多波形信号发生器

合集下载

多种波形发生器实验分析报告

多种波形发生器实验分析报告

多种波形发生器实验分析报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验设备与材料 (3)3. 实验原理 (4)二、实验内容与步骤 (5)1. 波形发生器设计与搭建 (6)1.1 设计要求与方案选择 (7)1.2 波形发生器硬件搭建 (9)1.3 波形发生器软件编程 (10)2. 多种波形合成与输出 (12)2.1 合成波形的设计与实现 (12)2.2 波形输出设置与调整 (13)2.3 实时监控与数据分析 (15)3. 实验测试与结果分析 (16)3.1 测试环境搭建与准备 (17)3.2 实验数据采集与处理 (18)3.3 结果分析与讨论 (19)三、实验结果与讨论 (20)1. 实验结果展示 (21)2. 结果分析 (22)2.1 各波形参数对比分析 (23)2.2 性能评估与优化建议 (24)3. 问题与改进措施 (25)四、实验总结与展望 (26)1. 实验成果总结 (27)2. 存在问题与不足 (28)3. 后续研究方向与展望 (29)一、实验概述本次实验旨在研究和分析多种波形发生器的性能特点,包括产生信号的频率、幅度、波形稳定性等方面。

实验中采用了多种类型的波形发生器,如正弦波、方波、三角波、梯形波等,并对其输出波形进行了详细的测量和分析。

实验过程中,我们首先对各种波形发生器的基本功能进行了测试,确保其能够正常工作。

我们对不同波形发生器产生的波形进行了对比分析,重点关注了波形的频率、幅度和波形稳定性等关键指标。

我们还对波形发生器的输出信号进行了频谱分析和噪声测试,以评估其性能表现。

通过本次实验,我们获得了丰富的实验数据和经验,为进一步优化波形发生器的设计提供了有力支持。

实验结果也为我们了解各种波形发生器在实际应用中的性能表现提供了重要参考。

1. 实验目的本次实验的主要目的是深入研究和理解多种波形发生器的原理及其在实际应用中的表现。

通过搭建实验平台,我们能够模拟和观察不同波形(如正弦波、方波、三角波等)的产生与特性,进而探究其各自的优缺点以及在不同场景下的适用性。

多波形信号发生器设计实验报告

多波形信号发生器设计实验报告

多波形信号发生器实验报告1. 背景多波形信号发生器是一种用于产生不同形状、频率和幅度的信号的设备。

它在各种领域中都有广泛的应用,包括电子工程、通信和音频领域。

在实验室中,多波形信号发生器通常用于测试和验证电路的性能。

本实验旨在设计一个多波形信号发生器,并对其进行性能测试和分析。

通过实际搭建和测试,我们将评估所设计的信号发生器的波形质量、频率稳定性、幅度准确性等关键指标,同时寻找可能的改进方向。

2. 设计与分析2.1 设计思路我们的设计思路是基于数字信号处理技术,使用微处理器控制和生成不同波形的信号。

具体来说,我们采用以下步骤来设计多波形信号发生器:1.选择合适的数字信号处理芯片,并与微处理器进行连接。

2.在微处理器上编程,实现不同波形信号的生成算法,如正弦波、方波、三角波等。

3.通过微处理器控制模拟输出电路,将数字信号转换为模拟信号。

4.设计合适的幅度控制电路,使得可以精确控制信号的幅度。

5.设计合适的频率控制电路,使得可以通过微处理器对信号的频率进行调节。

2.2 组件选择和连接首先,我们选择了一款高性能的数字信号处理芯片,并将其与微处理器进行连接。

通过对芯片的编程,我们可以实现生成不同波形的功能。

然后,我们将芯片的数字输出连接到模拟电路的输入端,通过合适的滤波电路进行信号滤波。

同时,将微处理器的控制端与模拟电路的控制电路相连接,以实现对幅度和频率的控制。

2.3 算法设计在微处理器上编写程序,实现不同波形信号的生成算法。

以正弦波为例,我们可以使用如下的算法:#define PI 3.1415926float sin_wave(float amplitude, float frequency, float time){return amplitude * sin(2 * PI * frequency * time);}对于方波和三角波等其他波形,我们可以采用类似的算法进行设计。

2.4 电路设计由于波形质量是信号发生器的重要性能指标之一,我们需要设计合适的模拟电路来提供稳定的、低噪声的模拟输出信号。

基于单片机的多波形信号发生器设计

基于单片机的多波形信号发生器设计

基于单片机的多波形信号发生器设计
单片机多波形信号发生器是一种可以在微控制器芯片上合成不同波形的电路。

该电路可以生成正弦波、方波、三角波等多种波形,也可以通过设置不同的频率、幅值和相位来调节波形。

单片机多波形信号发生器被广泛应用于各种实验中,如音频信号处理、电子测量和信号仿真等领域。

以下是单片机多波形信号发生器设计的步骤:
1. 确定系统主要功能要求。

2. 选择合适的单片机芯片和外围电路。

3. 根据所选芯片的不同特点编写程序,并在仿真软件中进行测试。

4. 设计输出电路,包括输出放大电路和输出滤波电路。

5. 根据实际需要设计显示电路,用于控制波形参数和频率。

6. 进行系统调试和测试,对系统进行优化和改进。

7. 构建原型并进行实验验证,进一步检验系统性能是否能够满足所需的功能要求。

总结而言,单片机多波形信号发生器设计的关键是合理选择芯片和外围电路,并编写合适的程序用于控制波形参数。

同时,开发人员需要进行充分的调试,以确保系统运行稳定、波形输出准确、频率稳定。

定时器产生三种波形发生器

定时器产生三种波形发生器

定时器产生三种波形发生器文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]目录摘要各种电器设备要正常工作,常常需要各种波形信号的支持。

电器设备中常用的信号有正弦波、矩形波、三角波和锯齿波等。

在电器设备中,这些信号是由波形产生和变换电路来提供的。

波形产生电路是一种不需外加激励信号就能将直流能源转化成具有一定频率、一定幅度和一定波形的交流能量输出电路,又称为振荡器或波形发生器。

在生产实践和科技领域中有着广泛的应用。

各种波形曲线均可以用三角函数方程式来表示。

能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。

波形发生器通过与波形变换电路相结合,它能产生正弦波、矩形波、三角波和阶梯波等各种波形,能满足现代测量、通信、自动控制和热加工、音视频设备及数字系统等对各种信号源的需求。

例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。

在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器等。

关键字:方案确定、参数计算、信号、发生器等。

第一章方案提出三种波形都是比较简单且常见的波形,产生的方法由很多种,可以先产生方波,然后得到三角波和正弦波,也可以先得到正弦波,然后翻过来再输出另外两种波形;可以用集成芯片,同时也可以用运用各种元器件来实现振荡电路。

(1)利用专用直接数字合成DDS芯片的函数发生器。

(2)可以选用专门的函数信号发生器,如8038(3)由555定时器所构成的多谐振动器产生方波, 方波经过积分器的作用产生三角波,三角波在经过差分放大电路的非线性转换为正弦波。

比较以上几种方案:(1)方案比较简单同时也能产生任意波形并达到很高的频率。

但成本较高。

(2)它们虽然能够甚好的实现波形的产生但是功能较少,太单一。

(毕业论文)555制作多波形发生器

(毕业论文)555制作多波形发生器

第1章引言1.1本课题的研究现状信号源作为一种基本电子设备无论是在教学、科研还是在军事技术中,都有着广泛的使用。

因此,从理论到工程对信号的发生进行深入研究,不论是从教学科研角度,还是从社会实际应用角度出发都有着积极的意义。

随着科学技术的发展和测量技术的进步,对信号源的要求越来越高,普通的信号发生器已无法满足目前日益发展的数字技术领域科研和教学的需要信号发生器既可以构成独立的信号源,也可以是高性能网络分析仪、频谱仪及其它自动测试设备的组成部分。

信号发生器的关键技术是多种高性能仪器的支撑技术,因为它能够提供高质量的精密信号源及扫频源,可使相应系统的检测过程大大简化,降低检测费用并极大地提高检测精度。

美国安捷伦生产的33250A 型函数/任意波形发生器可以产生稳定、精确和低失真的任意波形,其输出频率范围为1μHz~80MHz,而输出幅度为10mVpp~10Vpp;该公司生产的8648D射频信号发生器的频率覆盖范围更可高达9kHz~4GHz。

国产SG1060数字合成信号发生器能双通道同时输出高分辨率、高精度、高可靠性的各种波形,频率覆盖范围为1μHz~60MHz;国产S1000型数字合成扫频信号发生器通过采用新技术、新器件实现高精度、宽频带的扫频源,同时应用DDS和锁相技术,使频率范围从1MHz~1024MHz能精确地分辨到100Hz,它既是一台高精度的扫频源,同时也是一台高精度的标准信号发生器。

还有很多其它类型的信号发生器,他们各有各的优点,但是信号发生器总的趋势将向着宽频率覆盖、高频率精度、多功能、多用途、自动化和智能化方向发展。

1.2选题目的及意义信号发生器是一种经常使用的设备,由纯粹物理器件构成的传统的设计方法存在许多弊端,如:体积较大、重量较沉、移动不够方便、信号失真较大、波形种类过于单一、波形形状调节过于死板,无法满足用户对精度、便携性、稳定性等的要求,研究设计出一种具有频率稳定、准确、波形质量好、输出频率范围宽、便携性好等特点的波形发生器具有较好的市场前景,以满足军事和民用领域对信号源的要求。

8038信号发生器

8038信号发生器

用8038制作多波形信号发生器信号发生器在电子产品研发过程中使用广泛,但对于电子爱好者来说,个人购买一台信号发生器来使用又显得不太合适,本文提供一个可产生多种波形的信号发生器电路,有兴趣的电子爱好者可以自制一个,作为信号发生器来使用。

电路原理图如下图所示。

图中的8038 为函数发生器专用IC,它具有3 种波形输出,分别正弦波、方波和三角波,8038的第10脚外接定时电容,该电容的容值决定了输出波形的频率,电路中的定时电容从C1至C8决定了信号频率的十个倍频程,从500μF开始,依次减小十倍,直到5500pF,频率范围相应地从0.05Hz~0.5 Hz~5Hz~50Hz~500Hz~5kHz~50kHz~500kHz,如果C8取250pF,频率可达1MHz。

图中的V1、R7、R8构成缓冲放大器,R9 为电位器,用于改变输出波形的幅值。

整个电路的频率范围为0.05Hz~1MHz,占空比可以从2%至98%调整,失真不大于1%,线性好,误差不大于0.1%,因此电路很有实用价值。

函数信号发生器的设计与制作系别:电子工程系专业:应用电子技术届:07届姓名:李贤春摘要本系统以ICL8038集成块为核心器件,制作一种函数信号发生器,制作成本较低。

适合学生学习电子技术测量使用。

ICL8038是一种具有多种波形输出的精密振荡集成电路,只需要个别的外部元件就能产生从0.001Hz~30KHz的低失真正弦波、三角波、矩形波等脉冲信号。

输出波形的频率和占空比还可以由电流或电阻控制。

另外由于该芯片具有调制信号输入端,所以可以用来对低频信号进行频率调制。

关键词ICL8038,波形,原理图,常用接法一、概述在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的信号波形发生器。

随着集成电路的迅速发展,用集成电路可很方便地构成各种信号波形发生器。

用集成电路实现的信号波形发生器与其它信号波形发生器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高。

555多波形信号发生器

555 多波形信号发生器成都立新编译众所周知,555 集成定时器用途十分广泛,要想把它们的应用实例全部罗列出来,并非易事。

这里介绍一种以555 定时器为核心制作的方波、钟形波、三角波和正弦波的信号发生器,波形的频率为1kHz、输出电压为0~200mVpp ,电路如附图所示。

附图电路中,IC1 为555 集成电路,其外围元件R1、R7、C3 及其相关元件产生的方波由③脚输出。

R8 和R2 组成分压器,其分压器的输出接到B 点。

R4、C5 和R5、C6 分别是积分电路。

R11、C2 和T1 组成正弦波形成电路。

积分电路和正弦波的输出,分别接到C、D 和E点。

T2 管和R3、R10 组成波形信号的射极输出器,其输出电压经C8 耦合到电位器RV1 ,由RV1 输出上述的四种波形。

图中的A 点与B、C、D 和 E 点构成线桥,J1、J2、J3 和J4 为跳线。

这些跳线是为波形切换用的。

以上所述已较清楚555 多波形发生器的电路结构。

IC1 的③脚跨接的分压器R8、R2 ,其输出波形至B 点,通过切换跳线J1 短接时,由T2 发射极经耦合电容C2 到RV1 ,在输出的F 点即可获得方波信号。

IC1 ③脚输出的方波信号,经RC积分电路R4、C5 积分成钟形波,其输出到C 点,再经切换跳线J2 的短接后,送到T2 的基极,同前一样由 F 点输出钟形脉冲。

若适当调整IC1 方波发生器的电阻参数R1、R7 ,使其③脚输出的方波尽可能对称,则跳转J2短接后,其F 点的输出会形成准正弦被。

同理,C 点信号再经R5、C6 的积分电路,此时由于RC对C点信号的过渡历程较长,由R6、C6 形成三角形波,再由跳线J3 短接后,经射极T2 输出到 F 点,即可输出三角形波。

最后D 点的三角形波,经R6、C2 和T1 放大处理后,由T1 的集电极形成正弦波,再由跳线J4 短接经T2 射极输出到F点,即可输出正弦波。

由于T2 组成的射极输出器是低阻抗的,所以该信号也是低阻抗的多波形发生器。

555多路波形发生器的系统功能及设计原理

555多路波形发生器是一种广泛应用于电子技术领域的信号源,它可以产生多种不同频率和幅度的波形信号。

该系统具有多种功能,如产生方波、三角波、锯齿波等,同时还可以通过外部控制实现频率和幅度可调。

下面将详细介绍555多路波形发生器的系统功能及设计原理。

一、系统功能产生多种波形555多路波形发生器可以产生方波、三角波、锯齿波等多种波形。

这些波形在电子技术领域有着广泛的应用,如测试电路性能、控制电机等。

频率和幅度可调通过外部控制,555多路波形发生器的频率和幅度可以调节。

这使得该系统具有很高的灵活性,可以根据不同的应用需求产生不同的波形信号。

多路输出555多路波形发生器具有多路输出,可以同时产生多个不同频率和幅度的波形信号。

这使得该系统在多通道应用中具有很高的优势。

稳定性好由于采用了先进的电路设计和制造工艺,555多路波形发生器的稳定性非常好。

即使在长时间工作或恶劣环境下,也能保持稳定的输出性能。

二、设计原理电路组成555多路波形发生器主要由以下几个部分组成:触发器、比较器、放电管、电阻和电容等。

这些元件通过电路连接,形成了一个完整的信号发生器。

工作原理当触发器接收到一个外部信号时,会触发比较器产生一个脉冲信号。

这个脉冲信号通过放电管和电阻电容网络,产生一个具有特定频率和幅度的波形信号。

同时,通过外部控制,可以调节比较器的阈值电压,从而改变波形信号的频率和幅度。

波形生成通过调整放电管和电阻电容网络的参数,可以生成方波、三角波、锯齿波等多种波形。

具体来说,当放电管导通时,电容通过放电管放电,产生一个下降沿;当放电管截止时,电容通过电阻充电,产生一个上升沿。

通过调整放电管和电阻的参数,可以改变上升沿和下降沿的斜率,从而生成不同的波形。

频率和幅度调节通过外部控制,可以调节比较器的阈值电压,从而改变波形信号的频率和幅度。

具体来说,当阈值电压升高时,比较器产生的脉冲信号频率降低;当阈值电压降低时,比较器产生的脉冲信号频率升高。

键盘控制的多种波形发生器要点

课程设计量化评分标准设计题目:键盘控制的多种波形发生器摘要本文以STC89C52单片机为核心设计了一个低频函数信号发生器。

信号发生器采用数字波形合成技术,通过硬件电路和软件程序相结合,可输出自定义波形,如正弦波、三角波、三角波、方波和其他任意波形。

本系统以单片机AT89S51为系统的控制核心,结合D/A转换芯片DAC0832设计一个简易低频信号源的设计,通过CH451外接键盘控制选择多种波形发生,用示波器观察输出波形。

关键词:信号源STC89C52 DAC0832 CH451一、要求1、单片机产生多种波形2、键盘控制选择波形发生(三角波、锯齿波、正弦波、方波)二、设计分析2.1 设计思路波形发生器设计思路框图如下所示。

波形的产生是通过AT89S51 执行某一波形发生程序,向D/A转换器的输入端按一定的规律发生数据,从而在D/A转换电路的输出端得到相应的电压波形。

图1 设计思路框图(1)主控模块采用ATMEL公司生产的STC89C52单片机作为系统的控制器。

51系列的单片机的使用简单,软件编程灵活。

自由度大,可用软件编程实现各种算法和逻辑控制,并且功耗低、体积小、技术成熟和成本低。

(3) 波形产生模块DAC0832芯片是8位并行、中速(建立时间1us)、CMOS工艺制造的8位单片D/A 转,DAC0832换器转换控制容易等优点,在单片机应用系统中得到了广泛的应用。

由于DAC0832输出为电流量,而波形最终需要转换为电压量来显示波形幅度,所以在DAC0832电路后接I/V转换电路,在这里采用LM324集成运放来实现电流/电压的转换。

(4) 按键控制模块可使用矩阵键盘来控制单片机,使用矩阵键盘可使电路的功能大大的提高,同时在单片机编程设计上也会相应困难,可以使用专用芯片CH451通过串口与单片机相连,只需占用单片机少量引脚,这样设计变的更合理。

在一些简单的控制上,就不用使用矩阵键盘的控制了。

2.3 设计流程图主程序设计流程图如图2所示:图2 设计流程框图子程序设计流程如图3所示:图3 子程序设计流程框图三、设计思路和模块3、1 控制芯片设计中主要采用STC89C52型单片机,它具有如下优点:(1)拥有完善的外部扩展总线,通过这些总线可方便地扩展外围单元、外围接口等。

多波形信号发生器设计

多波形信号发生器设计一、简介设计一个能够产生多个信号输出的信号发生器,要求输出波形分别为方波、三角波、正弦波。

特别适合电子爱好者或学生用示波器来做观察信号波形实验。

该信号发生器电路简单、成本低廉、调整方便。

它是基于ne555计时器接成振荡器工作形式和电容积分而产生的波形。

其工作频率为1KHz左右,调节滑动变阻器可改变振荡器的频率。

波形发生器是信号源的一种,主要给被测电路提供所需要的己知信号(各种波形),然后用其它仪表测量感兴趣的参数。

可见信号源在各种实验应用和试验测试处理中,它的应用非常广泛。

它不是测量仪器,而是根据使用者的要求,作为激励源,仿真各种测试信号,提供给被测电路,以满足测量或各种实际需要。

目前我国己经开始研制波形发生器,并取得了可喜的成果。

但总的来说,我国波形发生器还没有形成真正的产业。

就目前国内的成熟产品来看,多为一些PC仪器插卡,独立的仪器和VXI系统的模块很少,并且我国目前在波形发生器的种类和性能都与国外同类产品存在较大的差距,因此加紧对这类产品的研制显得迫在眉睫。

二、设计目的1、掌握方波—三角波——正弦波函数发生器的原理及设计方法。

2、掌握ne555计时器工作原理和各种电子器件的简单认识。

3、能够独立的进行电路板焊接和电路检查与故障排除。

4、学会用示波器来观察发生器的波形输出并作出判断。

三、硬件介绍及其原理1、元件列表ne555是一种应用特别广泛作用很大的的集成电路,属于小规模集成电路,在很多电子产品中都有应用。

ne555的作用是用内部的定时器来构成时基电路,给其他的电路提供时序脉冲。

ne555时基电路有两种封装形式有,一是dip双列直插8脚封装,另一种是sop-8小型(smd)封装形式。

其他ha17555、lm555、ca555分属不同的公司生产的产品。

内部结构和工作原理都相同。

ne555的内部结构可等效成23个晶体三极管.17个电阻.两个二极管.组成了比较器.RS触发器.等多组单元电路.特别是由三只精度较高5k 电阻构成了一个电阻分压器.为上.下比较器提供基准电压.所以称之为555.ne555属于cmos工艺制造.NE555引脚图介绍如下1地GND2触发3输出4复位5控制电压6门限(阈值)7放电8电源电压Vcc应用十分广泛.下面是一个简单的ne555电路应用内部结构几种工作形式第1种(图1)是人工启动单稳,又因为定时电阻定时电容位置不同而分为2个不同的单元,并分别以1.1.1和1.1.2为代号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电路实践系列讲义多波形信号发生器与滤波器2013-3-25多波形信号发生器(理论设计部分)电子电路中,信号源是必备的,在电路中,所需要的信号由信号源提供。

而现在使用最多的信号主要是正弦波,脉冲波,三角波,锯齿波等等,本讲介绍一种能同时产生脉冲波,三角波和正弦波的电路的设计与实验。

三角波的产生可以利用电容器的充放电过程(积分电路)来实现,因为三角波要求电位变化是线性的,即均匀变化,可以利用运算放大器产生一个对电容充放电电流恒定的电路,充电和放电过程可以由脉冲信号控制,而脉冲信号的形成也可以由运算放大器来完成,脉冲波可以由运算放大器构成比较器来产生,而正弦波可以利用正弦波信号发生器产生,好可以利用脉冲波或者三角波经滤波后得到,而所需要的滤波器也可以由运算放大器构成。

从以上讨论可知,电路利用的主要器件是运算放大器。

运算放大器的基本概念1运算放大器是电子电路中最常用的电子器件之一,利用运算放大器可以构成比较器,电压跟随器(隔离电路),比例放大器,运算电路,信号发生器,滤波器等多种用途的电路。

2 运算放大器的电路符号如图所示,它有两个输入端{其中(+)叫做同相输入端,(-)叫做反相输入端},一个输出端。

3 运算放大器具有两个重要的特性,一是两个输入端的输入阻抗都很大,一般都在106Ω以上,二是开环放大倍数很大,一般都在105倍以上。

4 当运算放大器开环(在输出端和输入端不加反馈电路)使用时,一般都会工作在饱和状态(原因是:两输入端加上电压信号,输出端的电压受到电源电压的限制其最大值高不能超过电源正电压,低不能低于电源负电压),当V+> V- 时,输出高电平(接近电源正电压),当V+ < V- 时,输出低电平(接近电源负电压)。

这就是一个比较器。

5 当运算放大器闭环{在输出端和反相输入端(-)加反馈电路}使用时,运算放大器的运用非常灵活,可以构成各种各样的电路,但无论是分析还是设计电路,只要掌握以下两点:一是因为输入阻抗很大使得输入电流很小而忽略认为两输入端的电流为0(虚断路,如LM358输入端电流小于45nA),一是因为开环放大倍数很大使得两输入端的电压很小而忽略认为两输入端的电压为0(虚短路,如LM358输出信号幅度1V,两输入端电压最大不超过10μV),由以运算放大器为核心器件构成的电路的分析与设计就变得非常简单与方便。

常用的通用运算放大器LM358和LM324简介1 通用运算放大器LM358是一块双运放集成电路,内含二个完全一样的运算放大器,引脚8个,引脚编号1,2,3,4,5,6,7,8按如下方法确定:正面朝上,有缺口的一方朝左(或者有圆点的位置在左下),左下第一引脚为1,然后按逆时针顺序依次确定2,3,4,5,6,7,8,即左上脚为8号引脚。

实物图如图所示。

8脚接正电源,4脚接负电源或地GND.引脚3,2,1三个脚组成A运放(其中引脚3为A运放的同相输入端,引脚2为A运放的反相输入端,引脚1为A 运放的输出端),引脚5,6,7三个脚组成B运放(其中引脚5为B运放的同相输入端,引脚6为B运放的反相输入端,引脚7为B运放的输出端)。

右图为运算放大器LM358电路符号。

2 通用运算放大器LM324简介通用运算放大器LM324是四运放集成电路,内含四个完全一样的运算放大器,引脚14个,引脚编号1,2,3,4,5,6,7,8,9,10,11,12,13,14按如下方法确定:正面朝上,有缺口的一方朝左(或者有圆点的位置在左下),左下第一引脚为1,然后按逆时针顺序依次确定2,3,4,5,6,7,8,9,10,11,12,13,14,即左上脚为14号引脚。

实物如图所示。

4脚接正电源,11脚接负电源或地GND.引脚3,2,1三个脚组成A运放(其中引脚3为A运放的同相输入端,引脚2为A运放的反相输入端,引脚1为A运放的输出端),引脚5,6,7三个脚组成B运放(其中引脚5为B 运放的同相输入端,引脚6为B运放的反相输入端,引脚7为B运放的输出端)。

引脚10,9,8三个脚组成C运放(其中引脚10为C运放的同相输入端,引脚9为C运放的反相输入端,引脚8为C运放的输出端)。

引脚12,13,14三个脚组成D运放(其中引脚12为D 运放的同相输入端,引脚13为D运放的反相输入端,引脚14为D运放的输出端)上图为运算放大器LM324电路符号。

3 运算放大器LM358和LM324的主要参数电源电压范围单电源+3.0V--+32V,双电源±1.5 V--±16 V;输出高电平大约比电源电压低1.4V;当单电源供电时,输出低电平约为0V;最大输出端拉电流40mA,最大输出端灌电流20mA,脉冲波与三角波信号发生器电路结构如图所示。

由运放UB,UC,电阻R1,R2,R3,R4,发光二极管D1,D2,电容C构成,其中UB构成比较器,UC,R4,电容C构成积分器,R1,R2构成比较电压产生电路,发光二极管D1,D2构成电压稳定电路。

在最初时刻t0,设比较器输出高电平(UB运放同相端电位高于反相端电位,注意到反相端电位为0,所以同相端电位为正),则由于D2(图中右边一个发光二极管)导通(D1截止),所以Ub =+U D(发光二极管导通电压,红色发光二极管导通电压若为1.8V),而最初时刻,电容器上无电荷,Uc=0,所以Uo=0(注意到运放UC 的同相端和反相端电位都是0),此时Ud(比较器+端电压)为一个正电压(维持比较器输出高电平)。

由于R4上有从左至右电流,所以电容C从左至右充电,电容器电压增大,注意到电容器左端电位不变,所以输出端电位(电容器右端电位)从0开始降低为负电压,Ud(UB 运放同相端电位)也就随着Uo的降低而从正电压开始降低,到t1时刻,电容器电压升高到Um,输出电压降低到-Um时,Ud降低到0,比较器输出状态翻转,输出低电平(注意到比较器比较电压值为0V),Ub也就立即从+ U D降到-U D,Ud突然从0降到一个负电压(注意到R1和R2串联电路两端电位都是负值,则这个串联电路上任何一点的电位必为负值),R4上产生一个从右至左的电流,电容器放电,电容电压降低,输出电压升高,Ud电压也跟着升高,到t2时刻,电容器电荷放完,电容电压降到0,输出电压升高到0,注意到此时Ud 还是负电压(因为一端为0,一端为负值,因此中间值必为负值),所以R4上从右至左的电流继续存在,电容器从右至左反向充电,电容器从右至左电压升高,输出电压继续升高(此时已为正值),Ud 电压继续升高,到t3时刻,电容器从右至左电压升高到Um ,输出电压升高到Um ,Ud 电压上升到0,比较器状态翻转,输出高电平,Ub 也跳到+ U D ,Ud 电压也从0跳到一个正电压,R4上有从左至右电流,电容器反向放电,输出电压降低,Ud 电压随着降低,到T4时刻,电容反向放电放完,输出电压降到0(注意到Ud 并没降到0),一个周期结束。

从以上分析可知,当输出电压Uo=Um 时,输出信号开始转折,即Um 是最大值,即三角波信号的幅度。

而当Uo= +Um 时,Ud=0,Ub = -Ub ,以此计算三角波的幅度。

而电阻R1,R2上电流相等,得到下式:21)(0R U R U D m --= 7注意到运算放大器的虚断路特性,R1和R2电流相等。

所以三角波幅度 D m U R R U 21= 电容器电压从0 增加到Um ,或者从Um 减小到0的过程,就是1/4个周期,即电容器上电压变化Um 时,完成四分之一个周期,以此计算三角波的频率。

C C CU Q =D m U R R C CU T I 214==, 而 4R U I D =, 三角波周期 2414R C R R T =, 三角波频率 C R R R f 1424=幅度与频率的调节:利用改变R1或R2的方法调节三角波幅度,利用改变R4的方法调节三角波频率。

注意,如果利用改变R1和R2的办法是可以改变频率的,但同时也改变了信号的幅度。

若发光二极管采用绿色发光管,管压降约为2.0V ,设计幅度为2.5V ,则可取R1=15K ,R2=12K 。

设计频率为1000Hz ,取电容为103,则计算出R4=20K 。

若发光二极管采用红色发光管,管压降约为1.8V ,设计幅度为4.0V ,则可取R1=22K ,R2=10K 。

设计频率为1000Hz ,取电容为103,则计算出R4=11.36K ,取R4=11K 。

电路按此参数安装元件,计算出电路的三角波信号幅度和频率结果如下:)(96.38.1102221V U R R U D m =⨯== )(103310101110224101048333142Hz C R R R f =⨯⨯⨯⨯⨯⨯==-电源电压大小的确定:为了电路的简单化,电路采用双电源供电,当然正负电压对称。

若三角波的幅度为4V ,则电源正电压高于+6V ,电源负电压低于-6V 就可以,但为了留有充分的余量及方便,电源电压选用正负12V (为常用电源电压)。

电阻R3的讨论,电阻R3是发光二极管的限流电阻,这个电阻阻值示能取大了,否则电路工作可能不正常。

因为要保证电路正常工作,从前面的讨论可知,电阻R4上要有稳定的充放电电流,大小为Ud / R4,还要让发光二极管有一定的导通电流,而让发光二极管两端维持稳定的电压不变,注意到这二个电流都是通过R3的,所以,若电阻R3阻值太大,电流太小,不能给R4和发光二极管提供足够的工作电流。

那么,电阻R3最大不能超过多少呢?设发光二极管是红色发光二极管,电压为1.8V ,R4电阻为11K ,则电流为1.8/11=0.164mA ,而让发光二极管正常导通,设导通工作电流为最小3mA ,则R3上电流不能小于3.164mA ,以此计算R3的最大值:(12-1.6-1.8)/ 3.164=2.7K 。

是不是R3越小越好?肯定不是,那么,电阻R3最小不能小于多少呢?因为发光二极管电流不能大于20mA ,所以R3的最小值为:(12-1.6-1.8)/ 20.164=0.43K =430Ω。

本电路取R3=2K 。

另外:a 点输出脉冲波,幅度由运放LM358的供电电压决定,频率与三角波信号频率相同。

b 点输出脉冲波,幅度由发光二极管的导通电压决定,频率与三角波信号频率相同。

运算放大器UD 和电阻R5,R6构成输出三角波信号幅度调节电路,通过调节R5或者R6的大小可以调节输出信号幅度大小,如固定R5不变,调节R6的大小,当R6调大时,电路放大倍数增大,输出信号幅度增大,当R6调小时,电路放大倍数减小,输出信号幅度减小,注意到这个反相比例放大电路的放大倍数为56R R A v -= R 所以输出信号幅度为)(456V R R U O ⨯=单电源供电电路,电路工作原理与双电源供电电路完全相同。

相关文档
最新文档