中增加120人,就能组成一个正方形队列;如果原队列中减少120人,也能组成一个正方形队列.问原长方形队列有多少名同学? (“CASIO ”杯全国初中数学竞赛试题)11.设9310382a =+-,证明:a 是37的倍数. (“希望杯”邀请赛试题)12.观察下面各式的规律:222222222222(121)1(12)2;(231)2(23)3;(341)3(34)4;⨯+=+⨯+⨯+=+⨯+⨯+=+⨯+ 写出第2003行和第n 行的式子,并证明你的结论.B 级1.()na b +展开式中的系数,当n =1,2,3…时可以写成“杨辉三角”的形式(如下图),借助“杨辉三角”求出901.1的值为 . (《学习报》公开赛试题)2.如图,立方体的每一个面上都有一个自然数,已知相对的两个面上的两数之和都相等,如果13,9,3的对面的数分别为,,a b c ,则222a b c ab bc ac ++---的值为 .(天津市竞赛试题)3.已知,,x y z 满足等式25,9,x y z xy y +==+-则234x y z ++= .4.一个正整数,若分别加上100与168,则可得两到完全平方数,这个正整数为 .(全国初中数学联赛试题)5.已知19992000,19992001,19992002a x b x c x =+=+=+,则多项式222a b c ab bc ac ++---的值为( ) A .0B .1C .2D .36.把2009表示成两个整数的平方差的形式,则不同的表示法有( )A .16种B .14种C .12种D .10种(北京市竞赛试题)7.若正整数,x y 满足2264x y -=,则这样的正整数对(,)x y 的个数是( )A .1B .2C .3D .4(山东省竞赛试题)8.已知3a b -=,则339a b ab --的值是( )A .3B .9C .27D .81(“希望杯”邀请赛试题)9.满足等式221954m n +=的整数对(,)m n 是否存在?若存在,求出(,)m n 的值;若不存在,说明理由.第2题图11 2 1 1 3 311 4 6 4 1 1510 10 5 1… … … … … … …。
乘法公式完全平方公式人教版八年级数学上册

a2+2ab+b2
a2-2ab+b2
新课学习a2+2ab+b2a2-2ab+b2
知识点.完全平方公式
a2+2ab+b2
a2-2ab+b2
知识点.完全平方公式a2+2ab+b2a2-2ab+b2
x2+2×x×2+22
x2+4x+4
a2-2×a×4+42
a2-8a+16
x2+2×x×2+22x2+4x+4a2-2×a×4+42
x2+2×x×1+12
x2+2x+1
a2-2×a×5+52
a2-10a+25
x2+2×x×1+12x2+2x+1a2-2×a×5+52a
4x2-4x+1
4x2+4xy+y2
4x2-4x+1 4x2+4xy+y2 乘法公式——完全平方
4x2-12xy+9y2
4x2+20xy+25y2
4x2-12xy+9y24x2+20xy+25y2乘法公式—
16x2+8xy+y2
16x2-24xy+9y2
16x2+8xy+y216x2-24xy+9y2 乘法公式—
4a2+12ab+9b2
4a2+12ab+9b2 乘法公式——完全平方公式人教版八年
x2-2x+1
人教版八年级数学上册第十四章整式的乘法与因式分解小结与复习教学课件

考点二 整式的运算
例3 计算:[x(x2y2-xy)-y(x2-x3y)] ÷3x2y,其中x=1,y=3.
解析:在计算整式的加、减、乘、除、乘方的运算中,一要注意运算顺序;二要熟练
正确地运用运算法则.
解:原式=(x3y2-x2y-x2y+x3y2) ÷3x2y
=(2x3y2-2x2y) ÷3x2y
例6 把多项式2x2-8分解因式,结果正确的是( C )
A.2(x2-8)
B.2(x-2)2
C.2(x+2)(x-2) D.2x(x- )
4 x
归纳总结
因式分解是把一个多项式化成几个整式的积的形式,它与整式乘法互为逆 运算,因式分解时,一般要先提公因式,再用公式法分解,因式分解要求 分解到每一个因式都不能再分解为止.
3.(1)已知3m=6,9n=2,求3m+2n,32m-4n的值. (2)比较大小:420与1510. 解:(1)∵3m=6,9n=2, ∴3m+2n=3m·32n=3m·(32)n=3m·9n=6×2=12. 32m-4n=32m÷34n=(3m)2÷(32n)2=(3m)2÷(9n)2=62÷22=9. (2) ∵420=(42)10=1610, ∵1610>1510,
=a2-(b-3)2=a2-b2+6b-9. (3)原式=[(3x-2y)(3x+2y)]2
=(9x2-4y2)2=81x4-72x2y2+16y4
11.用简便方法计算
(1)2002-400×199+1992; (2)999×1 001. 解:(1)原式=(200-199)2=1;
(2) 原式=(1000-1)(1000+1) =10002-1 =999999.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7讲乘法公式知识定位讲解用时:5分钟A、适用范围:人教版初二,基础较好;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习乘法公式。
乘法公式是很好的解题工具,初中阶段我们学习平方差公式、完全平方公式,灵活运用乘法公式能解答许多问题,乘法公式同时也是中考考查的重点,对今后数学的影响也很大,因此本节课要好好学习并掌握。
知识梳理讲解用时:20分钟整式的乘法一、单项式乘单项式:单项式乘单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式.例如:3a·4b=12ab二、单项式乘多项式:单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.例如:m(a+b+c)=ma+mb+mc三、多项式乘多项式:多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加.例如:(a+b)·(c+d)=ac+bc+ad+bd1、同底数幂的乘法:底数不变,指数相加(m,n 都是整数)2、幂的乘方:底数不变,指数相乘(m,n 都是整数) 3、积的乘方:积中每个因式分别乘方()n n n ab a b =⋅(n 是整数) 4、同底数幂的除法:底数不变,指数相减 m n m n a a a -÷=(m 、n 都是整数且a≠0) 引申:01a = 1n n a a -=(n 是正整数) 一个数的负指数幂等于正指数幂的倒数. n m n m a a a +=⋅mn n m a a =)(课堂精讲精练【例题1】(﹣p )2•(﹣p )3= .【答案】﹣p 5【解析】同底数幂的乘法:底数不变,指数相加.解:(﹣p )2•(﹣p )3=(﹣p )2+3=(﹣p )5=﹣p 5;完全平方公式 用多项式乘多项式法则,计算下面各题,你能发现什么规律? (a+b )²=a ²+2ab+b ² (a -2)²=a ²-4a+4=a ²-2·a ·2+2² (2a+b )²=4a ²+4ab+b ²=(2a )²+2·2a ·b +b ² 完全平方公式: 两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍. 巧记:首平方,尾平方,乘积2倍放中央. 拓展:a ²+b ²=(a+b )²-2ab a ²+b ²=(a-b )²+2ab (a+b )²=(a-b )²+4ab2222)(b ab a b a +±=±注意:完全平方公式展开有三项,a 的平方加上b 的平方,加上(或减去)a 乘以b 的两倍故答案是:﹣p5.讲解用时:2分钟解题思路:本题主要考查同底数幂的乘法,解题的关键是熟练掌握同底数幂的乘法法则:底数不变,指数相加.教学建议:熟练掌握同底数幂的乘法计算法则.难度: 3 适应场景:当堂例题例题来源:河东区一模年份:2018【练习1.1】计算:﹣x2•x4= .【答案】﹣x6【解析】根据同底数幂的乘法底数不变指数相加,可得答案.解:﹣x2•x4=﹣x6,故答案为:﹣x6.讲解用时:2分钟解题思路:本题考查了同底数幂的乘法,底数不变指数相加是解题关键.教学建议:熟练掌握同底数幂的乘法计算法则,注意负号要照写.难度:2 适应场景:当堂练习例题来源:榆社县期中年份:2018【练习1.2】计算﹣a3•(﹣a)2= .【答案】﹣a5【解析】直接利用同底数幂的乘法运算法则计算得出答案.解:﹣a3•(﹣a)2=﹣a3•a2=﹣a5.故答案为:﹣a5.讲解用时:3分钟解题思路:此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.教学建议:熟练掌握同底数幂的乘法计算法则,注意符号的变化.难度:4 适应场景:当堂练习例题来源:苏州期中年份:2018【例题2】计算(﹣a2b)3的结果是()A.﹣a6b3B.a6b C.3a6b3D.﹣3a6b3【答案】A【解析】利用积的乘方性质:(ab)n=a n•b n,幂的乘方性质:(a m)n=a mn,直接计算.解:(﹣a2b)3=﹣a6b3.故选:A.讲解用时:3分钟解题思路:本题考查了幂运算的性质,注意结果的符号确定,比较简单,需要熟练掌握.教学建议:熟练掌握积的乘方公式和幂的乘方公式.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习2.1】计算:(2m2n﹣2)2•3m﹣3n3.【答案】12mn﹣1【解析】先根据积的乘方,把每一个因式分别乘方,再把所得幂相乘和同底数幂相乘:底数不变指数相加的性质计算.解:(2m2n﹣2)2•3m﹣3n3,=4m4n﹣4•3m﹣3n3,=12m4﹣3n﹣4+3,=12mn﹣1.讲解用时:3分钟解题思路:本题主要考查幂的运算性质,熟练掌握性质是解题的关键,是基础题.教学建议:熟练掌握积的乘方公式和同底数幂的乘法计算.难度: 3 适应场景:当堂练习例题来源:无年份:2018【练习2.2】计算(1)(﹣3a)•(2ab)(2)(﹣2x2)3+4x3•x3.【答案】(1)﹣6a2b;(2)﹣4x6【解析】(1)直接利用单项式乘以单项式运算法则求出答案;(2)直接利用积的乘方运算法则以及同底数幂的乘法运算法则化简,进而合并同类项即可得出答案.解:(1)(﹣3a)•(2ab)=﹣6a2b;(2)(﹣2x2)3+4x3•x3=﹣8x6+4x6=﹣4x6.讲解用时:3分钟解题思路:此题主要考查了单项式乘以单项式运算以及积的乘方运算,正确掌握运算法则是解题关键.教学建议:熟练掌握单项式乘单项式、积的乘方、幂的乘方运算法则.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题3】计算:【答案】﹣8a4b3﹣a3b3+a2b4【解析】首先进行积的乘方运算,再利用单项式乘以多项式得出答案.解:原式=a2b2(﹣a2b﹣12ab+b2)=﹣8a4b3﹣a3b3+a2b4.讲解用时:3分钟解题思路:此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.教学建议:熟练掌握单项式乘以多项式、积的乘方、同底数幂的乘法计算法则. 难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习3.1】如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.【答案】5a2+3ab 63【解析】根据多项式乘多项式的法则求出阴影部分的面积,代入计算即可.解:阴影部分的面积=(3a+b)(2a+b)﹣(a+b)2=6a2+5ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,当a=3,b=2时,原式=5×32+3×3×2=63.讲解用时:3分钟解题思路:本题考查的是多项式乘多项式,多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.教学建议:学会观察图形并掌握多项式乘多项式的运算法则.难度: 3 适应场景:当堂练习例题来源:无年份:2018【练习3.2】(1)已知2x=3,2y=5,求2x+y的值;(2)x﹣2y+1=0,求:2x÷4y×8的值.【答案】(1)15;(2)4【解析】(1)直接利用同底数幂的乘法运算法则计算得出答案;(2)直接利用同底数幂的乘除运算法则将原式变形得出答案.解:(1)∵2x=3,2y=5,∴2x+y=2x×2y=3×5=15;(2)∵x﹣2y+1=0,∴x﹣2y=﹣1,∴2x÷4y×8=2x﹣2y+3=22=4.讲解用时:3分钟解题思路:此题主要考查了同底数幂的乘除运算,正确将原式变形是解题关键.教学建议:熟练掌握同底数幂的乘除法计算.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题4】计算:(1)(x+2y)(2x﹣y)(2)(2a﹣3b)(﹣2a﹣3b)【答案】(1)2x2+3xy﹣2y2;(2)9b2﹣4a2【解析】(1)根据多项式乘以多项式,即可解答;(2)根据平方差公式,即可解答.解:(1)(x+2y)(2x﹣y)=2x2+3xy﹣2y2;(2)(2a﹣3b)(﹣2a﹣3b)=(﹣3b)2﹣(2a)2=9b2﹣4a2.讲解用时:3分钟解题思路:本题考查了平方差公式,解决本题的关键是熟记平方差公式.教学建议:熟练掌握平方差公式的运算法则.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习4.1】计算(x+2)•(x﹣2)•(x2+4)【答案】x4﹣16【解析】首先利用平方差公式求得(x+2)•(x﹣2)的值,继而再利用平方差公式求得答案.解:原式=(x2﹣4)(x2+4)=x4﹣16.讲解用时:3分钟解题思路:此题考查了平方差公式.此题难度不大,注意熟记平方差公式是解题的关键.教学建议:熟练掌握平方差公式的计算,本题2次运用平方差公式.难度:4 适应场景:当堂练习例题来源:无年份:2018【练习4.2】计算:(1)(2a+1)(﹣a﹣2);(2)(x+y﹣3)(x﹣y+3).【答案】(1)﹣2a2﹣5a﹣2;(2)=x2﹣y2+6y﹣9【解析】(1)直接利用多项式乘以多项式运算法则计算得出答案;(2)直接利用平方差公式再结合完全平方公式计算得出答案.解:(1)原式=﹣2a2﹣4a﹣a﹣2=﹣2a2﹣5a﹣2;(2)原式=[x+(y﹣3)][x﹣(y﹣3)]=x2﹣(y﹣3)2=x2﹣(y2﹣6y+9)=x2﹣y2+6y﹣9.讲解用时:3分钟解题思路:此题主要考查了平方差公式以及完全平方公式,正确应用公式是解题关键.教学建议:熟练掌握平方差公式和完全平方公式的计算方法.难度:4 适应场景:当堂练习例题来源:无年份:2018【例题5】计算(2a﹣3b)2= .计算:(2x+3)2= .【答案】4a2﹣12ab+9b2 4x2+12x+9【解析】根据完全平方公式(a±b)2=a2±2ab+b2分别进行计算,即可得出答案.解:(2a﹣3b)2=(2a)2﹣2•2a•3b﹣(3b)2=4a2﹣12ab+9b2;故答案为:4a2﹣12ab+9b2.(2x+3)2=4x2+12x+9.故答案为:4x2+12x+9.讲解用时:3分钟解题思路:此题考查了完全平方公式,熟记完全平方公式:(a±b)2=a2±2ab+b2是解题的关键,是一道基础题,注意符号的变化.教学建议:熟练掌握完全平方公式的计算.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习5.1】已知a+b=4,则= .【答案】8【解析】利用完全平方和公式将所求的代数式转化为含有(a+b)的代数式,然后将a+b=4代入求值.解:=(a2+2ab+b2)=(a+b)2=×42=8.故答案是:8.讲解用时:3分钟解题思路:本题主要考查完全平方公式.解答该题时,需要牢记完全平方和公式(a+b)2=a2+2ab+b2及其变形的几种形式.教学建议:灵活运用完全平方公式进行解题.难度: 4 适应场景:当堂练习例题来源:无年份:2018【练习5.2】已知x2﹣3x+1=0,则= .【答案】7【解析】首先由x2﹣3x+1=0,求得x+的值,然后由(x+)2=x2++2,即可求得答案.解:∵x2﹣3x+1=0,∴x+=3,∴(x+)2=x2++2=9,∴x2+=7.故答案为:7.讲解用时:3分钟解题思路:此题考查了完全平方公式的应用.解题的关键是掌握(x+)2=x2++2与整体思想的应用.教学建议:灵活掌握完全平方公式的应用.难度:4 适应场景:当堂练习例题来源:无年份:2018【例题6】已知a x=﹣2,a y=3.求:(1)a x+y的值;(2)a3x的值;(3)a3x+2y的值.【答案】(1)-6;(2)-8;(3)-72【解析】(1)先根据同底数幂的乘法进行变形,再代入求出即可;(2)先根据幂的乘方进行变形,再代入求出即可;(3)先根据同底数幂的乘法进行变形,再根据幂的乘方进行变形,最后代入求出即可.解:(1)∵a x=﹣2,a y=3,∴a x+y=a x•a y=﹣2×3=﹣6;(2)∵a x=﹣2,a y=3,∴a3x=(a x)3=(﹣2)3=﹣8;(3)∵a x=﹣2,a y=3,∴a3x+2y=(a3x)•(a2y)=(a x)3•(a y)2=(﹣2)3×32=﹣8×9=﹣72.讲解用时:3分钟解题思路:本题考查了同底数幂的乘法、幂的乘方等知识点,能根据同底数幂的乘法、幂的乘方进行变形是解此题的关键.教学建议:灵活掌握幂的有关计算.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习6.1】若3x+1=27,2x=4y﹣1,求x﹣y.【答案】0【解析】首先化成同底数可得x+1=3,x=2y﹣2,解方程可得x、y的值,进而可得答案.解:由题意得:x+1=3,x=2y﹣2,解得:x=2,y=2,则x﹣y=0.讲解用时:3分钟解题思路:此题主要考查了同底数幂的乘法,关键是掌握27=33,4=22.教学建议:灵活掌握幂的有关计算.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题7】已知a2+b2=5,ab=﹣1,则a+b= .【答案】【解析】根据完全平方公式得到(a+b)2=a2+2ab+b2,再把ab=﹣1,a2+b2=5整体代入即可.解:∵(a+b)2=a2+2ab+b2,∴a+b=,故答案为讲解用时:3分钟解题思路:本题考查了完全平方公式:(a±b)2=a2±2ab+b2.关键是整体思想的运用.教学建议:灵活掌握完全平方公式的应用.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习7.1】若a+b=,a﹣b=,则ab= .【答案】1【解析】两式相加求出a的值,进而求出b的值,即可求出ab的值.解:将a+b=,a﹣b=两式相加得:2a=+,即a=,将a=5代入a﹣b=中,得:﹣b=,即b=,则ab==1.故答案为:1.讲解用时:3分钟解题思路:此题考查完全平方公式,关键是把原式完全平方后整体代入计算.教学建议:掌握完全平方公式的几种变形,灵活运用.难度: 3 适应场景:当堂练习例题来源:无年份:2018【练习7.2】已知a2+b2=12,a﹣b=4,则ab= .【答案】﹣2【解析】将a﹣b=4两边同时平方,然后将a2+b2=12代入所得结果进行计算即可.解:∵a﹣b=4,∴a2﹣2ab+b2=16,∴12﹣2ab=16,解得:ab=﹣2.故答案为:﹣2.讲解用时:3分钟解题思路:本题主要考查的是完全平方公式的应用,熟练掌握完全平方公式是解题的关键.教学建议:掌握完全平方公式的几种变形,灵活运用.难度: 3 适应场景:当堂练习例题来源:无年份:2018课后作业【作业1】若a3•a m=a9,则m= .【答案】6【解析】根据同底数幂的运算即可求出答案.解:由题意可知:3+m=9,∴m=6,故答案为:6讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业2】计算题(1)(﹣x)3(﹣x)2(2)(﹣)2016×161008(3)7x4•x5•(﹣x)7+5(x4)4﹣(﹣5x8)2.【答案】(1)﹣x5 (2)1 (3)﹣27x16【解析】(1)直接利用同底数幂的乘法运算法则计算得出答案;(2)直接利用积的乘方运算法则将原式变形求出答案;(3)直接利用同底数幂的乘法运算法则以及积的乘方运算法则计算得出答案.解:(1)(﹣x)3(﹣x)2=﹣x5;(2)(﹣)2016×161008=(﹣)2016×42016=(﹣×4)2016=1;(3)7x4•x5•(﹣x)7+5(x4)4﹣(﹣5x8)2.=﹣7x16+5x16﹣25x16=﹣27x16.讲解用时:4分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业3】请你参考黑板中老师的讲解,用乘法公式简便计算;(1)6992(2)20192﹣2017×2021【答案】(1)488601;(2)4【解析】(1)根据完全平方公式即可求出答案.(2)根据平方差公式即可求出答案.解:(1)6992=(700﹣1)2=7002﹣2×700×1+1=490000﹣1400+1=488601(2)20192﹣2017×2021=20192﹣(2019﹣2)(2019+2)=20192﹣20192+22=4讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业4】已知:a+b=1,ab=﹣3,求下列代数式的值.(1)a2b+ab2;(2)(a﹣b)2.【答案】(1)-3;(2)13.【解析】(1)直接将原式分解因式,进而代入已知求出答案;(2)直接将原式变形,进而代入已知求出答案.解:(1)a2b+ab2=ab(a+b)∵a+b=1,ab=﹣3,∴原式=﹣3×1=﹣3;(2)(a﹣b)2=a2﹣2ab+b2+4ab﹣4ab=(a+b)2﹣4ab把a+b=1,ab=﹣3代入上式可得:原式═1+12=13.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018【作业5】已知实数m,n满足m+n=6,mn=﹣3.(1)求(m﹣2)(n﹣2)的值;(2)求m2+n2的值.【答案】(1)-11;(2)42【解析】(1)将原式展开后,再将m+n,mn代入即可求出答案.(2)根据完全平方公式即可求出答案.解:(1)因为m+n=6,mn=﹣3,所以(m﹣2)(n﹣2)=mn﹣2m﹣2n+4=mn﹣2(m+n)+4=﹣3﹣2×6+4=﹣11.(2)m2+n2=(m+n)2﹣2mn=62﹣2×(﹣3)=36+6=42.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:无年份:2018。