线粒体与叶绿体的来源

合集下载

简述线粒体和叶绿体内共生起源的主要论据

简述线粒体和叶绿体内共生起源的主要论据

简述线粒体和叶绿体内共生起源的主要论据一、线粒体的共生起源线粒体是细胞内的一种器官,负责细胞的能量代谢和ATP的合成。

线粒体内含有自己的DNA和蛋白质,与细胞核不同。

线粒体的共生起源,是指线粒体和原核细胞的共同进化过程。

1.线粒体具有自主繁殖能力线粒体具有自主繁殖能力,通过二分裂方式繁殖。

这表明线粒体并非完全依赖于细胞核的支配。

2.线粒体和细菌有相似之处线粒体和细菌有许多相似之处,都具有类似的细胞壁、膜结构和基因组成等。

并且,线粒体在结构和生化反应方面也与细菌有许多相似之处。

3.线粒体和原核细胞有共同祖先线粒体的DNA序列与细菌的DNA序列有相似之处,这表明线粒体和细菌有共同的祖先。

这也支持了线粒体的共生起源理论。

二、叶绿体的共生起源叶绿体是植物和藻类细胞内的一种器官,负责光合作用和氧气释放。

叶绿体也含有自己的DNA和蛋白质,与细胞核不同。

叶绿体的共生起源,是指叶绿体和细胞核的共同进化过程。

1.叶绿体与细菌有相似之处叶绿体与细菌有相似之处,如细胞壁结构、膜结构和基因组成等。

并且,叶绿体内含有一种称为“类囊体”的结构,与细菌内的类囊体结构相似。

2.叶绿体具有自主繁殖能力叶绿体具有自主繁殖能力,通过二分裂方式繁殖。

这表明叶绿体并非完全依赖于细胞核的支配。

3.叶绿体和藻类有共同祖先叶绿体和藻类有共同的祖先,这表明叶绿体的起源和藻类的共生起源有关。

综上所述,线粒体和叶绿体的共生起源理论,是通过对细胞结构、生化反应、遗传物质等方面的比较研究,提出并支持的。

这些论据都表明,线粒体和叶绿体都具有自主繁殖能力、与细菌具有相似之处、与其宿主细胞有共同祖先等,这些都为线粒体和叶绿体的共生起源提供了有力的证据。

例析线粒体和叶绿体的内共生起源学说

例析线粒体和叶绿体的内共生起源学说

例析线粒体和叶绿体的内共生起源学说封开县江口中学陶勇由于线粒体和叶绿体具有独特的半自主性并与细胞核建立了复杂而协调的互作关系,它们的起源一直以来多被认为有别于其他细胞器。

在人们为这两种细胞器设计的起源假说中,内共生起源学说很好地贴合了线粒体和叶绿体的半自主性和核质关系特征,因而得到了广泛的认可和支持。

内共生起源学说认为,线粒体和叶绿体分别起源于原始真核细胞内共生的行有氧呼吸的细菌和行光能自养的蓝细菌。

该假说的提出远早于mtDNA和cpDNA的发现。

随着人们对真核细胞超微结构、线粒体和叶绿体DNA及其编码机制的认识,内共生起源学说的内涵得到了进一步充实。

1970年,Margulis在已有的资料基础上提出了一种更为细致的设想。

假设认为,真核细胞的祖先是一种体积较大、不需氧具有吞噬能力的细胞,通过糖酵解获取能量。

而线粒体的祖先则是一种革兰氏阴性菌,具备三羧酸循环所需的酶和电子传递链系统,可利用氧气把糖酵解的产物丙酮酸进一步分解,获得比糖酵解更多的能量。

当这种细菌被原始真核细胞吞噬后,即与宿主细胞间形成互利的共生关系:原始真核细胞利用这种细菌获得更充分的能量;而这种细菌则从宿主细胞获得更适宜的生存环境。

与此类似,叶绿体的祖先可能是原核生物的蓝细菌(cyanbacteria)。

当这种蓝细菌被原始真核细胞摄人后,为宿主细胞进行光合作用;而宿主细胞则为其提供其他的生存条件。

线粒体和叶绿体的内共生学说先后得到了大量的生物学研究证据的支持。

特别是近期的分子生物学和生物信息学的研究发现真核细胞的细胞核中存在大量原本可能属于呼吸细菌或蓝细菌的遗传信息,说明最初的呼吸细菌和蓝细菌的大部分基因组在漫长的共进化过程中发生了向细胞核的转移。

这种转移极大的削弱了线粒体和叶绿体的自主性,建立起稳定、协调的核质互作关系。

一、线粒体和叶绿体内共生起源学说的主要论据1.基因组与细菌基因组具有明显的相似性线粒体和叶绿体具有细菌基因组的典型特征。

例析线粒体和叶绿体的内共生起源学说

例析线粒体和叶绿体的内共生起源学说

例析线粒体和叶绿体的内共生起源学说————————————————————————————————作者:————————————————————————————————日期:ﻩ例析线粒体和叶绿体的内共生起源学说封开县江口中学陶勇由于线粒体和叶绿体具有独特的半自主性并与细胞核建立了复杂而协调的互作关系,它们的起源一直以来多被认为有别于其他细胞器。

在人们为这两种细胞器设计的起源假说中,内共生起源学说很好地贴合了线粒体和叶绿体的半自主性和核质关系特征,因而得到了广泛的认可和支持。

内共生起源学说认为,线粒体和叶绿体分别起源于原始真核细胞内共生的行有氧呼吸的细菌和行光能自养的蓝细菌。

该假说的提出远早于mtDNA和cpDNA的发现。

随着人们对真核细胞超微结构、线粒体和叶绿体DNA及其编码机制的认识,内共生起源学说的内涵得到了进一步充实。

1970年,Margulis在已有的资料基础上提出了一种更为细致的设想。

假设认为,真核细胞的祖先是一种体积较大、不需氧具有吞噬能力的细胞,通过糖酵解获取能量。

而线粒体的祖先则是一种革兰氏阴性菌,具备三羧酸循环所需的酶和电子传递链系统,可利用氧气把糖酵解的产物丙酮酸进一步分解,获得比糖酵解更多的能量。

当这种细菌被原始真核细胞吞噬后,即与宿主细胞间形成互利的共生关系:原始真核细胞利用这种细菌获得更充分的能量;而这种细菌则从宿主细胞获得更适宜的生存环境。

与此类似,叶绿体的祖先可能是原核生物的蓝细菌(cyanbacteria)。

当这种蓝细菌被原始真核细胞摄人后,为宿主细胞进行光合作用;而宿主细胞则为其提供其他的生存条件。

线粒体和叶绿体的内共生学说先后得到了大量的生物学研究证据的支持。

特别是近期的分子生物学和生物信息学的研究发现真核细胞的细胞核中存在大量原本可能属于呼吸细菌或蓝细菌的遗传信息,说明最初的呼吸细菌和蓝细菌的大部分基因组在漫长的共进化过程中发生了向细胞核的转移。

这种转移极大的削弱了线粒体和叶绿体的自主性,建立起稳定、协调的核质互作关系。

细胞生物学第七章线粒体与叶绿体知识点整理

细胞生物学第七章线粒体与叶绿体知识点整理

细胞生物学第七章线粒体与叶绿体知识点整理线粒体和叶绿体是细胞中两个重要的细胞器。

它们在细胞代谢和能量转换中发挥着重要的作用。

以下是关于线粒体和叶绿体的一些重要知识点:线粒体:1.结构:线粒体是一个由两层膜包围的细胞器。

它包含一个外膜和一个内膜,内膜形成了许多内突起,称为线粒体内膜嵴。

2.能量转换:线粒体是细胞中的能量生产中心。

它通过细胞呼吸过程中的氧化磷酸化来产生能量,将食物分子中的化学能转化为细胞可以使用的三磷酸腺苷(ATP)。

3. 基因组:线粒体具有自己的基因组,称为线粒体DNA(mtDNA)。

它主要编码细胞呼吸过程中所需的蛋白质。

mtDNA由母亲遗传给子代,因此线粒体DNA有助于研究人类的遗传和进化。

4.线粒体疾病:线粒体功能障碍可以导致许多疾病,如线粒体脑肌病、线粒体糖尿病和阿尔茨海默病。

这些疾病通常会影响能量的产生和细胞的正常功能。

叶绿体:1.结构:叶绿体是植物和一些原生生物中的细胞器。

它也是由两层膜包围,并且内膜形成了一系列叫做叶绿体嵴的结构。

2.光合作用:叶绿体是光合作用的主要场所,其中光能转化为化学能以供细胞使用。

叶绿体中的叶绿素能够吸收太阳能,并将其转化为光合作用的产物,如葡萄糖。

3. 基因组:叶绿体也具有自己的基因组,称为叶绿体DNA(cpDNA)。

它主要编码参与光合作用和叶绿体功能的蛋白质。

4.叶绿体疾病:类似于线粒体疾病,叶绿体功能障碍也会导致一系列疾病,在植物中称为叶绿体遗传病。

这些疾病通常会导致叶绿体的正常结构和功能受损。

1.起源:线粒体起源于古代原核生物,而叶绿体起源于古代蓝藻细菌。

这些细菌进化成为现代细胞中的线粒体和叶绿体。

2.功能:线粒体主要参与能量转换,而叶绿体主要参与光合作用。

它们在细胞代谢中的角色不同,但都与能量生产和细胞功能密切相关。

3.基因组:线粒体和叶绿体都有自己的基因组,具有其中一种程度的自主复制和表达能力。

不过,线粒体基因组比较小,叶绿体基因组比较大。

线粒体和叶绿体的起源和演化历程

线粒体和叶绿体的起源和演化历程

线粒体和叶绿体的起源和演化历程生命起源于多样的地方,而人类总是把目光聚焦于其中一种生命形式——生物。

生物有初生的细胞,也有千变万化的种类。

其中,线粒体和叶绿体就是群体中经常会被提及的细胞器。

一、线粒体的起源线粒体是一个具有独立膜结构的小细胞器。

科学家们在研究中发现,线粒体有独立、自主、复制和分裂的能力,又有自主的生物合成过程。

由此可见,线粒体和细胞是两个完全独立的实体。

现在,DNA进入线粒体中就能在里面进行复制、转录和翻译。

许多研究表明,线粒体有良好的远程活动性,并可以积极地参与细胞的代谢和能量生产。

线粒体的形态结构显示出一个功能复杂、高度耐受和实用的细胞器。

最初,科学家们普遍认为线粒体起源于细胞外侵入,但太阳能生成机理的发现揭示了线粒体的更为绝妙的起源。

现在,焦炭沉积导致的自然化学分析表明,早期的生命形式最早起源于化学环境中的光合作用,并赖以生存。

自繁殖和依附机体的形态再次出现,这意味着早期的生物形式已经具备了完整的生命活动。

但是,回到线粒体的问题上,它是否可以类比现代光合作用的调控保留下来呢?二、叶绿体的起源叶绿体同样是一个细胞器,具有独立膜壳和固有的DNA,能够参与自主的生物合成活动。

它的主要功能就是接收太阳能,进行光合作用,将其中的光能转化为化学能,为细胞提供生命所需的物质和能量。

早期的研究表明,叶绿体起源于一种原初的光合作用菌类——兰氏菌(Cyanobacteria),这个研究理论目前也被大多数科学家所认同。

兰氏菌的DNA已被分析出来,它的基因与叶绿体有着非常相似的序列,这也进一步证明了叶绿体起源自一个内共生过程。

这个内共生过程发生在生命起源的早期,或者是早期的环境中,它与线粒体的起源过程类似。

现在,科学家对这个过程及其演化道路和机制已有了比较清晰的认识。

不论生命进化的方向是否符合我们的预期,能够形成生命、维护生命和传承生命的原则和规律似乎都是丝毫不变的。

三、线粒体和叶绿体的演化历程线粒体和叶绿体都经历过一个演化过程,这个演化过程跨越了数百万年的时间,是由朴素的单细胞生物向越来越复杂的多细胞生物的过渡。

叶绿体、线粒体的提取

叶绿体、线粒体的提取

泡桐叶绿体和线粒体的提取与分离一、试验目的:1、将泡桐叶片中的叶绿体和线粒体提取出来。

2、掌握植物叶片中叶绿体和线粒体提取与分离的基本技术。

3、学习蔗糖沉淀差速离心法和差速离心法提取线粒体的方法。

二、实验材料与仪器:实验材料:泡桐新鲜叶片。

实验试剂:蒸馏水;液氮;缓冲液A(50 mmo l/L Tr is,,25 mmo l /L EDTA,1.25 mo l/L N aC l ,10 mmo l/Lβ-巯基乙醇, ψ=0. 1% (W /V ) BSA (牛血清蛋白) , ψ= 2% (W /V) CTAB, 10 g /L PVP, pH = 8. 0);缓冲液B (Tris2HCl 0.105 mol/ L, 蔗糖0.15 mol/ L, EDTA 0.1005 mol/ L, BSA 0.11% , 巯基乙醇0.11%, pH =7.15);缓冲液C( Tris2HCl 0.105 mol/ L, 蔗糖0.13 mol/L, MgCl2 0.101 mol/ L, pH 7.15);缓冲液D( 0. 2 mol/ L 蔗糖、0. 3mol/ L 甘露醇、50 mol/ L Tris2Cl、1 mol/ L EDTA、0. 1% BSA 、0. 6% PVP、0. 1% B2巯基乙醇,pH 7. 5);缓冲液E( 蔗糖0. 3 mol/ L、50mol/ L T ris2Cl, pH 7. 5);缓冲液F( 50 mol/ LTris2Cl、0. 3 mol/ L 甘露醇、0. 2 mol/ L 蔗糖、0. 1% BSA、0. 6% PVP, pH = 7. 5);纱布等。

试验仪器:研钵,研磨棒;离心管(250ml);高速冷冻离心机;移液枪;高速组织捣碎器等三、试验步骤:1、叶绿体的提取与分离(1) 称取新鲜泡桐叶片50 ~ 100 g, , 暗处理12小时,蒸馏水洗干净在液氮中保存3 h以上, 以最快速度磨成粉末, 然后用6层无菌纱布过滤, 收集滤液, 弃渣。

7.2叶绿体与线粒体的半自主性及其起源

7.2叶绿体与线粒体的半自主性及其起源
叶绿体和线粒体的比较
相 似 点
1.
较线粒体大;
内膜并不向内折叠成嵴; 内膜不含电子传递链;
不 同 点
2. 3.
4.
5.
除了膜间隙、基质外,还有类囊体;
叶绿体
捕光系统、电子传递链和ATP合成酶都位于类囊体膜上。
第二节
线粒体与叶绿体是半自 主性的细胞器
1. 叶绿体与线粒体的DNA 2. 叶绿体与线粒体的蛋白质合成 3. 叶绿体与线粒体的蛋白质运送与组装
• 成功之处:解释了真核cell核被膜的形成与演 化的渐进过程。
• 不足之处:实验证验不多;无法解释为何线粒 体,叶绿体与细菌在DNA分子结构和protein合 成性能上有那么多相似之处;对线粒体和叶绿 体的DNA酶,RND酶和核糖体的来源也很难解 释。
增殖: 分裂增殖,由中部向内收缩而分裂; 幼龄叶绿体可分裂;但成熟叶绿体不能分裂。
• 二、起源 • 1. 内共生起源学说 • 2. 非共生起源学说
1. 内共生起源学说
1)内容:
• 内共生学说是关于真核生物细胞中的细胞器, 线粒体和叶绿体起源的学说。根据这个学说, 它们起源于内共生于真核生物细胞中的原核生 物。这种理论认为线粒体起源于好氧性细菌 (很可能是接近于立克次体的变形菌门细菌), 而叶绿体源于内共生的光合自养原核生物蓝藻。 这个理论的证据非常完整,目前已经被广泛接 受。
线粒体中的多数蛋白由核基因编码、在细胞质
核糖体中合成。故线粒体基因在转录与转译过程 中受核基因控制,对核基因具很大依赖性。
2) 参加叶绿体组成的蛋白质来源:
• 由ctDNA编码,在叶绿体核糖体上合成; • 由核DNA编码,在细胞质核糖体上合成; • 由核DNA编码,在叶绿体核糖体上合成。

内共生学说

内共生学说

• (4).线粒体、叶绿体的内、外膜有显著差 异,内、外膜之间充满了液体。研究发现, 它们内、外膜的化学成分是不同的。外膜 与宿主的膜比较一致,特别是和内质网膜 很相似;内膜则分别同细菌和蓝藻的膜相 似。 但是任何学说都不是完美的,内共生
学说也不例外,仍然有很多问题是内共生 学说所解决不体和叶绿体 分别起源于原始真核cell内共生的细菌和蓝 藻。线粒体来源于细菌,即细菌被真核生 物吞噬后,在长期共生过程中,通过演变, 形成了线粒体。叶绿体来源于蓝藻,被原 始真核cell摄入胞内,在共生关系中,形成 了叶绿体。主要论据: (1)线粒体和叶绿 体的基因组在大小、形态和结构方面与细 菌的相似。
• (3).线粒体和叶绿体都有自己特殊的蛋白 质合成系统,不受核的合成系统的控制。 原核生物的核糖体由30S和50S两个亚基组 成,真核生物的核糖体由 40S和60S两个 亚基组成。线粒体和叶绿体的核糖体分别 与细菌和蓝藻的一致,也是由30S和50S两 个亚基组成,这说明细菌和线粒体、蓝藻 和叶绿体是同源的。抗生素可以抑制细菌 和蓝藻的生长,也可以抑制真核生物中的 线粒体和叶绿体的作用,这也说明线粒体 与细菌、叶绿体与蓝藻是同源的。
• (2).叶绿体和线粒体都有其独特的DNA, 可以自行复制,不完全受核DNA的控制。 线粒体和叶绿体的DNA同细胞核的DNA有 很大差别,但同细菌和蓝藻的DNA却很相 似。蓝藻的核糖体RNA(rRNA)不仅可以 与蓝藻本身的DNA杂交,而且还可与眼虫 叶绿体的DNA杂交,这些都说明它们之间 的同源性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非共生学说依据
1.线粒体和叶绿体DNA与质粒DNA在很多方面有相似 之处,分化学说能更好解释。
2.质膜内陷、基因组扩大与丢失在目前细胞中完全 有可能。
不足之处
? 1.线粒体与叶绿体的半自主性
2.线粒体、叶绿体和细胞核既然来源于同一原核细
? 胞 ,那为什么进化中会出现巨大的分歧 导致
? 这特,科学家们对其 起源产生了浓厚兴趣,并形成了不同学说:
内共生学说 非内共生学说
内共生学说(捕捉学说)
一种关于真核细胞起源的假说。由美国生物学家 马古利斯(Lynn Margulis)于1970年出版的 《真核细胞的起源》一书中提出。
该学说认为需氧细菌被原始真核细胞吞噬后,经 过长期共生能演变成线粒体;蓝藻被吞噬后经过 共生能形成叶绿体。
4.线粒体和叶绿体基因中有大量内含子,而在细菌 基因中没有发现内含子。
5.没有很好解释细胞核进化。
内共生学说 非内共生学说
非内共生学说(分化学说)
该学说认为真核细胞的前身是进化上比较高等的好 氧细菌(祖先原核细胞)。
祖先原核细胞发生DNA的复制而没有分裂,每一个 基因组附着在质膜内表面,该处质膜发生內褶,形 成包含DNA的双层膜小体,这些双层膜小体随后分 别演化成线粒体、叶绿体和细胞核。
4.线粒体和叶绿体的DNA与核DNA差异大,能自主合 成,并进行着真菌型的蛋白质合成。
5.分子进化研究以大量事实证实并丰富了内共生学 说。
内共生学说存在的问题
1.好氧细菌逐步失去独立自主性并将其遗传信息转 移至宿主细胞,这不符合进化论的思想。
2.蓝藻进行共生的时间比好氧细菌进行共生的时间 迟。
? 3.细菌的侵入无助于真核细胞的呼吸作用。
内共生学说的依据
1.共生是生物界的普遍现象(根瘤菌与豆科植物,蓝 藻或绿藻与真菌共生形成地衣)
2.在形态大小和化学组成及结构方面,线粒体与细菌 相似,叶绿体与蓝细菌相似,如:
外膜与细胞内质网膜相像, 内膜分别同细菌、蓝藻的膜相像。
核糖体分别与细菌和蓝藻的相似, 均由30S和50S两个亚基组成。
3.抗生素可以抑制细菌和蓝藻的生长,也可以抑制 线粒体和叶绿体的作用。
线粒体与叶绿体的来源
By 临床1501 丘艾巧
线粒体和叶绿体有什么独特的特征?
1.都有自己的遗传系统,含有DNA和 RNA。
2.都有自己特殊的蛋白质合成系统, 能合成自身一部分蛋白质。
3.内外膜有显著差异,外膜与真核细 胞的膜系统相似, 的膜系统相似,内膜与原核细胞
的膜系统相似,内外膜间充满液体。
相关文档
最新文档