中考复习22题函数应用题专讲专练

合集下载

人教版九年级上册数学第二十二章二次函数应用题专题训练含答案

人教版九年级上册数学第二十二章二次函数应用题专题训练含答案

人教版九年级上册数学第二十二章二次函数应用题专题训练1.某超市购进一批水果,成本为8元/kg ,根据市场调研发现,这种水果在未来10天的售价m (元/kg )与时间第x 天之间满足函数关系式1182m x =+(110x ≤≤,x 为整数),又通过分析销售情况,发现每天销售量()kg y 与时间第x 天之间满足一次函数关系,下表是其中的三组对应值.(1)求y 与x 的函数解析式;(2)在这10天中,哪一天销售这种水果的利润最大,最大销售利润为多少元?2.荔枝是夏季的时令水果,储存不太方便.某水果店将进价为18元/千克的荔枝,以28元/千克售出时,每天能售出40千克.市场调研表明:当售价每降低1元/千克时,平均每天能多售出10千克.设降价x 元.(1)降价后平均每天可以销售荔枝 千克(用含x 的代数式表示). (2)设销售利润为y ,请写出y 关于x 的函数关系式.(3)该水果店想要使荔枝的销售利润平均每天达到480元,且尽可能地减少库存压力,应将价格定为多少元/千克?3.来商店经市场调查发现:某种商品的周销售量y (件)与售价x (元/件)的关系为2200y x =-+,其售价与周销售利润w (元)的三组对应值如下表:注:周销售利润=周销售量×(售价-进价) (1)求该商品的进价;(2)求当该商品的售价是多少元/件时,周销售利润为1600元?4.某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y (件)与每件售价x (元)之间存在一次函数关系(其中8≤x ≤15,且x 为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件. (1)求y 与x 之间的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?(3)设该商店销售这种消毒用品每天获利w (元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?5.某商场经市场调查,发现进价为40元的某童装每月的销售量y (件)与售价x (元)的相关信息如下:(1)试用你学过的函数来描述y 与x 的关系,这个函数可以是______(填一次函数或二次函数),求这个函数关系式;(2)若当月销售量不低于300件,售价为多少时,当月利润最大?最大利润是多少?6.在学习一次函数时,我们经历了列表、描点、连线画函数图像,并结合图像研究函数性质的过程下面我们尝试利用之前的学习经验研究函数2y x 的性质及其应用,请按要求完成下列各题.(1)函数2yx 中自变量x 的取值范围是:_________.(2)请同学们通过列表、描点、连线画出此函数的图像; (3)根据函数图像,写出此函数的三条性质; (4)写出不等式26x x -+<的解集.7.某商家出售一种商品的成本价为20元/千克,市场调查发现,该商品每天的销售量y (千克)与销售价x (元/千克)有如下关系:280y x =-+.设这种商品每天的销售利润为w 元. (1)求w 与x 之间的函数关系式;(2)该商品销售价定为每干克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种商品的销售价不高于每千克28元,该商家想要每天获得150元的销售利润,销售价应定为每千克多少元?8.为落实国家精准扶贫政策,我市助农办决定帮助扶贫对象推销当地特色农产品,该农产品成本价为每千克18元,售价不低于成本,且不超过30元/千克,根据市场的销售情况,发现该农产品一天的销售量y (千克)与该天的售价x(元/千克)满足如表所示的一次函数关系.(1)请利用所学过的函数知识求该农产品一天的销售量y(千克)与该天的售价x(元/千克)之间的函数关系,并写出x的取值范围.(2)如果某天销售这种农产品获利4000元,那么这天该农产品的售价为多少元/千克?(3)这种农产品售价定为多少元/千克时,当天获利最大?最大利润为多少?9.某商店销售一种商品,经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的两组对应值如表:注:周销售利润=周销售量×(售价-进价)(1)直接完成下列填空①每件商品的进价为元/件①y与x的函数关系式为(不要求写出自变量的取值范围);(2)当每件商品售价为多少元时,周销售利润w最大?并求出此时的最大利润;(3)若该商品每件进价提高了4元,其每件售价不超过m元(50<m<70),该商店在销售中,周销售量与售价仍满足(1)中的函数关系,求出周销售的最大利润.10.某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?11.某商场销售一款工艺品,每件工艺品的进价为11元,经过一段时间的销售发现,每天的销量y(件)与每件工艺品的售价x(元)满足一次函数关系,当每件售价为15元时,每天销售150件;当每件售价为20元时,每天销售100件.(1)求y与x之间的函数关系式;(2)设商场销售该工艺品每天获得的利润为W(元),试求W与x的函数表达式;(3)既要保障商场每天的获利最大,还要尽快减少库存,问每件工艺品售价应定为多少?商场每天获得的最大利润是多少?12.某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x (元)( x≥30)满足一次函数关系m=162﹣3x.(提示:注意m的取值范围.)(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式(写出自变量x 的取值范围).(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.13.在平面直角坐标系中已知抛物线L1:y=ax2+bx﹣3经过点A(﹣1,0)和点B(3,0),点D为抛物线的顶点.(1)求抛物线L1的表达式及点D的坐标;(2)将抛物线L1关于点A对称后的抛物线记作L2,抛物线L2的顶点记作点E,求抛物线L2的表达式及点E 的坐标;(3)是否在x轴上存在一点P,在抛物线L2上存在一点Q,使D、E、P、Q为顶点的四边形是平行四边形?若存在,请求出Q点坐标,若不存在,请说明理由.14.丹东是我国的边境城市,拥有丰富的旅游资源.某景区研发一款纪念品,每件成本为30元,投放景区内进行销售,规定销售单价不低于成本且不高于54元,销售一段时间调研发现,每天的销售数量y (件)与销售单价x(元/件)满足一次函数关系,部分数据如下表所示:(1)直接写出y与x的函数关系式;(2)若每天销售所得利润为1200元,那么销售单价应定为多少元?(3)当销售单价为多少元时,每天获利最大?最大利润是多少元?15.“国庆节期间”某商场销售一款商品,每件的成本是50元.销售期间发现:销售单价是100元时,每天销售量是50件,而销售单价每降低1元,每天就可多售出5件.但要求销售单价不得低于成本.设当销售单价为x元时,每天销售利润为y元.(1)求y与x之间的函数表达式.(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果每天的销售利润不低于4000元,那么每天的总成本至少需要元.16.某超市采购了两批同样的冰墩墩挂件,第一批花了6600元,第二批花了8000元,第一批每个挂件的进价是第二批的1.1倍,且第二批比第一批多购进50个.(1)求第二批每个挂件的进价;(2)两批挂件售完后,该超市以第二批每个挂件的进价又采购一批同样的挂件,经市场调查发现,当售价为每个60元时,每周能卖出40个,若每降价1元,每周多卖10个,由于货源紧缺,每周最多能卖90个,求每个挂件售价定为多少元时,每周可获得最大利润,最大利润是多少?17.小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆,已知2盆盆景与1盆花卉的利润共300元,1盆盆景与3盆花卉的利润共200元.(1)求1盆盆景和1盆花卉的利润各为多少元?(2)调研发现:盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆;花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后利润分别为W1,W2(单位:元).①求W1,W2关于x的函数关系式;①当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少元?18.网络销售已经成为一种热门的销售方式,某公司在某网络平台上进行直播销售板栗.已知板栗的成本价格为6元/kg,每日销售量y(kg)与销售单价x(元/kg)满足一次函数关系,下表记录的是有关数据,经销售发现,销售单价不低于成本价且不高于30元/kg.设公司销售板栗的日获利为w(元).(1)请求出日销售量y与销售单价x之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利w最大?最大利润为多少元?(3)当销售单价在什么范围内时,日获利w不低于42000元?19.某件产品的成本是每件10元,试销售阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表所示.(1)观察以上数据,根据我们所学到的一次函数、二次函数,回答:y是x的什么函数?并求出解析式.(2)要使得每日的销售利润最大,每件产品的销售价应定为多少?此时每日的销售利润是多少?20.某商场销售一种进价为每件20元的日用商品,经调查发现,该商品每天的销售量y(件)与销售单价(元)满足y=﹣10x+400,设销售这种商品每天的利润为w(元).(1)求w与x之间的函数关系式;(2)在保证销售量尽可能大的前提下,该商场每天还想获得750元的利润,应将销售单价定为多少元?(3)当每天销售量不少于30件,且销售单价至少为35元时,该商场每天获得的最大利润是多少?答案1.(1)y =−x +35(1≤x ≤10,x 为整数);(2)在这10天中,第7天和第8天销售这种水果的利润最大,最大销售利润为378元. 2.(1)()4010x + (2)21060400y x x =-++ (3)24元/千克3.(1)该商品的进价为40元/件(2)当售价为60元/件或80元/件时,周销售利润为1600元 4.(1)5150y x =-+ (2)13(3)每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是2050元. 5.(1)一次函数,10900y x =-+(2)当售价定为60元时,利润最大,最大值为6000元 6.(1)x 取任意实数 (2)见解析(3)①图像关于y 轴对称;①此函数有最小值0;①当0x >时,y 随x 的增大而增大.(答案不唯一) (4)3x <-或2x >7.(1)221201600w x x =-+-(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元 (3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元 8.(1)()209601830y x x =-+≤≤ (2)这天该农产品的售价为28元/千克(3)当销售单价为30元时,当天获得的利润最大,最大利润是4320元 9.(1)①20;①y =-2x +200(2)每件售价为60元时,利润W 最大,为3200元(3)当50<m <62时,周销售最大利润为2(22484800)m m -+-元;当62≤m <70时,周销售最大利润为2888元10.(1)401016()y x x =-+≤≤(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元. 11.(1)10300y x =-+; (2)2104103300W x x =-+-;(3)每件工艺品售价应定为20元,商场每天获得的最大利润是900元 12.(1)32524860y x x -+-=(30≤x ≤54)(2)商场每天销售这种商品的销售利润不能达到500元13.(1)抛物线1L 的函数表达式为223y x x =--,顶点D 的坐标为()1,4- (2)抛物线2L 的函数表达式为265y x x =---,点E 的坐标为()3,4-(3)点Q 的坐标为()5,0-或()38---或()38-+- 14.(1)y =﹣2x +160 (2)销售单价应定为50元(3)当销售单价为54元时,每天获利最大,最大利润1248元 15.(1)2580027500y x x =-+- (2)80元,最大利润4500元 (3)500016.(1)第二批每个挂件的进价为40元(2)当每个挂件售价定为58元时,每周可获得最大利润,最大利润是1080元 17.(1)140元,20元(2)①W 1=﹣6x 2+40x +7000;W 2=﹣20x +1000 ①5,805018.(1)1005000y x =-+;(2)销售单价定为28元时,销售这种板栗日获利w 最大,最大利润为48400元; (3)当2030x ≤≤时,日获利w 不低于42000元 19.(1)y 是x 的一次函数,40y x =-+(2)产品的销售价应定为25元,此时每日的销售利润最大,为225元 20.(1)W =﹣10x 2+600x ﹣8000 (2)应将销售单价定为25元(3)该商场每天获得的最大利润是750元。

中考数学专题复习函数应用题有答案

中考数学专题复习函数应用题有答案

专题复习函数应用题类型之一与函数有关的最优化问题函数是一描述现实世界变量之间关系的重要数学模型;在人们的生产、生活中有着广泛的应用;利用函数的解析式、图象、性质求最大利润、最大面积的例子就是它在最优化问题中的应用.1.莆田市枇杷是莆田名果之一;某果园有100棵枇杷树..每棵平均产量为40千克;现准备多种一些枇杷树以提高产量;但是如果多种树;那么树与树之间的距离和每一棵数接受的阳光就会减少;根据实践经验;每多种一棵树;投产后果园中所有的枇杷树平均每棵就会减少产量千克;问:增种多少棵枇杷树;投产后可以使果园枇杷的总产量最多最多总产量是多少千克2.贵阳市某宾馆客房部有60个房间供游客居住;当每个房间的定价为每天200元时;房间可以住满.当每个房间每天的定价每增加10元时;就会有一个房间空闲.对有游客入住的房间;宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求:1房间每天的入住量y间关于x元的函数关系式.2该宾馆每天的房间收费z元关于x元的函数关系式.3该宾馆客房部每天的利润w元关于x元的函数关系式;当每个房间的定价为每天多少元时;w有最大值最大值是多少例3:某商场经营某种品牌的服装;进价为每件60元;根据市场调查发现;在一段时间内;销售单价是100元时;销售量是200件;而销售单价每降低1元;就可多售出10件1写出销售该品牌服装获得的利润y元与销售单价x元之间的函数关系式..2若服装厂规定该品牌服装销售单价不低于80元;且商场要完成不少于350件的销售任务;则商场销售该品牌服装获得最大利润是多少元32014江苏省常州市某小商场以每件20元的价格购进一种服装;先试销一周;试销期间每天的销量件与每件的销售价x元/件如下表所示:假定试销中每天的销售号件与销售价x元/件之间满足一次函数.1试求与x之间的函数关系式;2在商品不积压且不考虑其它因素的条件下;每件服装的销售定价为多少时;该小商场销售这种服装每天获得的毛利润最大每天的最大毛利润是多少注:每件服装销售的毛利润=每件服装的销售价-每件服装的进货价类型之二图表信息题本类问题是指通过图形、图象、表格及一定的文字说明来提供实际情境的一类应用题;解题时要通过观察、比较、分析;从中提取相关信息;建立数学模型;最终达到解决问题的目的..4.08江苏南京一列快车从甲地驶往乙地;一列慢车从乙地驶往甲地;两车同时出发;设慢车行驶的时间为(h)x;两车之间的距离y;图中的折线表示y与x之间的.......为(km)函数关系.根据图象进行以下探究:信息读取1甲、乙两地之间的距离为 km;2请解释图中点B的实际意义;图象理解3求慢车和快车的速度;4求线段BC所表示的y与x之间的函数关系式;并写出自变量x的取值范围;问题解决5若第二列快车也从甲地出发驶往乙地;速度与第一列快车相同.在第一列快车与慢车相遇30分钟后;第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时类型之三方案设计方案设计问题;是根据实际情境建立函数关系式;利用函数的有关知识选择最佳方案;判断方案是否合理;提出方案实施的见解等..5.某房地产开发公司计划建A、B两种户型的住房共80套;•该公司所筹资金不少于2090万元;但不超过2096万元;且所筹资金全部用于建房;•两种户型的建房成本和售价如下表:成本万元/套25 28售价万元/套30 341该公司对这两种户型住房有哪几种建房方案2该公司如何建房获得利润最大3根据市场调查;每套B型住房的售价不会改变;每套A•型住房的售价将会提高a万元a>0;且所建的两种住房可全部售出.该公司又将如何建房获得利润最大注:利润=售价-成本类型之四分段函数应用题..6.赣州市年春节前夕;南方地区遭遇罕见的低温雨雪冰冻天气;赣南脐橙受灾滞销.为了减少果农的损失;政府部门出台了相关补贴政策:采取每千克补贴元的办法补偿果农.下图是“绿荫”果园受灾期间政府补助前、后脐橙销售总收入y万元与销售量x吨的关系图.请结合图象回答以下问题:1在出台该项优惠政策前;脐橙的售价为每千克多少元2出台该项优惠政策后;“绿荫”果园将剩余脐橙按原售价打九折赶紧全部销完;加上政府补贴共收入万元;求果园共销售了多少吨脐橙3①求出台该项优惠政策后y 与x 的函数关系式;②去年“绿荫”果园销售30吨;总收入为万元;若按今年的销售方式;则至少要销售多少吨脐橙总收入能达到去年水平.7.2009成都某大学毕业生响应国家“自主创业”的号召;投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售;购进价格为20元/件.销售结束后;得知日销售量P 件与销售时间x 天之间有如下关系:P=-2x+801≤x≤30;且x 为整数;又知前20天的销售价格1Q 元/件与销售时间x 天之间有如下关系:11Q 302x =+ 1≤x≤20;且x 为整数;后10天的销售价格2Q 元/件与销售时间x 天之间有如下关系:2Q =4521≤x≤30;且x 为整数.1试写出该商店前20天的日销售利润1R 元和后l0天的日销售利润2R 元分别与销售时间x 天之间的函数关系式;2请问在这30天的试销售中;哪一天的日销售利润最大并求出这个最大利润.注:销售利润=销售收入一购进成本.8.通过实验研究;专家们发现:一个会场听众听讲的注意力指标数是随着演讲者演讲时间的变化而变化的;演讲开始时;听众的兴趣激增;中间有一段时间;听众的兴趣保持平稳的状态;随后开始分散..听众注意力指标数y 随时间x 分钟变化的函数图像如下图所示y 越大表示听众注意力越集中..当0≤x≤10时;图像是抛物线的一部分;当10≤x≤20和20≤x≤40时;图像是线段..1当0≤x≤10时;求注意力指标数y 与时间x 的函数关系式;2王标同学竞选学生会干部需要演讲24分钟;问他能否经过适当安排;使听众在听他的演讲时;注意力的指标数都不低于36若能;请写出他安排的时间段;若不能;也请说明理由..9.2008仙桃华宇公司获得授权生产某种奥运纪念品;经市场调查分析;该纪念品的销售量1y 万件与纪念品的价格x 元/件之间的函数图象如图所示;该公司纪念品的生产数量2y 万件与纪念品的价格x 元/件近似满足函数关系式85232+-=x y .; 若每件纪念品的价格不小于20元;且不大于40元.请解答下列问题:1求1y 与x 的函数关系式;并写出x 的取值范围;2当价格x 为何值时;使得纪念品产销平衡生产量与销售量相等;3当生产量低于销售量时;政府常通过向公司补贴纪念品的价格差来提高生产量;促成新的产销平衡.若要使新的产销平衡时销售量达到46万件;政府应对该纪念品每件补贴多少元10.图象如图中折线所示;该加油站截止到13;截止至15请你根据图象及加油站五月份该油品的所有销售记录提供的信息;解答下列问题: 元/件1求销售量x 为多少时;销售利润为4万元;2分别求出线段AB 与BC 所对应的函数关系式;3我们把销售每升油所获得的利润称为利润率;那么;在O A 、AB 、BC 三段所表示的销售信息中;哪一段的利润率最大直接写出答案11.扬州2006年中考题我市某企业生产的一批产品上市后40天内全部售完;该企业对这一批产品上市后每天的销售情况进行了跟踪调查.表一、表二分别是国内、国外市场的日销售量y1、y2万件与时间tt 为整数;单位:天的部分对应值.表一:国内市场的日销售情况表二:国外市场的日销售情况1日:有库存6万升;成本价4元/升;售价51请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与t 的变化规律;写出y1与t 的函数关系式及自变量t 的取值范围;2分别探求该产品在国外市场上市30天前与30天后含30天的日销售量y2与时间t 所符合的函数关系式;并写出相应自变量t 的取值范围;3设国内、外市场的日销售总量为y 万件;写出y 与时间t 的函数关系式.试用所得函数关系式判断上市后第几天国内、外市场的日销售总量y 最大;并求出此时的最大值.12.2007东营某公司专销产品A;第一批产品A 上市40天内全部售完..该公司对第一批产品A 上市后的市场销售情况进行了跟踪调查;调查结果如图所示;其中图1中的折线表示的是市场日销售量与上市时间的关系;图2中的折线表示的是每件产品A 的销售利润与上市时间的关系..1试写出第一批产品A 的市场日销售量y 与上市时间t 的关系式;2第一批产品A 上市后;哪一天这家公司市场日销售利润最大最大利润是多少万元13.随着人民生活水平的不断提高;我市家庭轿车的拥有量逐年增加;据统计;某小区2006年底拥有家庭轿车64辆;2008年底家庭轿车的拥有量达到100辆..1若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同;求该小区到2009年底家庭轿车将达到多少辆2为了缓解停车矛盾;该小区决定投资15万元再建造若干停车位;据测算;建造费用分别为室内车位5000元/个;露天车位1000元/个;考虑到实际因素;计划露天车位的数量不少于室内车位的2倍;但不超过室内车位的倍;求该小区最多可建两种车位各多少个试写出所有可能的方案..14.2012攀枝花.煤炭是攀枝花的主要矿产资源之一;煤炭生产企业需要对煤炭运往用煤单位所产生的费用进行核算并纳入企业生产计划..某煤矿现有1000吨煤炭要全部运往A;B两厂;通过了解获得A;B两厂的有关信息如下表表中运费栏“元/kmt⋅”表示:每吨煤炭运送一千米所需的费用:1写出总运费y元与运往B厂的煤炭量x t之间的函数关系式;并写出自变量x的取值范围;2请你运用函数有关知识;为该煤矿设计总运费最少的运送方案;并求出最少的总运费..可用含a的代数式表示几何的定值与最值几何中的定值问题;是指变动的图形中某些几何元素的几何量保持不变;或几何元素间的某些几何性质或位置关系不变的一类问题;解几何定值问题的基本方法是:分清问题的定量及变量;运用特殊位置、极端位置;直接计算等方法;先探求出定值;再给出证明.几何中的最值问题是指在一定的条件下;求平面几何图形中某个确定的量如线段长度、角度大小、图形面积等的最大值或最小值;求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理公理法;3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考竞赛中;由冷点变为热点.这是由于这类问题具有很强的探索性目标不明确;解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法.15.如图;已知AB=10;P是线段AB上任意一点;在AB的同侧分别以AP和PB为边作等边△APC和等边△BPD;则CD长度的最小值为.16.某房地产公司拥有一块“缺角矩形”荒地ABCDE;边长和方向如图;欲在这块地上建一座地基为长方形东西走向的公寓;请划出这块地基;并求地基的最大面积精确到1m 2.17.某住宅小区;为美化环境;提高居民生活质量;要建一个八边形居民广场平面图如图所示.其中;正方形MNPQ 与四个相同矩形图中阴影部分的面积的和为800平方米. 1设矩形的边AB=x 米;AM=y 米;用含x 的代数式表示y 为 .2现计划在正方形区域上建雕塑和花坛;平均每平方米造价为2100元;在四个相同的矩形区域上铺设花岗岩地坪;平均每平方米造价为105元;在四个三角形区域上铺设草坪;平均每平方米造价为40元.①设该工程的总造价为S 元;求S 关于工的函数关系式.②若该工程的银行贷款为235000元;仅靠银行贷款能否完成该工程的建设任务若能;请列出设计方案;若不能;请说明理由.③若该工程在银行贷款的基础上;又增加资金73000元;问能否完成该工程的建设任务若能;请列出所有可能的设计方案;若不能;请说明理由.镇江市中考题18.如图;抛物线2212-+=bx x y 与x 轴交于A 、B 两点;与Y 轴交于C 点; 且A -1;0..求抛物线的解析式及顶点D的坐标判断△ABC的形状;证明你的结论..点Mm;0是x 轴上的一个动点;当MC+MD的值最小时;求m 的值答案部分1.解析先建立函数关系式;把它转化为二次函数的一般形式;然后根据二次函数的顶点坐标公式进行求极值.答案解:设增种x 棵树;果园的总产量为y 千克;依题意得:y=100 + x40 – =4000 – 25x + 40 x – 0;25x 2 = - x 2 + 15x + 4000 =-x-30 2 +4225因为a= - <0;所以当1530220.25b x a =-=-=-⨯; y 有最大值2244(0.25)400015422544(0.25)ac b y a -⨯-⨯-===⨯-最大值答:增种30棵枇杷树;投产后可以使果园枇杷的总产量最多;最多总产量是4225千克.2.解析解决在产品的营销过程中如何获得最大利润的“每每型”试题成为近年中考的热点问题..每每型”试题的特点就是每下降;就每减少;或每增长;就每减少..解决这类问题的关键就是找到房价增加后;该宾馆每天的入住量..“每每型”试题都可以转化为二次函数最值问题;利用二次函数的图像和性质加以解决.答案16010x y =- 221(200)6040120001010x z x x x ⎛⎫=+-=-++ ⎪⎝⎭ 3(200)6020601010x x w x ⎛⎫⎛⎫=+--- ⎪ ⎪⎝⎭⎝⎭ 当x=210时;w 有最大值.此时;x+200=410;就是说;当每个房间的定价为每天410元时;w 有最大值;且最大值是15210元.3. 解:1900;4. 2图中点B 的实际意义是:当慢车行驶4h 时;慢车和快车相遇.3由图象可知;慢车12h 行驶的路程为900km; 所以慢车的速度为90075(km /h)12=;当慢车行驶4h 时;慢车和快车相遇;两车行驶的路程之和为900km;所以慢车和快车行驶的速度之和为900225(km /h)4=;所以快车的速度为150km/h . 4根据题意;快车行驶900km 到达乙地;所以快车行驶9006(h)150=到达乙地;此时两车之间的距离为675450(km)⨯=;所以点C 的坐标为(6450),.设线段BC 所表示的y 与x 之间的函数关系式为y kx b =+;把(40),;(6450),代入得 044506.k b k b =+⎧⎨=+⎩,解得225900.k b =⎧⎨=-⎩, 所以;线段BC 所表示的y 与x 之间的函数关系式为225900y x =-.自变量x 的取值范围是46x ≤≤.5慢车与第一列快车相遇30分钟后与第二列快车相遇;此时;慢车的行驶时间是. 把 4.5x =代入225900y x =-;得112.5y =.此时;慢车与第一列快车之间的距离等于两列快车之间的距离是;所以两列快车出发的间隔时间是112.51500.75(h)÷=;即第二列快车比第一列快车晚出发.4.解:1设A 种户型住房建x 套;则2090≤25x+2880-x ≤2096;48≤x ≤50;x 取整数48;49;50;有三种建房方案 2公司获利润W=5x+680-x=480-x;当x=48时;W 最大=432万元3W=5+ax+•680-x=480+a -1x;当0<a<1时;x=48;W 最大;当a=1时;三种建房方案获利相同;当a>1时;x=50;W 最大5.解析从函数图象容易看出前面一段是出台该项优惠政策前的情况;后面一段是出台该项优惠政策后的情况;前面一段所有的量已经知道;容易求出该果园共销售脐橙的重量;为后面一段的求值奠定了基础.答案解:1政策出台前的脐橙售价为43310 3 1010⨯=⨯元元/千克千克;2设剩余脐橙为x 吨;则103×3×9+x=×104∴43(11.73)1010(30.90.2)x -⨯=⨯⨯⨯+=310吨; 该果园共销售了10 +30 = 40吨脐橙 ;3①设这个一次函数的解析式为 (1040)y mx n x =+≤≤;代入两点10;3、40;得: 310, 11.740;m n m n =+⎧⎨=+⎩=0.29,=0.1;m n ⎧⎨⎩解得 函数关系式为0.290.1 (1040)y x x =+≤≤;②令 10.25(10.250.290.1 y x ≥≤+万元),则,35 (x ≥解得吨)答:1原售价是3元/千克;2果园共销售40吨脐橙;3①函数关系式为0.290.1 (1040)y x x =+≤≤;②今年至少要销售35吨;总收入才达到去年水平. 6.7. 解:1由抛物线y=a 2+bx+c 过0;20、5;39、10;48三点; 解得:a=;b=;c=20.即y=++200≤x≤102令①式中的y=36;即++20=36;解得:x 1=4;x 2=20舍去在第20-40分钟范围内;一次函数y=kx+b 经过点20;48、40;20;即 ;解得即函数解析式为y=+76 当y=36时;∵-4=>24∴王标的演讲从第4分钟开始能有24分钟时间使学生的注意力指标效一直不低于36..8解:1设y 与x 的函数解析式为:b kx y +=;将点)60,20(A 、)28,36(B 代入b kx y +=得:⎩⎨⎧+=+=b k b k 36282060 解得:⎩⎨⎧=-=1002b k ∴1y 与x 的函数关系式为:⎩⎨⎧≤<=≤≤+-=)4028(28)2820(100211x y x x y2当2820≤≤x 时;有⎪⎩⎪⎨⎧+-=+-=10028523x y x y 解得:⎩⎨⎧==4030y x 当4028≤≤x 时;有⎪⎩⎪⎨⎧=+-=288523y x y 解得:⎩⎨⎧==2838y x∴当价格为30元或38元;可使公司产销平衡.3当461=y 时;则8523461+-=x ;∴261=x 当462=y 时;则1002462+-=x ;∴272=x∴112=-x x∴政府对每件纪念品应补贴1元9解:解法一:1根据题意;当销售利润为4万元;销售量为4(54)4÷-=万升. 答:销售量x 为4万升时销售利润为4万元. ·········· 3分 2点A 的坐标为(44),;从13日到15日利润为5.54 1.5-=万元;所以销售量为1.5(5.54)1÷-=万升;所以点B 的坐标为(55.5),. 设线段AB 所对应的函数关系式为y kx b =+;则445.55.k b k b =+⎧⎨=+⎩,解得 1.52.k b =⎧⎨=-⎩,∴线段AB 所对应的函数关系式为 1.52(45)y x x =-≤≤. ····· 6分 从15日到31日销售5万升;利润为1 1.54(5.5 4.5) 5.5⨯+⨯-=万元. ∴本月销售该油品的利润为5.5 5.511+=万元;所以点C 的坐标为(1011),. 设线段BC 所对应的函数关系式为y mx n =+;则 5.551110.m n m n =+⎧⎨=+⎩,解得 1.10.m n =⎧⎨=⎩,所以线段BC 所对应的函数关系式为 1.1(510)y x x =≤≤. ····· 9分 3线段AB . ······················· 12分 解法二:1根据题意;线段OA 所对应的函数关系式为(54)y x =-;即(04)y x x =≤≤. 当4y =时;4x =.答:销售量为4万升时;销售利润为4万元. ·········· 3分 2根据题意;线段AB 对应的函数关系式为14(5.54)(4)y x =⨯+-⨯-; 即 1.52(45)y x x =-≤≤. ··················· 6分 把 5.5y =代入 1.52y x =-;得5x =;所以点B 的坐标为(55.5),.截止到15日进油时的库存量为651-=万升.当销售量大于5万升时;即线段BC 所对应的销售关系中; 每升油的成本价144 4.5 4.45⨯+⨯==元. 所以;线段BC 所对应的函数关系为y =(1.552)(5.5 4.4)(5) 1.1(510)x x x ⨯-+--=≤≤.········· 9分 3线段AB . ······················· 12分 10解:1通过描点;画图或分析表一中数据可知y 1是t 的二次函数..设y 1=at-202+60;把t 1=0;y 1=0.代入得a=;故y 1=t 2+6t0≤t ≤40且t 为整数.. 经验证;表一中的所有数据都符合此解析式..2通过描点;画图或分析表二中数据可知当0≤t ≤30时y 2是t 的正比例函数;当30≤t ≤40时y 2是t 的一次函数..可求得;经验证;表二中的所有数据都符合此解析式..3由y=y1+y2得;经比较可知第27天时y 有最大值为万件..11.解:1 由图10可得;当0≤t ≤30时;设市场的日销售量y =k t .∵ 点30;60在图象上;∴ 60=30k .∴ k =2.即 y =2 t .当30≤t ≤40时;设市场的日销售量y =k 1t +b .因为点30;60和40;0在图象上;所以 ⎩⎨⎧+=+=b k b k 114003060解得k1=-6;b=240.∴y=-6t+240.综上可知;当0≤t≤30时;市场的日销售量y=2t;当30≤t≤40时;市场的日销售量y=-6t+240.2当0≤t≤20时;每件产品的日销售利润为z=3t;当20≤t≤40时;每件产品的日销售利润为z=60.设日销售利润为W万元;由题意当0≤t≤20时;W=3t×2t=6 t2;∴当t=20时;产品的日销售利润W最大等于2400万元.当20≤t≤30时;W=60×2t =120t.∴当t=30时;产品的日销售利润y最大等于3600万元;当30≤t≤40时;产品的日销售利润y=60×-6t+240;∴当t=30时;产品的日销售利润y最大等于3600万元.综上可知;当t=30天时;这家公司市场的日销售利润最大为3600万元.151设AB的解析式为y=kx+b;∵四边形OCDE是矩形;∴OA=OE-AE=80-60=20m;OB=OC-BC=100-70=30m;∴A0;20;B30;0∴解得∴AB的解析式为2如图;以直线BC;AE分别为x轴;y轴建立直角坐标系;BC;AE为正方向;长度单位为米;直线AB的方程为.首先考虑与D不相邻的顶点F在AB上的情况;则Fx;;0≤x≤30;;;时;≈17时S≈6017m2;再考虑F在AE或BC上的情况;此时最大矩形的面积是6000m2和5600m2; 故选定F5;17点;最大面积是6017m2.。

新人教版九年级数学中考专项复习——函数与实际问题应用题(附答案)

新人教版九年级数学中考专项复习——函数与实际问题应用题(附答案)

中考专项复习——函数与实际问题1.已知小明的家、体育场、文化宫在同一直线上. 下面的图象反映的过程是:小明早上从家跑步去体育场,在那里锻炼了一阵后又走到文化宫去看书画展览,然后散步回家.图中x 表示时间(单位是分钟)y 表示到小明家的距离(单位是千米).请根据相关信息,解答下列问题: (Ⅰ)填表:小明离开家的时间/min 5 10 15 30 45 小明离家的距离/km131(Ⅱ)填空:(i )小明在文化宫停留了_____________min(ii )小明从家到体育场的速度为_______________km /min (iii )小明从文化宫回家的平均速度为_______________km /min(iv )当小明距家的距离为0.6km 时,他离开家的时间为_________________min (Ⅲ)当0≤x ≤45时,请直接写出y 关于x 的函数解析式.2.共享电动车是一种新理念下的交通工具:主要面向3~10km 的出行市场,现有A B 两种品牌的共享电动车,给出的图象反映了收费y 元与骑行时间x min 之间的对应关系,其中A 品牌收费方式对应1y ,B 品牌的收费方式对应2y . 请根据相关信息,解答下列问题:(Ⅰ)填表:骑行时间/min 10 20 25 A 品牌收费/元 8 B 品牌收费/元8(Ⅱ)填空:①B 品牌10分钟后,每分钟收费 元;②如果小明每天早上需要骑行A 品牌或B 品牌的共享电动车去工厂上班,已知两种品牌共享电动车的平均行驶速度均为300m /min ,小明家到工厂的距离为9km ,那么小明选择 品牌共享电动车更省钱;③直接写出两种品牌共享电动车收费相差3元时x 的值是 . (Ⅲ)直接写出1y ,2y 关于x 的函数解析式.y /元O 10 20 x /min8 63. 小明的父亲在批发市场按每千克1.5元批发了若干千克的西瓜进城出售,为了方便他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x 与他手中持有的钱数y 元(含备用零钱)的关系如图所示,请根据相关信息,解答下列问题:(Ⅰ)填表:售出西瓜x /kg 0 10 20 30 40 80手中持有的钱数y /元 50______120155190 ______(Ⅱ)填空:①降价前他每千克西瓜出售的价格是________元②随后他按每千克下降1元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450 元, 他一共批发了_________千克的西瓜 (Ⅲ)当0≤x ≤80 时求y 与x 的函数关系式.4. 工厂某车间需加工一批零件,甲组工人加工中因故停产检修机器一次,然后以原来的工作效率继续加工,由于时间紧任务重,乙组工人也加入共同加工零件.设甲组加工时间为t (时),甲组加工零件的数量为 y 甲(个),乙组加工零件的数量为y 乙(个),其函数图象如图所示.(I )根据图象信息填表:(Ⅱ)填空:①甲组工人每小时加工零件 个 ②乙组工人每小时加工零件 个③甲组加工 小时的时候,甲、乙两组加工零件的总数为480个 (Ⅲ)分别求出 y 甲、y 乙与t 之间的函数关系式.加工时间t (时) 3 4 8 甲组加工零件的数量(个)a =5. 4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.在甲书店所有书籍按标价总额的8折出售.在乙书店一次购书的标价总额不超过100元的按标价总额计费,超过100元后的部分打6折.设在同一家书店一次购书的标价总额为x (单位:元,0x ). (Ⅰ)根据题意,填写下表:一次购书的标价总额/元 50150300… 在甲书店应支付金额/元 120 … 在乙书店应支付金额/元130…(Ⅱ)设在甲书店应支付金额1y 元,在乙书店应支付金额2y 元,分别写出1y 、2y 关于x 的函数关系式; (Ⅲ)根据题意填空:① 若在甲书店和在乙书店一次购书的标价总额相同,且应支付的金额相同,则在同一个书店一次购书的标价总额 元;② 若在同一个书店一次购书应支付金额为280元,则在甲、乙两个书店中的 书店购书的标价总额多; ③ 若在同一个书店一次购书的标价总额120元,则在甲、乙两个书店中的 书店购书应支付的金额少.6. 在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境. 已知小明家、体育场、文具店依次在同一条直线上. 体育场离家3km ,文具店离家1.5km .周末小明从家出发,匀速跑步15min 到体育场;在体育场锻炼15min 后,匀速走了15min 到文具店;在文具店停留20min 买笔后,匀速走了30min 返回家.给出的图象反映了这个过程中小明离开家的距离km y 与离开家的时间min x 之间的对应关系.请根据相关信息,解答下列问题: (I )填表:离开家的时间/min6 12 20 50 70离开家的距离/ km 1.23(II )填空:① 体育场到文具店的距离为______km ② 小明从家到体育场的速度为______km /min ③ 小明从文具店返回家的速度为______km /min④ 当小明离家的距离为0.6km 时,他离开家的时间为______min (III )当045x ≤≤时,请直接写出y 关于x 的函数解析式.7. 一个有进水管与出水管的容器,从某时刻开始4分钟内只进水不出水,在随后的8分钟内既进水又出水,12分钟后关闭进水管,放空容器中的水,每分钟的进水量和出水量是两个常数.容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示.请根据相关信息,解答下列问题: (Ⅰ)填表:(Ⅱ)填空:①每分钟进水______升,每分钟出水______升 ②容器中储水量不低于15升的时长是_________分钟 (Ⅲ)当0≤x ≤12时,请直接写出y 关于x 的函数解析式.8. 明明的家与书店、学校依次在同一直线上,明明骑自行车从家出发去学校上学,当他骑了一段路时,想起要买某本书,于是又返回到刚经过的书店,买到书后继续去学校.下面图象反映了明明本次上学离家距离y (单位:m )与所用时间x (单位:min )之间的对应关系.请根据相关信息,解决下列问题: (Ⅰ)填表:(Ⅱ)填空:①明明家与书店的距离是 m ②明明在书店停留的时间是 min③明明与家距离900m 时,明明离开家的时间是 min (Ⅲ)当6≤t 14≤时,请直接写出y 与x 的函数关系式.时间/min23412容器内水量/L1020离开家的时间/min25811离家的距离/m4006009. 甲,乙两车从A 城出发前往B 城.在整个行程中,甲乙两车都以匀速行驶,汽车离开A 城的距离ykm 与时刻t 的对应关系如下图所示.请根据相关信息,解答下列问题:(I )填表:(II )填空:①A ,B 两城的距离为 km②甲车的速度为 km/h 乙车的速度为 km/h ③乙车追上甲车用了 h 此时两车离开A 城的距离是 km ④当9:00时,甲乙两车相距 km① 当甲车离开A 城120km 时甲车行驶了 h ② 当乙车出发行驶 h 时甲乙两车相距20km10.大部分国家都使用摄氏温度,但美国、英国等国家的天气预报仍然使用华氏温度.两种计量之间有如下对应:(Ⅰ)如果两种计量之间的关系是一次函数,设摄氏温度为x ( °C )时对应的华氏温度为y ( °F ),请你写出华氏温度关于摄氏温度的函数表达式;(Ⅱ)求当华氏温度为0°F 时,摄氏温度是多少°C ?(Ⅲ)华氏温度的值与对应的摄氏温度的值有可能相等吗?若可能求出此值;若不可能请说明理由 .从A 城出发的时刻 到达B 城的时刻甲 5:00 乙9:00摄氏温度/°C 0 10 20 30 40 华氏温度/°F3250688610411.甲、乙两车从A城出发前往B城.在整个行程中,甲车离开A城的距离1kmy与甲车离开A城的时间 hx的对应关系如图所示.乙车比甲车晚出发1h2,以60 km/h的速度匀速行驶.(Ⅰ)填空:①A,B两城相距km②当02x≤≤时,甲车的速度为km/h③乙车比甲车晚h到达B城④甲车出发4h时,距离A城km⑤甲、乙两车在行程中相遇时,甲车离开A城的时间为h(Ⅱ)当2053x≤≤时,请直接写出1y关于x的函数解析式.(Ⅲ)当1352x≤≤时,两车所在位置的距离最多相差多少km?y1/ km532312.已知聪聪家、体育场、文具店在同一直线上,下面的图象反映的过程是:聪聪从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示过程中聪聪离开家的时间,y 表示聪聪离家的距离.请根据相关信息,解答下列问题: (Ⅰ)填表:(Ⅱ)填空:③ 聪聪家到体育场的距离为______km④ 聪聪从体育场到文具店的速度为______km/min ⑤ 聪聪从文具店散步回家的速度为______ km/min⑥ 当聪聪离家的距离为2 km 时,他离开家的时间为______min (Ⅲ)当10045≤≤x 时,请直接写出y 关于x 的函数解析式.13.同一种品牌的空调在甲、乙两个电器店的标价均是每台3000元.现甲、乙两个电器店优惠促销,甲电器店的优惠方案:如果一次购买台数不超过5台时,价格为每台3000元,如果一次购买台数超过5台时,超过部分按六折销售;乙电器店的优惠方案:全部按八折销售.设某校在同一家电器店一次购买空调的数量为x (x 为正整数). (Ⅰ)根据题意,填写下表:(Ⅱ)设在甲电器店购买收费y 1元,在乙电器店购买收费y 2元,分别写出y 1、y 2关于x 的函数关系式; (Ⅲ)当x > 6时,该校在哪家电器店购买更合算?并说明理由.参考答案1. 解:(Ⅰ)231 0.5(Ⅱ)填空: (i ) 25 (ii )115(iii )160 (iv )9或42(ii ) (Ⅲ)y =⎩⎪⎨⎪⎧115x (0≤x ≤15),1(15<x ≤30), 130-x +2(30<x ≤ 45).2.解:(Ⅰ)(Ⅱ)①0.2 ②B ③152或35 (Ⅲ)10.4 (0)y x x =≥ 26 0100.24 10x y x x ⎧=⎨+⎩,≤≤.,,>3. 解:(Ⅰ)85 330(Ⅱ)3.5 128(Ⅲ)设y 与x 的函数关系式是)0(≠+=k b kx y∵图象过),(500和)(330,80 ∴⎩⎨⎧+==b k b8033050解得⎩⎨⎧==505.3b k∴y 与x 的函数关系式为505.3+=x y )800(≤≤x4. (Ⅰ)(II ) ① 40 ② 120 ③ 7 (III ) (1)当03t 时 t y 40=甲 当43≤t <时120=甲y 当84≤t <时 140b t y +=甲∵图象经过(4 120)则1440120b +⨯= 解得:401-=b∴ 当84≤t <时 4040-=t y 甲∴⎪⎩⎪⎨⎧≤-≤≤≤=)84(404043(120)3040t t t t t y <)<(甲(2)设2b kt y +=乙 把(5,0) (8,360)分别代入得⎩⎨⎧+=+=22836050b k b k解得⎩⎨⎧-==6001202b k ∴y 乙与时间t 之间的函数关系式为:)乙85(600120≤≤-=t t y5. 解:(Ⅰ)40 240 50 220 (Ⅱ)10.8y x =(0x >) 当0100x <≤时 2y x =当100x >时 21000.6100y x =+⨯-() 即20.640y x =+ (Ⅲ)① 200 ② 乙 ③ 甲6. 解:(Ⅰ)2.4 1.5 1.25(Ⅱ)①1.5 ②0.2 ③0.05 ④3或83(Ⅲ)当015≤≤x 时 0.2=y x 当1530<≤x 时 3=y当3045<≤x 时 0.16=-+y x 7. (Ⅰ)填表:(Ⅱ)①5 3.75 ②13 (Ⅲ)当04x ≤<时5y x = 当412x <≤时5154y x =+8. 解:(Ⅰ)1000 600 (Ⅱ)①600 ②4 ③4.5或7或338(Ⅲ)300300068600812450480014x x y x x x -+≤≤⎧⎪=≤⎨⎪-≤⎩()(<)(12<)9. 解:(I )甲 10:00 乙 6:00(II )①300 ②60 100 ③1.5 150④60 ⑤2 ⑥ 1或210. 解:(Ⅰ)过程略 ∴华氏温度关于摄氏温度的函数表达式为1832y .x(Ⅱ)令0=y 则0328.1=+x 解得9160-=x ∴当华氏温度为0 °F 时摄氏温度是1609°C (Ⅲ)令x y =则x x =+328.1解得40-=x答:当华氏温度为- 40 °F 时,摄氏温度为-40°C 时,华氏温度的值与对应的摄氏温度的值相等.时间/min 2 3 4 12 容器内水量/L1015203011. 解:(Ⅰ)①360 ②60 ③56④6803 ⑤52或196 (Ⅱ)当0≤x ≤2时 160y x = 当2223x <≤时 1120y = 当222533x <≤时 1280803y x =- (Ⅲ)当1352x ≤≤时 由题意,可知甲车在乙车前面,设两车所在位置的距离相差y km 则2801908060302033y x x x =---=-()() ∵ 200>∴ y 随x 的增大而增大∴ 当5x =时y 取得最大值1103答:两车所在位置的距离最多相差1103 km 12.解:(Ⅰ) 1.5(Ⅱ)①2.5 ② ③ ④12或 (Ⅲ)当时 当时 13. 解:(Ⅰ)16800 33000 14400 36000 (Ⅱ)当0<≤5时 当>5时, 即; =⎩⎪⎨⎪⎧3000x (0<x ≤5且x 为正整数),1800x +6000(x >5且x 为正整数). (x >0且x 为正整数) (Ⅲ)设与的总费用的差为元.则 即. 当时 即 解得. ∴当时 选择甲乙两家电器店购买均可 531153702756545≤≤x 5.1=y 10065≤<x 730703+-=x y x 13000y x x 1300053000605y x%()118006000y x 1y 23000802400y x x %1y 2y y 180060002400y x x 6006000y x 0y 60060000x 10x10x∵<0 ∴随的增大而减小 ∴当6<x <10时1y >2y 在乙家电器店购买更合算 当x >10时<在甲家电器店购买更合算 600y x 1y 2y。

2021年重庆中考数学第22题新函数图像题专题训练

2021年重庆中考数学第22题新函数图像题专题训练

2021重庆中考数学第22题新函数图像题专题训练1.探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程,以下是我们研究函数y=|2xx−2|的性质及其应用的部分过程,请按要求完成下列各小题:(1)请直接写出表中m,n的值,并在图中补全该函数图象;x…−5−4−3−2−1013234567…y=|2xx−2|…1074365m230266n1033145…(2)结合函数图象,直接写出该函数的一条性质;(3)已知函数y=45x+185的图象如图所示,结合你所画的函数图象,直接写出不等式45x+18 5≥|2xx−2|的解集(保留1位小数,误差不超过0.2).2.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=−6x−6x2−2x+2性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象:x…−5−4−3−2−1012345…y=−6x−6x2−2x+2…363715132417______12530−3______ −952417…(2)观察函数图象,写出该函数的一条性质:______ ;(3)已知函数y=−75x+1的图象如图所示,结合你所画的函数图象,直接写出不等式−6x−6x2−2x+2≥−75x+1的解集(保留1位小数,误差不超过0.2).x3−2x的图象与性质进行探究.3.根据我们学习函数的过程和方法,对函数y=14(1)如表是y与x的几组对应值:则m的值为______ ,n的值为______ .(2)描点、连线,在所给的平面直角坐标系中画出该函数的图象,写出该函数的一条性质:______ .x3−2x≥x,结合图象,直接写出x的取值范围______ .(3)若144.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=|5xx2+4|性质及其应用的部分过程,请按要求完成下列各小题.(1)补全表:(2)在平面直角坐标系中,补全函数图象,根据函数图象,写出这个函数的一条性质:______ ;(3)已知函数y=52x−1的图象如图所示,结合你所画的函数图象,直接写出关于x的方程|5xx2+4|=52x−1的近似解(保留1位小数,误差不超过0.2).5.探究函数性质时,我们经历了列表,描点,连线画出函数图象,观察分析图象特征,概括函数性质的过程,结合已有的学习经验,请结合表中的数据,画图并探究该函数y=−ax2+2的性质.x…−4−3−2−101234…y…−23−1211−2−4−6−4−2−b−23…(1)根据表中数据可得:a=______ ,b=______ .(2)描点、连线,在所给的平面直角坐标系中画出该函数的图象;(3)观察该函数图象,写出该函数图象的一条性质:______ ;(4)已知函数y=−23x−103的图象如图所示,结合你所画的函数图象,直接写出不等式−ax2+2≤−23x−103的解集______ .6.某“数学兴趣小组”根据学习函数的经验,对函数y=−4x+6(x−2)2的图象和性质进行了探究,探究过程如下,请补充完整:x…−3−2−10323456…y (18)2574109m0−6−52n−98…(1)m=______ ,n=______ ;(2)同学们先找到y与x的几组对应值,然后在下图的平面直角坐标系xOy中,描出各对应值为坐标的点.请你根据描出的点,画出该函数的图象;(3)根据函数图象,写出该函数的一条性质:______ .(4)结合你所画的函数图象,直接写出不等式−x+2≤−4x+6的解集为______ .(x−2)27.在函数的学习中,我们经历“确定函数表达式--画函数图象--利用函数图象研究函数性质--利用图象解决问题”的学习过程,画函数图象时,我们常通过描点或平移或翻折的方法画函数图象,请根据你学到的函数知识探究函数y 1={2−|x|(x <2)x−2x−1(x ≥2)的图象与性质并利用图象解决如下问题: 列出y 1与x 的几组对应的值如表: x…−3−2−1 01234 5 …y … m 0 1 2 1 0 n 2334…(1)根据表格中x 、y 的对应关系可得m = ______ ,n = ______ ;(2)用你喜欢的方式画出该函数图象:根据函数图象,写出该函数的一条性质:______ ; (3)直接写出当函数y 1的图象与直线y 2=kx +1有三个交点时,k 的取值范围是______ .8.小明结合自己的学习经验,对新函数y=bkx2+1的解析式、图象、性质及应用进行探究:已知当x=0时,y=2;当x=1时,y=1.(1)函数解析式探究:根据给定的条件,可以确定由该函数的解析式为:______ .(2)函数图象探究:①根据解析式,补全如表,则m=______ ,n=______ .②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象.x…−4−3−2−1−121212n4…y (2)171525m8528512515217…(3)函数性质探究:请你结合函数的解析式及所画图象,写出该函数的一条性质:______ .(4)综合应用:已知函数y=|715x−815|的图象如图所示,结合你所画的函数图象,直接写出不等式|7 15x−815|≤bkx2+1.9.根据我们学习函数的过程与方法,对函数y=x2+bx+2−c|x−1|的图象和性质进行探究,已知该函数图象经过(−1,−2)与(2,1)两点,(1)该函数的解析式为______ ,补全下表:(2)描点、连线,在所给的平面直角坐标系中画出该函数的图象,写出这个函数的一条性质:______ .(3)结合你所画的图象与函数y=x的图象,直接写出x2+bx+2−c|x−1|≤x的解集______ .x|ax+b|(a>0)的图象与性质进行探10.小帆根据学习函数的过程与方法,对函数y=14究.已知该函数图象经过点(2,1),且与x轴的一个交点为(4,0).(1)求函数的解析式;(2)在给定的平面直角坐标系中:①补全该函数的图象;②当2≤x≤4时,y随x的增大而______(在横线上填增大或减小);x|ax+b|的最大值是______;③当x<4时,y=14x|ax+b|有两个交点,则k=______.①直线y=k与函数y=1411.已知函数y=a−b|x−1|(a、b为常数),当x=1时,y=1;当x=2时,y=0;请对该函数及其图象进行如下探究:(1)求函数的解析式;(2)请在给出的平面直角坐标系中画出该函数的图象,并结合图象写出该函数的一条性质:______;根据函数图象解决下列问题:①若A(m,c),B(n,c)为该函数图象上不同的两点,则m+n=______;x+k有两个不相等的实数解x1,x2,且x1⋅x2>0,则k的取②若方程a−b|x−1|=12值范围是______.12.函数图象在探索函数的性质中有非常重要的作用,现在就一类特殊的函数展开探索:y=x+a,探索函数图象和性质过程如下:x(1)上表是该函数y与自变量x的几组对应值,则a=______ ,m=______ ,n=______ ;(2)如图,在平面直角坐标系中,已经描出了表中部分点,请根据描出的点画出该函数图象;(3)由函数图象,写出该函数的一条性质:______ ;(4)请在同一个平面直角坐标系中画出函数y=2x的图象,并直接写出不等式x+ax≤2x 的解集:______ .13.若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数,下面我们参照学习函数的过程与方法,探究分段函数y={|x+1|(x≤1)2x(x>1)的图象与性质,探究过程如下,请补充完整.(1)列表:x…−4−3−2−101234…y…3m10121n 12…其中,m=______,n=______.(2)描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示,请画出函数的图象.(3)研究函数并结合图象与表格,回答下列问题:①点A(72,y1),B(5,y2),C(x1,52),D(x2,6)在函数图象上,则y1______y2,x1______x2;(填“>”,“=”或“<”)②当函数值y=1时,求自变量x的值;(4)若直线y=−x+b与函数图象有且只有一个交点,请直接写出b的取值范围.14.学习函数时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,下面我们对函数y ={−2x (x <0)x 3−3x 2+2(x ≥0)的图象和性质进行探究,请将以下探究过程补充完整:(1)选取适当的值补全表格;描点、连线,在所给的平面直角坐标系中画出函数的图象:(2)结合图象,写出该函数的一条性质:______ ; (3)结合这个函数的图象与性质,解决下列问题:①若点A(x 1,y 1),B(x 2,y 2),C(x 3,y 3)在这个函数的图象上,且0<x 3<3,−1<x 1<x 2<0,请写出y 1,y 2,y 3的大小关系:______ (用“<”连接).②若直线y =2a +1(a 是常数)与该函数图象有且只有三个交点,则a 的取值范围为______ .15. 在初中阶段的函数学习中,我们经历了“确定函数的表达式--利用函数图象研究其性质--运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义|a|={a(a ≥0)−a(a <0).小东结合上面的学习过程,对函数y =|32x −3|+12x −5的图象与性质进行了探究.(1)化简函数的表达式:当x ≥2时,y = ______ ,当x <2时,y = ______ ; (2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象并写出这个函数的一条性质:______ ;(3)已知函数y =2x (x >0)的图象如图所示,结合你所画函数图象,直按写出|32x −3|+12x −5=2x 的近似解______ .(精确到0.1)16.已知函数y=a|x−2|+x+b(a,b为常数).当x=3时,y=0,当x=0时,y=−1,请对该函数及其图象进行探究:(1)a=______ ,b=______ ;(2)请在给出的平面直角坐标系中画出该函数图象,并结合所画图象,写出该函数的一条性质.(3)已知函数y=−x2+4x+5的图象如图所示,结合图象,直接写出不等式a|x−2|+x+b≥−x2+4x+5的解集.17.在画函数图象时,我们常常通过描点或平移或翻折的方法画函数图象.小明根据学到的函数知识探究函数y1=|ax+4|−b的图象与性质并利用图象解决问题.小明列出了如表y1与x的几组对应的值:(1)根据表格,直接写出a=______ ,b=______ ;(2)在平面直角坐标系中,画出该函数图象,并根据函数图象,写出该函数的一条性质______ ;(3)当函数y1的图象与直线y2=mx−1有两个交点时,直接写出m的取值范围.18.已知y=a|2x+4|+bx(a,b为常数).当x=1时,y=5;当x=−1时,y=3.(1)a=______ ,b=______ ;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数图象;并写出函数的一条性质:______ ;(3)已知函数y=25的图象如图所示,结合你所画的函数图象,直接写出方程a|2x+ |2x−2|4|+bx=25的近似解(精确到0.1).|2x−2|。

人教版九年级上第22章 求一元二次函数解析式专项练习

人教版九年级上第22章  求一元二次函数解析式专项练习

第22章求一元二次函数解析式专项练习题类型一利用“三点式”求二次函数解析式1、已知一个二次函数的图象经过A(0,−1)、B(1,5)、C(−1,−3)三点。

(1)求这个二次函数的解析式;(2)用配方法把这个函数的解析式化为y=a(x+m)2+k的形式。

2、如图,在平面直角坐标系中,点A,B,C的坐标分别为(0,2),(3,2),(2,3).(1)请在图中画出△ABC向下平移3个单位的像△A′B′C′;(2)若一个二次函数的图象经过(1)中△A′B′C′的三个顶点,求此二次函数的关系式。

3、推理运算:二次函数的图象经过点A(0,−3),B(2,−3),C(−1,0).(1)求此二次函数的关系式;(2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最少平移___个单位,使得该图象的顶点在原点。

类型二利用“顶点式”求二次函数的解析式4、对称轴平行于y轴的抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式是( )A. y=−2x2+8x+3B. y=−2x2−8x+3C. y=−2x2+8x−5D. y=−2x2−8x+25、已知二次函数的图象的顶点为(1,4),且图象过点(−1,−4),则该二次函数的解析式为__ 。

6、已知二次函数的顶点坐标为(2,−2),且其图象经过点(3,1),求此二次函数的解析式,并求出该函数图象与y轴的交点坐标。

类型三利用“交点式”求二次函数的解析式7、如图,抛物线y=ax2+bx+c经过A(1,0),B(4,0),C(0,3)三点,求抛物线的解析式.8、已知关于x的二次函数的图象与轴交于两点(−1,0 ),(3,0)两点,且图象过点(0,3).(1)求这个二次函数的解析式;(2)写出它的开口方向、对称轴。

9、已知二次函数y=ax 2+bx+c 过点A(1,0),B(−3,0),C(0,−3)(1)求此二次函数的解析式;(2)在抛物线上存在一点P 使△ABP 的面积为6,求点P 的坐标.(写出详细的解题过程)类型四 利用“平移规律”求二次函数的解析式10、一抛物线和抛物线y=-2x 2的形状、开口方向完全相同,顶点坐标是(-1,3),则该抛物线的解析式为( )A .y=-2(x-1)2+3B .y=-2(x+1)2+3C 、y=-(2x+1)2+3D .y=-(2x-1)2+311、将抛物线y=3(x −4)2+2向右平移1个单位长度,再向下平移3个单位长度,平移后抛物线的解析式是_ __.12、形状与抛物线y=2x 2-3x+1的图象形状相同,但开口方向不同,顶点坐标是(0,-5)的抛物线的关系式为___ ___.13、求对称轴是x=-2,且开口方向、形状都与22x y 相同,还过原点的抛物线的解析式。

2022年人教版中考数学考点必刷题《函数类应用题》

2022年人教版中考数学考点必刷题《函数类应用题》

专练(函数类应用题)1.某药店购进一批消毒液,进价为20元/瓶,要求利润率不低于20%,且不高于60%.该店通过分析销售情况,发现该消毒液一天的销售量y(瓶)与当天的售价x(元/瓶)满足下表所示的一次函数关系.(1)若某天这种消毒液的售价为30元/瓶,求当天该消毒液的销售量.(2)如果某天销售这种消毒液获利192元,那么当天该消毒液的售价为多少元?(3)若客户在购买消毒液时,会购买相同数量(包)的口罩,且每包口罩的利润为20元,则当消毒液的售价定为多少时,可获得的日利润最大?最大日利润是多少元?2.(2021·江西吉安市·九年级期末)某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查,得出每天销售量y(件)是每件售价x(元)(x为正整数)的一次函数,其部分对应数据如下表所示:(1)求y关于x的函数解析式.(2)该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润是900元?3.(2021·江西吉安市·八年级期末)李老师一家去离家200千米的某地自驾游,周六上午8点整出发.下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)出发1小时后,在服务区等另一家人一同前往,等到后以每小时80千米的速度直达目的地;求等侯的时间及线段BC的解析式;(3)上午11点时,离目的地还有多少千米?4.我市某电器商场代理销售某种家用空气净化器,其进价是200元/台,经过市场销售后发现,在一个月内,当售价是400元/台时,可售出200台,且售价每降低1元,就可多售出5台,若供货商规定这种空气净化器售价不低于330元/台,代理销售商每月要完成不低于450台的销售任务. (1)若某月空气净化器售价降低30元,则该月可售出多少台?(2)试确定月销售量y (台)与售价x (元/台)之间的函数关系式,并求出售价x 的范围.(3)当售价x (元/台)定为多少时,商场每月销售这种空气净化器所获的利润w (元)最大,最大利润是多少?6.九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设x (分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为1y 千米,骑自行车学生骑行的路程为2y 千米,12y y 、关于x 的函数图象如图所示.(1)求2y 关于x 的函数解析式;(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?7.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m 2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x (m 2),种草所需费用y 1(元)与x (m 2)的函数关系式为()112k (0600)y {k 6001000x x x b x ≤<=+≤≤,其图象如图所示:栽花所需费用y 2(元)与x (m 2)的函数关系式为y 2=﹣0.01x 2﹣20x+30000(0≤x≤1000).(1)请直接写出k 1、k 2和b 的值;(2)设这块1000m 2空地的绿化总费用为W (元),请利用W 与x 的函数关系式,求出绿化总费用W 的最大值;(3)若种草部分的面积不少于700m 2,栽花部分的面积不少于100m 2,请求出绿化总费用W 的最小值.8.(2021·江西九年级月考)某种食品的销售价格1y 与销售月份x 之间的关系如图1所示,成本2y 与销售月份x 之间的关系如图2所示(图1的图象是线段,图2的图象是部分抛物线).(1)已知6月份这种食品的成本最低,求当月出售这种食品每千克的利润(利润=售价-成本)是多少? (2)求出售这种食品的每千克利润p 与销售月份x 之间的函数关系式;(3)哪个月出售这种食品,每千克的利润最大?最大利润是多少?简单说明理由.9.(2021·江西宜春市·九年级期中)物价问题涉及民生,关系全局,为保证市场秩序稳定,某超市积极配合市场运作,诚信经营.据了解,该超市每天调运一批成本价为8元/千克的大蒜,以不超过12元/千克的单价销售,且每天销售大蒜的数量y(千克)与销售单价x(元/千克)之间的关系如图所示.(1)求出每天销售大蒜的数量y(千克)与销售单价x(元/千克)之间的关系式;(2)该超市将大蒜销售单价定为多少元时,每天销售大蒜的利润可达到318元;(3)求该超市大蒜销售单价定为多少元时,每天销售大蒜的利润最大,并求出最大利润.10.(2021·江西赣州市·九年级期末)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?11.(2021·江西赣州市·九年级期末)大润发超市进了一批成本为8元/个的文具盒.调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);(2)每个文具盒定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?12.(2021·江西南昌市·九年级一模)李师傅驾驶出租车匀速地从南昌市送客到昌北国际机场,全程约30km ,设小汽车的行驶时间为t (单位:h ),行使速度为v (单位:km/h ),且全程速度限定为不超过100km/h . (1)求v 关于t 的函数关系式;(2)李师傅上午7点驾驶出租车从南昌市出发,在20分钟后将乘客送到了昌北国际机场,求小汽车行驶速度v .13.(2021·江西九年级专题练习)某药研所研发了一种治疗某种疾病的新药,经测试发现:新药在人体的释放过程中,10分钟内(含10分钟),血液中含药量y (微克)与时间x (分钟)的关系满足1y k x =;10分钟后,y 与x 的关系满足反比例函数()220k y k =>.部分实验数据如表:(1)分别求当010x ≤≤和10x >时,y 与x 之间满足的函数关系式.(2)据测定,当人体中每毫升血液中的含药量不低于3微克时,治疗才有效,那么该药的有效时间是多少?14.(2021·江西吉安市·九年级期末)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t (单位:小时),行驶速度为v (单位:千米/小时),且全程速度限定为不超过120千米/小时.⑴求v 关于t 的函数表达式; ⑴方方上午8点驾驶小汽车从A 出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.15.(2021·江西九年级其他模拟)某商店对A,B两种商品开展促销活动,方案如下:(1)商品B降价后的标价为元;(用含a的式子表示)(2)小艺购买A商品20件,B商品10件,共花费6000元,试求a的值.16.(2021·江西赣州市·九年级一模)某工厂现有甲种原料10吨,乙种原料15吨,计划用这两种原料生产A、B两种产品,两种原料都恰好全部用完.生产一件A、一件B产品与所需原料情况如下表所示:(1)求该厂生产A、B两种产品各有多少件;(2)如果购买这批原料共花费5万元,A、B产品的销售单价分别为2万元/件和3万元/件,求全部销售这批产品获得的利润是多少万元.17.(2021·江西九年级其他模拟)某校食堂的中餐与晚餐的消费标准如表一学生某星期从周一到周五每天的中餐与晚餐均在学校用餐,每次用餐米饭选1份,A 、B 类套餐菜选其中一份,这5天共消费36元,请问这位学生A 、B 类套餐菜各选用多少次?18.(2021·江西赣州市·九年级期末)返校复学之际,育才学校为每个班级准备了免洗抑菌洗手液.去市场购买时发现当购买量不超过100瓶时,免洗抑菌洗手液的单价为8元;超过100瓶时,每增加10瓶,每瓶单价就降低0.2元,但最低价格不能低于每瓶5元,设学校共买了x 瓶免洗抑菌洗手液.(1)当80x =时,每瓶洗手液的价格是______元;当150x =时,每瓶洗手液的价格是______元;当100x >时,每瓶洗衣手液的价格为______元(用含x 的式子表示);(2)若学校一次性购买洗手液共花费1250元,问一共购买了多少瓶洗手液?19.(2021·江西吉安市·九年级期末)汽车越来越多地进入普通家庭,调查显示,截止2020年底某市汽车拥有量为1.44万辆.己知2018年底该市汽车拥有量约为1万辆,求2018年底至2020年底该市汽车拥有量的平均增长率.20.(2021·江西吉安市·九年级一模)在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?21.(2020·江西吉安市·九年级其他模拟)为鼓励市民节约用水,某市自来水公司按分段收费标准收费,右图反映的是每月收水费y(元)与用水量x(吨)之间的函数关系(1)小红家五月份用水8吨,应交水费_____元;(2)按上述分段收费标准,小红家三、四月份分别交水费36元和19.8元,问四月份比三月份节约用水多少吨?22.(2020·江西新余市·九年级一模)在抗击新型冠状病毒期间,科学合理调运各种防控物资是重要任务之一.在某市的甲、乙、丙、丁四地中,已知某种消毒液甲地需要10吨,乙地需要8吨,正好丙地储备有12吨,丁地储备有6吨.该市新冠肺炎疫情防控应急指挥部决定将这18吨消毒液全部调往甲、乙两地.已知消毒液的运费价格如下表(单位:元/吨).又知从丙地调运2吨到甲地、3吨到乙地共需420元;从丙地调运4吨到甲地、2吨到乙地共需440元.如果设从丙地调运x吨到甲地.(1)确定表中a,b的值;(2)求调运18吨消毒液的总运费y关于x的函数关系式;(3)求出总运费最低的调运方案,并求出最低运费是多少.23.(2020·江西)小锐一家去离家200千米的某地自驾游,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)出发1小时后,在服务区等候另一家人一同前往,然后,以每小时80千米的速度直达目的地,求等候的时间及线段BC的解析式.24.(2020·江西九江市·九年级二模)为迎接“国家级文明卫生城市”检查,我市环卫局准备购买A,B两种型号的垃圾箱.通过市场调研发现:购买1个A型垃圾箱和2个B型垃圾箱共需340元;购买3个A型垃圾箱和2个B型垃圾箱共需540元.(1)求每个A型垃圾箱和B型垃圾箱各多少元?(2)该市现需要购买A,B两种型号的垃圾箱共30个,其中购买A型垃圾箱不超过16个.①求购买垃圾箱的总花费 (元)与A型垃圾箱x(个)之间的函数关系式;②当购买A型垃圾箱个数多少时总费用最少,最少费用是多少?25.(2020·江西萍乡市·九年级二模)今年我国许多地方严重的“旱情”,为了鼓励居民节约用水,区政府计划实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分....每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少?(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式.26.(2020·江西宜春市·九年级一模)某超市购进一批成本为每件20元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若超市按单价不低于成本价,且不高于55元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?(3)若超市要使销售该商品每天获得的利润为1600元,则每天的销售量应为多少件?27.(2020·江西景德镇市·九年级一模)某校学生食堂共有座位3600个,某天午餐时,食堂中学生人数y (人)与时间x (分钟)变化的函数关系图象如图中的折线OAB .(1)试分别求出当020x ≤≤与2038x ≤≤时,y 与x 的函数关系式;(2)已知该校学生数有6000人,考虑到安全因素,学校决定对剩余2400名同学延时用餐,即等食堂空闲座位不少于2400个时,再通知剩余2400名同学用餐.请结合图象分析,这2400名学生至少要延时多少分钟?28.(2020·江西)小颖的奶奶想用铁丝网在自家门前围一块面积为4平方米的矩形菜园,并且用最少的铁丝网,因此小颖进行了如下探究活动.活动一:(1)设矩形菜园的一边长为x 米,铁丝网长为y 米.①用含x 的代数式表示矩形菜园另一边长为_____________米;②y 关于x 的函数解析式是______________活动二:(2)①列表:根据(1)中所求的函数关系式计算并补全下图. (y 精确到0.1)②描点:根据表中数值,在平面直角坐标系中描出①中剩下的两个点(x ,y).③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.数学思考:(3)①请你根据函数图象,写出该函数的两条性质或结论.②根据以上信息可得,当x=_____________时,y有最小值.由此可知,小颖的奶奶至少需要买_____________米的铁丝网.29.(2020·江西九江市·九年级零模)在绿化某县城与高速公路的连接路段中,需购买罗汉松、雪松两种树苗共400株,罗汉松树苗每株60元,雪松树苗每株70元.相关资料表明:罗汉松、雪松树苗的成活率分别为70%,90%.(1)若购买这两种树苗共用去26500元,则罗汉松、雪松树苗各购买多少株?(2)绿化工程来年一般都要将死树补上新苗,现要使该两种树苗来年共补苗不多于80株,则罗汉松树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,才能使购买树苗的费用最低?请求出最低费用.30.(2020·江西九年级一模)学校的学生专用智能饮水机里水的温度y(⑴)与时间x(分)之间的函数关系如图所示,当水的温度为20⑴时,饮水机自动开始加热,当加热到100⑴时自动停止加热(线段AB),随后水温开始下降,当水温降至20⑴时(BC为双曲线的一部分),饮水机又自动开始加热……根据图中提供的信息,解答下列问题:(1)分别求出饮水机里水的温度上升和下降阶段y与x之间的函数表达式;(2)下课时,同学们纷纷用水杯去盛水喝.此时,饮水机里水的温度刚好达到100⑴.据了解,饮水机1分钟可以满足12位同学的盛水要求,学生喝水的最佳温度在30⑴~45⑴,请问在大课间30分钟时间里有多少位同学可以盛到最佳温度的水?。

人教新版 九年级(上)数学 第22章 二次函数 专题训练(含解析)

第22章二次函数专题训练一.选择题(共10小题)1.下列和之间的函数表达式中,是二次函数的是A.B.C.D.2.函数具有的性质是A.无论取何值,总是正的B.图象的对称轴是轴C.随的增大而增大D.图象在第一、三象限3.二次函数的图象与轴的交点坐标是A.B.,C.D.4.将抛物线向右平移2个单位,再向下平移1个单位,得到抛物线的解析式为A.B.C.D.5.抛物线为常数)的顶点在A.第一象限B.第二象限C.第三象限D.第四象限6.二次函数的图象如图所示,那么一次函数的图象大致是A.B.C.D.7.对于二次函数,下列说法错误的是A.该二次函数图象的对称轴可以是轴B.该二次函数图象的对称轴不可能是C.当时,的值随的增大而增大D.该二次函数图象的对称轴只能在轴的右侧8.已知抛物线的图象上三个点的坐标分别为,,,则,,的大小关系为A.B.C.D.9.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留宽的门,已知计划中的建筑材料可建围墙(不包括门)的总长度为.设饲养室长为,占地面积为,则关于的函数表达式是A.B.C.D.10.二次函数的对称轴为.若关于的一元二次方程在的范围内有实数解,则的取值范围是A.B.C.D.二.填空题(共8小题)11.二次函数图象的开口向.12.二次函数的最小值为.13.二次函数的图象的对称轴为.14.抛物线经过点,,抛物线所对应的函数表达式为.15.在平面直角坐标系中,把一条抛物线先向上平移2个单位长度,再向左平移3个单位长度得到抛物线,则原抛物线的解析式是.16.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为元.17.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为处达到最高,高度为,水柱落地处离池中心距离为,则水管的长度是.18.如图,在平面直角坐标系中,正比例函数的图象与二次函数的图象交于点在第二象限),经过点与轴垂直的直线与一次函数的图象交于点,当时,则的值为.三.解答题(共7小题)19.已知二次函数,当时,随的增大而增大,当时,随的增大而减小,求当时,的值.20.已知二次函数的图象与轴交于点,与轴的一个交点坐标是.(1)求二次函数的解析式;(2)当为何值时,.21.如图,抛物线交轴于,两点,交轴于点,直线经过点,.(1)求抛物线的解析式;(2)是直线上方的抛物线上一动点,求的最大面积.22.如图,有长为18米的篱笆,一面利用墙(墙的最大可用长度为8米),围成中间隔有一道篱笆的长方形花圃,设花圃的宽为米,面积为平方米.(1)求与的函数关系式.(2)如果要围成面积为的花圃,的长是多少?(3)能围成面积比更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.23.如图,抛物线的图象与轴交,两点,与轴交于点点为抛物线的顶点.(1)求抛物线的解析式;(2)将抛物线关于直线对称后的抛物线记为,将抛物线关于点对称后的抛物线记为,点为抛物线的顶点,在抛物线的对称轴上是否存在点,使得为等腰三角形?若存在请求出点的坐标,若不存在请说明理由.24.在平面直角坐标系中,抛物线过,两点,(1)试求抛物线的解析式.(2)记抛物线顶点为,求的面积;(3)将直线向上平移个单位,所得的直线与抛物线段(包括端点、部分有两个交点,请求出的取值范围.25.把抛物线先向右平移4个单位长度,再向下平移5个单位长度得到抛物线.(1)直接写出抛物线的函数关系式;(2)动点能否在抛物线上?请说明理由;(3)若点,都在抛物线上,且,比较,的大小,并说明理由.参考答案一.选择题(共10小题)1.下列和之间的函数表达式中,是二次函数的是A.B.C.D.解:、,是二次函数,所以选项正确;、,最高次数是3,不是二次函数,所以选项错误;、,右边不是整式,不是二次函数,所以选项错误;、,最高次数是1,不是二次函数,所以选项错误.故选:.2.函数具有的性质是A.无论取何值,总是正的B.图象的对称轴是轴C.随的增大而增大D.图象在第一、三象限解:二次函数解析式为,二次函数图象开口向上,当时随增大而减小,当时随增大而增大,对称轴为轴,无论取何值,的值总是非负,其图象的顶点为原点,原点不属于任何象限.故选:.3.二次函数的图象与轴的交点坐标是A.B.,C.D.解:当时,,所以二次函数的图象与轴的交点坐标为.故选:.4.将抛物线向右平移2个单位,再向下平移1个单位,得到抛物线的解析式为A.B.C.D.解:根据“左加右减,上加下减”的法则可知,将抛物线向右平移2个单位,再向下平移1个单位,得到抛物线的解析式为,即,故选:.5.抛物线为常数)的顶点在A.第一象限B.第二象限C.第三象限D.第四象限解:抛物线的顶点坐标为,,抛物线的顶点在第二象限,故选:.6.二次函数的图象如图所示,那么一次函数的图象大致是A.B.C.D.解:的图象的开口向下,,对称轴在轴的左侧,,一次函数的图象经过二,三,四象限.故选:.7.对于二次函数,下列说法错误的是A.该二次函数图象的对称轴可以是轴B.该二次函数图象的对称轴不可能是C.当时,的值随的增大而增大D.该二次函数图象的对称轴只能在轴的右侧解:二次函数,当时,该函数的对称轴是轴,故选项正确;该函数的对称轴为直线,当时,随的增大而增大,故选项、正确;该函数的对称轴为,当时,,则此时对称轴在轴左侧,故选项错误;故选:.8.已知抛物线的图象上三个点的坐标分别为,,,则,,的大小关系为A.B.C.D.解:,对称轴是直线,即二次函数的开口向上,对称轴是直线,即在对称轴的右侧随的增大而增大,点关于直线的对称点是,,,故选:.9.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留宽的门,已知计划中的建筑材料可建围墙(不包括门)的总长度为.设饲养室长为,占地面积为,则关于的函数表达式是A.B.C.D.解:设饲养室长为,占地面积为,则关于的函数表达式是:.故选:.10.二次函数的对称轴为.若关于的一元二次方程在的范围内有实数解,则的取值范围是A.B.C.D.解:抛物线的对称轴,,则方程,即的解相当于与直线的交点的横坐标,方程在的范围内有实数解,当时,,当时,,又,当时,在的范围内有解.的取值范围是,故选:.二.填空题(共8小题)11.二次函数图象的开口向下.解:二次函数,,该函数图象开口向下,故答案为:下.12.二次函数的最小值为5.解:由于二次函数中,,所以当时,函数取得最小值为5,故答案为5.13.二次函数的图象的对称轴为直线.解:二次函数,该函数图象的对称轴是直线,故答案为:直线.14.抛物线经过点,,抛物线所对应的函数表达式为.解:将,代入抛物线解析式得:,解得:,,则抛物线解析式为.故答案为:.15.在平面直角坐标系中,把一条抛物线先向上平移2个单位长度,再向左平移3个单位长度得到抛物线,则原抛物线的解析式是.解:,将其向右平移3个单位,再向下平移2个单位,得到原抛物线的解析式为:,即.故答案是:.16.某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为70元.解:设每顶头盔的售价为元,获得的利润为元,,当时,取得最大值,此时,故答案为:70.17.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为处达到最高,高度为,水柱落地处离池中心距离为,则水管的长度是.解:设抛物线的表达式为:,将点代入上式并解得:,故抛物线的表达式为:,令,则,即,故答案为.18.如图,在平面直角坐标系中,正比例函数的图象与二次函数的图象交于点在第二象限),经过点与轴垂直的直线与一次函数的图象交于点,当时,则的值为或.解:设,则,由题意:,解得或,或,点在直线上,或,故答案为或.三.解答题(共7小题)19.已知二次函数,当时,随的增大而增大,当时,随的增大而减小,求当时,的值.解:二次函数,当时,随的增大而增大,当时,随的增大而减小,,解得,,二次函数,当时,.20.已知二次函数的图象与轴交于点,与轴的一个交点坐标是.(1)求二次函数的解析式;(2)当为何值时,.解:(1)的图象与轴交于点,与轴的一个交点坐标是.,解得,,该函数的解析式为(2)令,则,解得:,,点的坐标为.当时,.21.如图,抛物线交轴于,两点,交轴于点,直线经过点,.(1)求抛物线的解析式;(2)是直线上方的抛物线上一动点,求的最大面积.解:(1)抛物线交轴于,两点,交轴于点,直线过点,,,.把点,,代入得:,解得.抛物线解析式为;(2)如图,过点作轴的平行线与交于,与轴交于,设,则,,.当时,的面积最大,最大面积是.22.如图,有长为18米的篱笆,一面利用墙(墙的最大可用长度为8米),围成中间隔有一道篱笆的长方形花圃,设花圃的宽为米,面积为平方米.(1)求与的函数关系式.(2)如果要围成面积为的花圃,的长是多少?(3)能围成面积比更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.解:(1)由题可知,花圃的宽为米,则为米,这时面积;(2)由题意得:,解得,,,解得,不合题意,舍去,即花圃的宽为4米;(3)能,理由:,当时,有最大值为;故能围成面积比24米更大的花圃.围法:,即花圃的长为8米、宽为米,这时有最大面积平方米.23.如图,抛物线的图象与轴交,两点,与轴交于点点为抛物线的顶点.(1)求抛物线的解析式;(2)将抛物线关于直线对称后的抛物线记为,将抛物线关于点对称后的抛物线记为,点为抛物线的顶点,在抛物线的对称轴上是否存在点,使得为等腰三角形?若存在请求出点的坐标,若不存在请说明理由.解:(1)设解析式将代入得抛物线的解析式为;(2)抛物线的解析式为;抛物线的顶点为将抛物线关于直线对称后的抛物线记为,将抛物线关于点对称后的抛物线记为,抛物线解析式为:,抛物线解析式为:,点为抛物线的顶点,点,,点抛物线的对称轴上,点横坐标为3,若,则点坐标为或,若时,则点与点关于轴对称,点,若时,则,,点,综上所述:当点为或或或时,使得为等腰三角形24.在平面直角坐标系中,抛物线过,两点,(1)试求抛物线的解析式.(2)记抛物线顶点为,求的面积;(3)将直线向上平移个单位,所得的直线与抛物线段(包括端点、部分有两个交点,请求出的取值范围.解:(1)把,两点坐标代入得:,解这个方程组,得,抛物线的解析式为;(2),顶点,的面积.(3)由消去得到,当△时,直线与抛物线相切,,,当直线经过点时,,当直线经过点时,,直线向上平移个单位所得的直线与抛物线段(包括端点、部分有两个交点,.25.把抛物线先向右平移4个单位长度,再向下平移5个单位长度得到抛物线.(1)直接写出抛物线的函数关系式;(2)动点能否在抛物线上?请说明理由;(3)若点,都在抛物线上,且,比较,的大小,并说明理由.解:(1),把抛物线先向右平移4个单位长度,再向下平移5个单位长度得到抛物线,即,抛物线的函数关系式为:.(2)动点不在抛物线上,理由如下:抛物线的函数关系式为:,函数的最小值为,,动点不在抛物线上;(3)抛物线的函数关系式为:,抛物线的开口向上,对称轴为,当时,随的增大而减小,点,都在抛物线上,且,.。

九年级函数专题试卷及答案

九年级函数专题试卷及答案专业课原理概述部分一、选择题(每题1分,共5分)1. 下列函数中,哪个是正比例函数?A. y = 2x + 3B. y = 3x 2C. y = x^2 + 1D. y = 1/x2. 如果函数y = kx + b的图像是一条经过原点的直线,那么k和b的关系是?A. k = 0, b ≠ 0B. k ≠ 0, b = 0C. k = 0, b = 0D. k ≠ 0, b ≠ 03. 下列函数中,哪个是反比例函数?A. y = 2/xB. y = x^2C. y = 3x + 1D. y = 1/x^24. 如果函数y = kx的图像是一条经过原点的直线,那么k的值是?A. k = 0B. k > 0C. k < 0D. k ≠ 05. 下列函数中,哪个是一次函数?A. y = x^2B. y = 2/xC. y = 3x + 1D. y = 1/x^2二、判断题(每题1分,共5分)1. 正比例函数的图像是一条经过原点的直线。

()2. 反比例函数的图像是一条经过原点的直线。

()3. 一次函数的图像是一条直线。

()4. 二次函数的图像是一条抛物线。

()5. 函数y = kx + b是一次函数当且仅当b = 0。

()三、填空题(每题1分,共5分)1. 如果函数y = kx的图像是一条经过原点的直线,那么k的值是______。

2. 如果函数y = kx + b的图像是一条经过原点的直线,那么b的值是______。

3. 反比例函数的一般形式是______。

4. 二次函数的一般形式是______。

5. 一次函数的图像是一条______。

四、简答题(每题2分,共10分)1. 请简述正比例函数的定义。

2. 请简述反比例函数的定义。

3. 请简述一次函数的定义。

4. 请简述二次函数的定义。

5. 请简述函数图像的斜率是什么。

五、应用题(每题2分,共10分)1. 如果函数y = 2x的图像是一条经过原点的直线,那么当x = 3时,y的值是多少?2. 如果函数y = 3/x的图像是一条经过原点的直线,那么当x = 2时,y的值是多少?3. 如果函数y = kx + b的图像是一条经过原点的直线,那么当x = 1时,y的值是多少?4. 如果函数y = x^2的图像是一条抛物线,那么当x = 2时,y的值是多少?5. 如果函数y = 1/x^2的图像是一条经过原点的直线,那么当x = 3时,y的值是多少?六、分析题(每题5分,共10分)1. 请分析一次函数和二次函数的图像有什么不同。

2020年中考数学第22题应用题复习专题(有答案)

武汉市中考数学第22题复习专题1.我市从2018年1月1日开始,禁止燃油助力车上路,于是电动自行车的市场需求量日渐增多.某商店计划最多投入8万元购进A、B两种型号的电动自行车共30辆,其中每辆B型电动自行车比每辆A型电动自行车多500元.用5万元购进的A型电动自行车与用6万元购进的B型电动自行车数量一样.(1)求A、B两种型号电动自行车的进货单价;(2)若A型电动自行车每辆售价为2800元,B型电动自行车每辆售价为3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y 元.写出y与m之间的函数关系式,并写出商店能获得最大利润的进货方案;(3)由于市场浮动,A型电动自行车的进货价格下调a(100<a<300)元,此时商店能获得最大利润为14400,求a值.2.为迎接军运会,武汉市政府启动了梁子湖水质提升方案,其中治理所需的部分原料450吨由某公司存放于甲、乙两个仓库,如果运出甲仓库所存原料的30%,乙仓库所存原料的20%,那么乙仓库剩余的原料与甲仓库剩余的原料一样多.(1)求甲、乙两仓库各存放原料多少吨?(2)现公司将300吨原料运往工厂,从甲、乙两个仓库到工厂的运价分别为120元/吨和100元/吨.经协商,从甲仓库到工厂的运价可优惠a元/吨(10≤a≤30),从乙仓库到工厂的运价不变.设从甲仓库运m吨原料到工厂,求出总运费w关于m的函数解析式(不要求写出m的取值范围);(3)若在(2)的条件下,请根据函数的性质说明:随着m的增大,w的变化情况.3.某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B 两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表CD总计(吨)A(吨)200B(吨)x300合计(吨)240260500(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.4.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(I)根据题意,填写下表:游泳次数方式一的总费用(元)101501517520……x方式二的总费用(元)90135…(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.5、(10分)某企业拥有一条生产某品牌酸奶的生产线,已知该酸奶销售额为4800元时的销量比相售额为800元时的销量要多500瓶。

2022年广东省中考数学总复习第22章:二次函数(附答案解析)

2022年广东省中考数学复习第22章:二次函数2012-2021广东省中考十年真题五年模拟一.选择题(共25小题)1.(2021•广东省)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记p=a+b+c2,则其面积S=√p(p−a)(p−b)(p−c).这个公式也被称为海伦﹣秦九韶公式.若p=5,c=4,则此三角形面积的最大值为()A.√5B.4C.2√5D.5 2.(2020•广东省)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个3.(2020•广东省)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+3 4.(2020•广东省二模)如图,抛物线y=ax2+bx+c(a≠0)的抛物线的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,以下结论:①abc<b2;②方程ax2+bx+c=0的两根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x≤3;⑤当x<0时,y随x的增大而增大.其中正确个数是()A.4B.3C.2D.15.(2020•广东省一模)如图,函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),且1<m<2,下列结论:①abc<0;②0<−b2a<12;③若点A(﹣2,y1),B(2,y2)在抛物线上,则y1<y2;④a(m﹣1)+b=0.其中结论正确的有()个A.1B.2C.3D.4 6.(2020•广东省一模)如图在同一个坐标系中函数y=kx2和y=kx﹣2(k≠0)的图象可能的是()A.B.C.D.7.(2020•广东省校级模拟)若将抛物线y=5x2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为()A.y=5(x﹣2)2+1B.y=5(x+2)2+1C.y=5(x﹣2)2﹣1D.y=5(x+2)2﹣18.(2020•广东省模拟)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①a<0;②b>0;③b2﹣4ac>0;④a+b+c<0;其中结论正确的个数有()A.1个B.2个C.3个D.4个9.(2019•广东省校级模拟)抛物线y=﹣2(x﹣1)2+3的顶点坐标是()A.(﹣1,3)B.(1,3)C.(1,﹣3)D.(﹣1,﹣3)10.(2018•广东省模拟)抛物线y=﹣2x2+1的对称轴是()A.直线x=12B.直线x=−12C.直线x=2D.y轴11.(2018•广东省模拟)抛物线y=2(x+3)2﹣5的顶点坐标是()A.(﹣3,﹣5)B.(﹣3,5)C.(3,﹣5)D.(3,5)12.(2017•广东省三模)把抛物线y=﹣x2向右平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A.y=﹣(x﹣1)2﹣3B.y=﹣(x+1)2﹣3C.y=﹣(x﹣1)2+3D.y=﹣(x+1)2+313.(2017•广东省二模)把抛物线y=x2+4先向左平移1个单位,再向下平移3个单位,得到的抛物线的解析式为()A.y=(x+1)2+1B.y=(x﹣1)2+1C.y=(x﹣1)2+7D.y=(x+1)2+7 14.(2017•广东省模拟)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b>a+c;③9a+3b+c>0;④c<﹣3a;⑤a+b≥m(am+b),其中正确的有()A.2个B.3个C.4个D.5个15.(2017•广东省一模)在同一坐标系中,一次函数y=ax+b与二次函数y=bx2+a的图象可能是()A.B.C.D.16.(2017•广东省二模)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a<0;②c>0;③b2﹣4ac>0;④a2b<0中,正确的结论有()A.1个B.2个C.3个D.4个17.(2016•广东省校级三模)二次函数y=x2+2x﹣5有()A.最大值﹣5B.最小值﹣5C.最大值﹣6D.最小值﹣618.(2016•广东省校级一模)二次函数y=ax2+bx+c与一次函数y=ax+c的图象大致可能是()A.B.C.D.19.(2016•广东省模拟)如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A.B.C.D.20.(2015•广东省校级一模)关于抛物线y=(x﹣1)2﹣2,下列说法错误的是()A.顶点坐标为(1,﹣2)B.函数有最小值为﹣2C.开口方向向上D.当x>1时,y随x的增大而减小21.(2015•广东省校级一模)二次函数y=x2﹣6x+5配成顶点式正确的是()A.y=(x﹣3)2﹣4B.y=(x+3)2﹣4C.y=(x﹣3)2+5D.y=(x﹣3)2+1422.(2015•广东省校级一模)抛物线y=x2+2的对称轴是()A.直线x=0B.直线x=1C.直线x=1D.直线x=2 23.(2015•广东省校级一模)抛物线y=2(x﹣3)2+1的顶点坐标是()A.(3,1)B.(﹣3,1)C.(1,﹣3)D.(1,3)24.(2015•广东省校级一模)抛物线y=3x2向下平移3个单位,再向左平移2个单位,得到的抛物线解析式为()A.y=3(x+2)2+3B.y=3(x﹣2)2+3C.y=3(x+2)2﹣3D.y=3(x﹣2)2﹣325.(2015•广东省校级一模)在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A.B.C.D.二.填空题(共5小题)26.(2020•广东省校级模拟)已知抛物线y=x2+bx+c的部分图象如图所示,当y<0时,x 的取值范围是.27.(2020•广东省一模)抛物线y=2x2+8x+12的顶点坐标为.28.(2020•广东省模拟)抛物线y=(m﹣2)x2+2x+(m2﹣4)的图象经过原点,则m=.29.(2018•广东省模拟)抛物线y=(x﹣2)2﹣3的顶点坐标是.30.(2018•广东省一模)抛物线y=x2+4的对称轴是.三.解答题(共20小题)31.(2020•广东省)如图,抛物线y=3+√36x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ 相似时,请直接写出所有满足条件的点Q的坐标.32.(2019•广东省)如图1,在平面直角坐标系中,抛物线y =√38x 2+3√34x −7√38与x 轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点,点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如图2,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM ⊥x 轴,点M 为垂足,使得△P AM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答这样的点P 共有几个?33.(2018•广东省)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.34.(2013•广东省)已知二次函数y=x2﹣2mx+m2﹣1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C、D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.点C(0,﹣3).(1)求该抛物线的解析式及顶点坐标;(2)若P是线段OB上一动点,过P作y轴的平行线交抛物线于点H,交BC于点N,设OP=t时,△BCH的面积为S.求S关于t的函数关系式;若S有最大值,请求出S 的最大值,若没有,请说明理由.(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,在抛物线上是否存在这样的点Q,使以A,P,Q,C为顶点的四边形为平行四边形?若存在,请直接写出P点的坐标;若不存在,请说明理由.与y轴交点为C(0,﹣3),直线L:y=kx﹣1与抛物线的交点为点A和点D.(1)求抛物线和直线L的解析式;(2)如图,点M为抛物线上一动点(不与A、D重合),当点M在直线L下方时,过点M作MN∥x轴交L于点N,求MN的最大值;(3)点M为抛物线上一动点(不与A、D重合),M'为直线AD上一动点,是否存在点M,使得以C、D、M、M′为顶点的四边形是平行四边形?如果存在,请直接写出点M 的坐标,如果不存在,请说明理由.37.(2020•广东省校级二模)如图,已知二次函数y=ax2+32x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数的表达式;(2)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(3)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.38.(2020•广东省一模)如图,抛物线y=a(x2﹣2mx﹣3m2)(a,m为正的常数)与x轴交于点A,B,与y轴交于点C(0,﹣3),顶点为F,CD∥AB交抛物线于点D.(1)当a=1时,求点D的坐标.(2)若点E是第一象限抛物线上的点,过点E作EM⊥x轴于点M,当OM=2CD时,求证:∠EAB=∠ADC.(3)在(2)的条件下,试探究:在x轴上是否存在点P,使得以PF,AD,AE为边长构成的三角形是以AE为斜边的直角三角形?如果存在,请用含m的代数式表示点P的横坐标;如果不存在,请说明理由.39.(2020•广东省一模)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季试销售成本为每千克18元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元.经试销发现,销售量y(kg)与销售单价x(元/kg)符合一次函数关系,如图是y与x的函数关系图象.(1)求y与x的函数解析式;(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.40.(2019•广东省一模)已知如图1,抛物线y=−38x2−34x+3与x轴交于A和B两点(点A在点B的左侧),与y轴相交于点C,点D的坐标是(0,﹣1),连接BC、AC(1)求出直线AD的解析式;(2)如图2,若在直线AC上方的抛物线上有一点F,当△ADF的面积最大时,有一线段MN=√5(点M在点N的左侧)在直线BD上移动,首尾顺次连接点A、M、N、F构成四边形AMNF,请求出四边形AMNF的周长最小时点N的横坐标;(3)如图3,将△DBC绕点D逆时针旋转α°(0<α°<180°),记旋转中的△DBC 为△DB′C′,若直线B′C′与直线AC交于点P,直线B′C′与直线DC交于点Q,当△CPQ是等腰三角形时,求CP的值.41.(2020•广东省模拟)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.42.(2018•广东省三模)已知抛物线y=14x2+1(如图所示).(1)填空:抛物线的顶点坐标是(,),对称轴是;(2)如图,已知y轴上一点A(0,2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若△P AB是等边三角形,求点P的坐标;(3)如图,在第二问的基础上,在抛物线有一点C(x,y),连接AC、OC、BC、PC,当△OAC的面积等于△BCP的面积时,求C的横坐标.43.(2018•广东省模拟)如图,在平面直角坐标系中,△AOC绕原点O逆时针旋转90°得到△DOB,其中点A的坐标为(﹣1,0),CD=2.(1)写出C点的坐标,B点的坐标;(2)若二次函数y=ax2+bx+c(a≠0)经过A、B、C三点,求该二次函数的解析式;(3)在(2)条件下,在二次函数的对称轴l上是否存在一点P,使得P A+PC最小?若P点存在,求出P点坐标;若P点不存在,请说明理由.44.(2018•广东省二模)如图1,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点,点P为抛物线的顶点.(1)求该抛物线的解析式;(2)求∠P AB的正弦值;(3)如图2,四边形MCDN为矩形,顶点C、D在x轴上,M、N在x轴上方的抛物线上,若MC=8,求线段MN的长度.45.(2018•广东省模拟)如图,抛物线y=12x2−x﹣4与坐标轴相交于A、B、C三点,P是线段AB上一动点(端点除外),过P作PD∥AC,交BC于点D,连接CP.(1)直接写出A、B、C的坐标;(2)求抛物线y=12x2−x﹣4的对称轴和顶点坐标;(3)求△PCD面积的最大值,并判断当△PCD的面积取最大值时,以P A、PD为邻边的平行四边形是否为菱形.46.(2016•广东省校级一模)如图,已知抛物线与x轴交于A(1,0),B(﹣3,0)两点,与y轴交于点C(0,3),抛物线的顶点为P,连结AC.(1)求此抛物线的解析式;(2)在抛物线上找一点D,使得DC与AC垂直,且直线DC与x轴交于点Q,求点D 的坐标.47.(2016•广东省校级三模)如图,直线AB解析式为y=2x+4,C(0,﹣4),AB交x轴于A,A为抛物线顶点,交y轴于C,(1)求抛物线解析式?(2)将抛物线沿AB平移,此时顶点即为E,如顶点始终在AB上,平移后抛物线交y 轴于F,求当△BEF于△BAO相似时,求E点坐标.(3)记平移后抛物线与直线AB另一交点为G,则S△BFG与S△ACD是否存在8倍关系?若有,直接写出F点坐标.48.(2016•广东省校级一模)已知:二次函数y=ax2+bx+6(a≠0)的图象与x轴交于A、B 两点(点A在点B的左侧,点A、点B的横坐标是一元二次方程x2﹣4x﹣12=0的两个根.(1)直接写出点A、点B的坐标:A,B.(2)求出该二次函数的解析式及对称轴;(3)若点P是抛物线对称轴上的一个动点,d=|BP﹣CP|,探究:是否存在一点P,使得d的值最大?若存在,请求出点P的坐标;若不存在,请说明理由.49.(2016•广东省二模)如图,已知直线y=12x+72与x轴、y轴分别相交于B、A两点,抛物线y=ax2+bx+c经过A、B两点,且对称轴为x=﹣3.(1)求A、B两点的坐标,并求抛物线的解析式;(2)若点P以1个单位/秒的速度从点B沿x轴向点O运动,过点P作y轴的平行线交直线AB于点M,交抛物线于点N,设点P运动的时间为t,MN的长度为s,求s与t之间的函数关系式,并求出当t为何值时,s取得最大值?50.(2016•广东省一模)如图,已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O是坐标原点,点A的坐标是(﹣1,0),点C的坐标是(0,﹣3)(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)P为线段BC上一点,连接AC,AP,若∠ACB=∠P AB,求△P AB的面积.2022年广东省中考数学复习第22章:二次函数2012-2021广东省中考十年真题五年模拟参考答案与试题解析一.选择题(共25小题)1.(2021•广东省)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a,b,c,记p=a+b+c2,则其面积S=√p(p−a)(p−b)(p−c).这个公式也被称为海伦﹣秦九韶公式.若p=5,c=4,则此三角形面积的最大值为()A.√5B.4C.2√5D.5【解答】解:∵p=a+b+c2,p=5,c=4,∴5=a+b+42,∴a+b=6,∴a=6﹣b,∴S=√p(p−a)(p−b)(p−c)=√5(5−a)(5−b)(5−4)=√5(5−a)(5−b)=√5ab−25=√5b(6−b)−25=√−5b2+30b−25=√−5(b−3)2+20,当b=3时,S有最大值为√20=2√5.故选:C.2.(2020•广东省)如图,抛物线y=ax2+bx+c的对称轴是x=1,下列结论:①abc>0;②b2﹣4ac>0;③8a+c<0;④5a+b+2c>0,正确的有()A.4个B.3个C.2个D.1个【解答】解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴右边可得:a,b异号,所以b>0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc<0,故①错误;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确;∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以−b2a=1,可得b=﹣2a,由图象可知,当x=﹣2时,y<0,即4a﹣2b+c<0,∴4a﹣2×(﹣2a)+c<0,即8a+c<0,故③正确;由图象可知,当x=2时,y=4a+2b+c>0;当x=﹣1时,y=a﹣b+c>0,两式相加得,5a+b+2c>0,故④正确;∴结论正确的是②③④3个,故选:B.3.(2020•广东省)把函数y=(x﹣1)2+2图象向右平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+3【解答】解:二次函数y=(x﹣1)2+2的图象的顶点坐标为(1,2),∴向右平移1个单位长度后的函数图象的顶点坐标为(2,2),∴所得的图象解析式为y=(x﹣2)2+2.故选:C.4.(2020•广东省二模)如图,抛物线y=ax2+bx+c(a≠0)的抛物线的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,以下结论:①abc<b2;②方程ax2+bx+c=0的两根是x1=﹣1,x2=3;③3a+c>0;④当y>0时,x的取值范围是﹣1≤x≤3;⑤当x<0时,y随x的增大而增大.其中正确个数是()A.4B.3C.2D.1【解答】解:∵抛物线开口向下,∴a<0,∵对称轴在y轴的右侧,∴−b2a>0,∴b>0,∵抛物线交y轴的正半轴,∴c>0,∴abc<0,∴abc<b2,故①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,故②正确;∵x=−b2a=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,即3a+c=0,故③错误;由②得,方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,∴抛物线与x轴的交点坐标为(﹣1,0),(3,0),又抛物线开口向下,对称轴为直线x=1,∴当y>0时,x的取值范围是﹣1≤x≤3,故④正确;当x<1时,y随x的增大而增大,故⑤错误;因此正确的结论有3个.故选:B.5.(2020•广东省一模)如图,函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),且1<m<2,下列结论:①abc<0;②0<−b2a<12;③若点A(﹣2,y1),B(2,y2)在抛物线上,则y1<y2;④a(m﹣1)+b=0.其中结论正确的有()个A.1B.2C.3D.4【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,∴①的结论错误;∵抛物线过点(﹣1,0)和(m,0),且1<m<2,∴0<−b2a<12,故②的结论正确;∵点A(﹣2,y1)到对称轴的距离比点B(2,y2)到对称轴的距离远,∴y1>y2,∴③的结论错误;∵抛物线过点(﹣1,0),(m,0),∴a﹣b+c=0,am2+bm+c=0,∴am2﹣a+bm+b=0,a(m+1)(m﹣1)+b(m+1)=0,∴a(m﹣1)+b=0,∴④的结论正确;故选:B.6.(2020•广东省一模)如图在同一个坐标系中函数y=kx2和y=kx﹣2(k≠0)的图象可能的是()A.B.C.D.【解答】解:当k>0时,函数y=kx﹣2的图象经过一、三、四象限;函数y=kx2的开口向上,对称轴在y轴上;当k<0时,函数y=kx﹣2的图象经过二、三、四象限;函数y=kx2的开口向下,对称轴在y轴上,故C正确.故选:C.7.(2020•广东省校级模拟)若将抛物线y=5x2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为()A.y=5(x﹣2)2+1B.y=5(x+2)2+1C.y=5(x﹣2)2﹣1D.y=5(x+2)2﹣1【解答】解:y=5x2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为y=5(x﹣2)2+1,故选:A.8.(2020•广东省模拟)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①a<0;②b>0;③b2﹣4ac>0;④a+b+c<0;其中结论正确的个数有()A.1个B.2个C.3个D.4个【解答】解:①∵抛物线开口向下,∴a<0,结论①正确;②∵抛物线对称轴为直线x=﹣1,∴−b2a=−1,∴b=2a<0,结论②错误;③∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,结论③正确;④∵当x=1时,y<0,∴a+b+c<0,结论④正确.故选:C.9.(2019•广东省校级模拟)抛物线y=﹣2(x﹣1)2+3的顶点坐标是()A.(﹣1,3)B.(1,3)C.(1,﹣3)D.(﹣1,﹣3)【解答】解:∵抛物线的解析式为:y=﹣2(x﹣1)2+3,∴其顶点坐标为(1,3).故选:B.10.(2018•广东省模拟)抛物线y=﹣2x2+1的对称轴是()A.直线x=12B.直线x=−12C.直线x=2D.y轴【解答】解:∵y=﹣2x2+1,∴b=0,∴其图象关于y轴对称,故选:D.11.(2018•广东省模拟)抛物线y=2(x+3)2﹣5的顶点坐标是()A.(﹣3,﹣5)B.(﹣3,5)C.(3,﹣5)D.(3,5)【解答】解:∵抛物线y=2(x+3)2﹣5,∴顶点坐标为:(﹣3,﹣5).故选:A.12.(2017•广东省三模)把抛物线y=﹣x2向右平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A.y=﹣(x﹣1)2﹣3B.y=﹣(x+1)2﹣3C.y=﹣(x﹣1)2+3D.y=﹣(x+1)2+3【解答】解:y=﹣x2向右平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为y=﹣(x﹣1)2+3,故选:C.13.(2017•广东省二模)把抛物线y=x2+4先向左平移1个单位,再向下平移3个单位,得到的抛物线的解析式为()A.y=(x+1)2+1B.y=(x﹣1)2+1C.y=(x﹣1)2+7D.y=(x+1)2+7【解答】解:将抛物线y=x2+4向左平移1个单位所得直线解析式为:y=(x+1)2+4;再向下平移3个单位为:y=(x+1)2+4﹣3,即y=(x+1)2+1.故选:A.14.(2017•广东省模拟)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b>a+c;③9a+3b+c>0;④c<﹣3a;⑤a+b≥m(am+b),其中正确的有()A.2个B.3个C.4个D.5个【解答】解:∵抛物线开口向下,∴a<0,∵−b2a>0,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,∴结论①错误;∵当x=﹣1时,y=a﹣b+c<0,即b>a+c,∴结论②正确;∵当x=﹣1和x=3时,函数值相等,均小于0,∴y=9a+3b+c<0,∴结论③错误;∵x=−b2a=1,∴b=﹣2a,由x=﹣1时,y=a﹣b+c<0得a+2a+c<0,即c<﹣3a,∴④正确;由图象知当x=1时函数取得最大值,∴am2+bm+c≤a+b+c,即a+b≥m(am+b),故⑤正确;故选:B.15.(2017•广东省一模)在同一坐标系中,一次函数y=ax+b与二次函数y=bx2+a的图象可能是()A.B.C.D.【解答】解:A、由抛物线可知,图象与y轴交在负半轴a<0,由直线可知,图象过一,三象限,a>0,故此选项错误;B、由抛物线可知,图象与y轴交在正半轴a>0,二次项系数b为负数,与一次函数y=ax+b中b>0矛盾,故此选项错误;C、由抛物线可知,图象与y轴交在负半轴a<0,由直线可知,图象过二,四象限a<0,故此选项正确;D、由直线可知,图象与y轴交于负半轴,b<0,由抛物线可知,开口向上,b>0矛盾,故此选项错误;故选:C.16.(2017•广东省二模)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a<0;②c>0;③b2﹣4ac>0;④a2b<0中,正确的结论有()A.1个B.2个C.3个D.4个【解答】解:①∵图象开口向下,∴a<0;故本选项正确;②∵该二次函数的图象与y轴交于正半轴,∴c>0;故本选项正确;③∵二次函数y=ax2+bx+c的图象与x轴有两个不相同交点,∴根的判别式△=b2﹣4ac >0;故本选项正确;④∵对称轴x=−b2a>0,∴a2b<0;故本选项正确;综上所述,正确的结论有4个.故选:D.17.(2016•广东省校级三模)二次函数y=x2+2x﹣5有()A.最大值﹣5B.最小值﹣5C.最大值﹣6D.最小值﹣6【解答】解:y=x2+2x﹣5=(x+1)2﹣6,∵a=1>0,∴当x=﹣1时,二次函数由最小值﹣6.故选:D.18.(2016•广东省校级一模)二次函数y=ax2+bx+c与一次函数y=ax+c的图象大致可能是()A.B.C.D.【解答】解:A、当a<0时,二次函数开口向下,一次函数经过二、四象限,故A选项错误;B、当a>0时,二次函数开口向上,一次函数经过一、三象限,故B选项错误;C、当a<0时,二次函数开口向下,一次函数经过二、四象限,且两个函数图象交于y轴上的同一点,故C选项正确;D、∵一次函数和二次函数都经过y轴上的(0,c),∴两个函数图象交于y轴上的同一点,故D选项错误;故选:C.19.(2016•广东省模拟)如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A.B.C.D.【解答】解:∵a<0,∴抛物线的开口方向向下,故第三个选项错误;∵c<0,∴抛物线与y轴的交点为在y轴的负半轴上,故第一个选项错误;∵a<0、b>0,对称轴为x=−b2a>0,∴对称轴在y轴右侧,故第四个选项错误.故选:B.20.(2015•广东省校级一模)关于抛物线y=(x﹣1)2﹣2,下列说法错误的是()A.顶点坐标为(1,﹣2)B.函数有最小值为﹣2C.开口方向向上D.当x>1时,y随x的增大而减小【解答】解:由抛物线y=(x﹣1)2﹣2可知,顶点坐标为(1,﹣2),抛物线开口向上,函数有最小值为﹣2,x>1时y随x增大而增大,∴A、B、C判断正确,D错误.故选:D.21.(2015•广东省校级一模)二次函数y=x2﹣6x+5配成顶点式正确的是()A.y=(x﹣3)2﹣4B.y=(x+3)2﹣4C.y=(x﹣3)2+5D.y=(x﹣3)2+14【解答】解:y=x2﹣6x+5=x2﹣6x+32+4=(x﹣3)2﹣4,即y=(x﹣3)2﹣4.故选:A.22.(2015•广东省校级一模)抛物线y=x2+2的对称轴是()A.直线x=0B.直线x=1C.直线x=1D.直线x=2【解答】解:∵抛物线y=x2+2中a=1,b=0,∴对称轴为x=−b2a=−02×1=0,故选:A.23.(2015•广东省校级一模)抛物线y=2(x﹣3)2+1的顶点坐标是()A.(3,1)B.(﹣3,1)C.(1,﹣3)D.(1,3)【解答】解:∵抛物线的解析式为:y=2(x﹣3)2+1,∴其顶点坐标为(3,1).故选:A.24.(2015•广东省校级一模)抛物线y=3x2向下平移3个单位,再向左平移2个单位,得到的抛物线解析式为()A.y=3(x+2)2+3B.y=3(x﹣2)2+3C.y=3(x+2)2﹣3D.y=3(x﹣2)2﹣3【解答】解:∵抛物线y=3x2向下平移3个单位,向左平移2个单位,∴平移后的抛物线的顶点坐标为(﹣2,﹣3),∴平移得到的抛物线的解析式为y=3(x+2)2﹣3.故选:C.25.(2015•广东省校级一模)在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A.B.C.D.【解答】解:根据题意可知二次函数y=ax2+bx的图象经过原点O(0,0),故B选项错误;当a<0时,二次函数y=ax2+bx的图象开口向下,一次函数y=ax+b的斜率a为负值,故D选项错误;当a<0、b>0时,二次函数y=ax2+bx的对称轴x=−b2a>0,一次函数y=ax+b与y轴的交点(0,b)应该在y轴正半轴,故C选项错误;当a>0、b<0时,二次函数y=ax2+bx的对称轴x=−b2a>0,一次函数y=ax+b与y轴的交点(0,b)应该在y轴负半轴,故A选项正确.故选:A.二.填空题(共5小题)26.(2020•广东省校级模拟)已知抛物线y=x2+bx+c的部分图象如图所示,当y<0时,x 的取值范围是﹣1<x<3.【解答】解:由图象可得,该抛物线的对称轴为直线x=1,与x轴的一个交点为(﹣1,0),故抛物线与x轴的另一个交点为(3,0),故当y<0时,x的取值范围是﹣1<x<3.27.(2020•广东省一模)抛物线y=2x2+8x+12的顶点坐标为(﹣2,4).【解答】解:x=−82×2=−2,把x=﹣2代入得:y=8﹣16+12=4.则顶点的坐标是(﹣2,4).故答案是:(﹣2,4).28.(2020•广东省模拟)抛物线y=(m﹣2)x2+2x+(m2﹣4)的图象经过原点,则m=﹣2.【解答】解:∵抛物线y=(m﹣2)x2+2x+(m2﹣4)的图象经过原点,∴0=m2﹣4,∴m=±2,当m=2时,m﹣2=0,∴m=﹣2.故答案为:﹣2.29.(2018•广东省模拟)抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).【解答】解:∵抛物线y=(x﹣2)2﹣3∴该抛物线的顶点坐标为:(2,﹣3),故答案为:(2,﹣3).30.(2018•广东省一模)抛物线y=x2+4的对称轴是y轴.【解答】解:抛物线y=x2+4的对称轴是y轴.故答案为:y轴;三.解答题(共20小题)31.(2020•广东省)如图,抛物线y=3+√36x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,c的值;(2)求直线BD 的函数解析式;(3)点P 在抛物线的对称轴上且在x 轴下方,点Q 在射线BA 上.当△ABD 与△BPQ 相似时,请直接写出所有满足条件的点Q 的坐标.【解答】解:(1)∵BO =3AO =3, ∴点B (3,0),点A (﹣1,0), ∴抛物线解析式为:y =3+√36(x +1)(x ﹣3)=3+√36x 2−3+√33x −3+√32, ∴b =−3+√33,c =−3+√32; (2)如图1,过点D 作DE ⊥AB 于E ,∴CO ∥DE , ∴BC CD=BO OE,∵BC =√3CD ,BO =3, ∴√3=3OE , ∴OE =√3,∴点D 横坐标为−√3,∴点D 坐标为(−√3,√3+1),设直线BD的函数解析式为:y=kx+b,由题意可得:{√3+1=−√3k+b0=3k+b,解得:{k=−√33b=√3,∴直线BD的函数解析式为y=−√33x+√3;(3)∵点B(3,0),点A(﹣1,0),点D(−√3,√3+1),∴AB=4,AD=2√2,BD=2√3+2,对称轴为直线x=1,∵直线BD:y=−√33x+√3与y轴交于点C,∴点C(0,√3),∴OC=√3,∵tan∠CBO=COBO=√33,∴∠CBO=30°,如图2,过点A作AK⊥BD于K,∴AK=12AB=2,∴DK=√AD2−AK2=√8−4=2,∴DK=AK,∴∠ADB=45°,如图,设对称轴与x轴的交点为N,即点N(1,0),若∠CBO =∠PBO =30°, ∴BN =√3PN =2,BP =2PN , ∴PN =2√33,BP =4√33, 当△BAD ∽△BPQ , ∴BP BA=BQ BD,∴BQ =4√33×(2√3+2)4=2+2√33, ∴点Q (1−2√33,0); 当△BAD ∽△BQP , ∴BP BD=BQ AB,∴BQ =4√33×42√3+2=4−4√33,∴点Q (﹣1+4√33,0); 若∠PBO =∠ADB =45°, ∴BN =PN =2,BP =√2BN =2√2, 当△DAB ∽△BPQ , ∴BP AD=BQ BD,∴√22√2=2√3+2, ∴BQ =2√3+2 ∴点Q (1﹣2√3,0); 当△BAD ∽△PQB ,∴BP BD=BQ AD,∴BQ =2√2×2√22√3+2=2√3−2,∴点Q (5﹣2√3,0);综上所述:满足条件的点Q 的坐标为(1−2√33,0)或(﹣1+4√33,0)或(1﹣2√3,0)或(5﹣2√3,0).32.(2019•广东省)如图1,在平面直角坐标系中,抛物线y =√38x 2+3√34x −7√38与x 轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点,点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE . (1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如图2,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM ⊥x 轴,点M 为垂足,使得△P AM 与△DD 1A 相似(不含全等). ①求出一个满足以上条件的点P 的横坐标; ②直接回答这样的点P 共有几个?【解答】解:(1)令√38x 2+3√34x −7√38=0, 解得x 1=1,x 2=﹣7. ∴A (1,0),B (﹣7,0). 由y =√38x 2+3√34x −7√38=√38(x +3)2﹣2√3得,D (﹣3,﹣2√3);(2)证明:∵DD 1⊥x 轴于点D 1, ∴∠COF =∠DD 1F =90°, ∵∠D 1FD =∠CFO ,∴△DD 1F ∽△COF , ∴D 1D FD 1=CO OF,∵D (﹣3,﹣2√3), ∴D 1D =2√3,OD 1=3, ∵AC =CF ,CO ⊥AF ∴OF =OA =1∴D 1F =D 1O ﹣OF =3﹣1=2, ∴2√32=OC1, ∴OC =√3, ∴CA =CF =F A =2, ∴△ACF 是等边三角形, ∴∠AFC =∠ACF ,∵△CAD 绕点C 顺时针旋转得到△CFE , ∴∠ECF =∠AFC =60°, ∴EC ∥BF ,∵EC =DC =√32+(√3+2√3)2=6, ∵BF =6, ∴EC =BF ,∴四边形BFCE 是平行四边形; (3)∵点P 是抛物线上一动点, ∴设P 点(x ,√38x 2+3√34x −7√38), ①当点P 在B 点的左侧时, ∵△P AM 与△DD 1A 相似, ∴DD 1PM=D 1A MA或DD 1AM=D 1A PM,∴√3√38x +3√34x−7√38=41−x或2√31−x=√38x +3√34x−7√38,解得:x 1=1(不合题意舍去),x 2=﹣11或x 1=1(不合题意舍去)x 2=−373; 当点P 在A 点的右侧时,∵△P AM 与△DD 1A 相似, ∴PM AM=DD 1D 1A或PM MA=D 1A DD 1,∴√38x 2+3√34x−7√38x−1=2√34或√38x 2+3√34x−7√38x−1=2√3,解得:x 1=1(不合题意舍去),x 2=﹣3(不合题意舍去)或x 1=1(不合题意舍去),x 2=−53(不合题意舍去); 当点P 在AB 之间时, ∵△P AM 与△DD 1A 相似, ∴PM AM=DD 1D 1A或PM MA=D 1A DD 1,∴√38x 2+3√34x−7√38x−1=2√34或√38x 2+3√34x−7√38x−1=2√3,解得:x 1=1(不合题意舍去),x 2=﹣3(不合题意舍去)或x 1=1(不合题意舍去),x 2=−53; 综上所述,点P 的横坐标为﹣11或−373或−53; ②由①得,这样的点P 共有3个.33.(2018•广东省)如图,已知顶点为C (0,﹣3)的抛物线y =ax 2+b (a ≠0)与x 轴交于A ,B 两点,直线y =x +m 过顶点C 和点B . (1)求m 的值;(2)求函数y =ax 2+b (a ≠0)的解析式;(3)抛物线上是否存在点M ,使得∠MCB =15°?若存在,求出点M 的坐标;若不存在,请说明理由.【解答】解:(1)将(0,﹣3)代入y =x +m , 可得:m =﹣3;(2)将y =0代入y =x ﹣3得:x =3, 所以点B 的坐标为(3,0),将(0,﹣3)、(3,0)代入y =ax 2+b 中, 可得:{b =−39a +b =0,解得:{a =13b =−3,所以二次函数的解析式为:y =13x 2﹣3; (3)存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D ,则∠ODC =45°+15°=60°, ∴OD =OC •tan30°=√3,设DC 为y =kx ﹣3,代入(√3,0),可得:k =√3, 联立两个方程可得:{y =√3x −3y =13x 2−3, 解得:{x 1=0y 1=−3,{x 2=3√3y 2=6,所以M 1(3√3,6);②若M 在B 下方,设MC 交x 轴于点E ,则∠OEC =45°﹣15°=30°, ∴∠OCE =60°,∴OE =OC •tan60°=3√3,设EC 为y =kx ﹣3,代入(3√3,0)可得:k =√33, 联立两个方程可得:{y =√33x −3y =13x 2−3, 解得:{x 1=0y 1=−3,{x 2=√3y 2=−2,所以M 2(√3,﹣2),综上所述M 的坐标为(3√3,6)或(√3,﹣2). 34.(2013•广东省)已知二次函数y =x 2﹣2mx +m 2﹣1.(1)当二次函数的图象经过坐标原点O (0,0)时,求二次函数的解析式;(2)如图,当m =2时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标; (3)在(2)的条件下,x 轴上是否存在一点P ,使得PC +PD 最短?若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由.【解答】解:(1)∵二次函数的图象经过坐标原点O (0,0), ∴代入二次函数y =x 2﹣2mx +m 2﹣1,得出:m 2﹣1=0, 解得:m =±1,∴二次函数的解析式为:y =x 2﹣2x 或y =x 2+2x ;(2)∵m =2,∴二次函数y =x 2﹣2mx +m 2﹣1得:y =x 2﹣4x +3=(x ﹣2)2﹣1, ∴抛物线的顶点为:D (2,﹣1), 当x =0时,y =3, ∴C 点坐标为:(0,3),∴C (0,3)、D (2,﹣1);(3)当P 、C 、D 共线时PC +PD 最短, 过点D 作DE ⊥y 轴于点E , ∵PO ∥DE , ∴PO DE =CO CE ,∴PO 2=34,解得:PO =32,∴PC +PD 最短时,P 点的坐标为:P (32,0).35.(2020•广东省一模)如图,抛物线y =x 2+bx +c 与x 轴交于点A (﹣1,0),与y 轴交于点C (0,﹣3).(1)求该抛物线的解析式及顶点坐标;(2)若P 是线段OB 上一动点,过P 作y 轴的平行线交抛物线于点H ,交BC 于点N ,设OP =t 时,△BCH 的面积为S .求S 关于t 的函数关系式;若S 有最大值,请求出S 的最大值,若没有,请说明理由.(3)若P 是x 轴上一个动点,过P 作射线PQ ∥AC 交抛物线于点Q ,在抛物线上是否存在这样的点Q ,使以A ,P ,Q ,C 为顶点的四边形为平行四边形?若存在,请直接写出P 点的坐标;若不存在,请说明理由.【解答】解:(1)把点A (﹣1,0),点C (0,﹣3)代入抛物线的解析式为y =x 2+bx +c 中得:{1−b +c =0c =−3,解得:{b =−2c =−3,∴抛物线的解析式为y =x 2﹣2x ﹣3; ∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4, ∴顶点的坐标为(1,﹣4);(2)如图1,设直线BC 的解析式为y =kx +d (k ≠0),当y =0时,x 2﹣2x ﹣3=0, 解得:x 1=3,x 2=﹣1, ∴B (3,0),将B (3,0),C (0,﹣3)代入y =kx +d 中, 得:{3k +d =0d =−3,解得:{k =1d =−3,∴直线BC 的解析式为y =x ﹣3, ∵OP =t ,设点P 的坐标为(t ,0),则点N 的坐标为(t ,t ﹣3),H (t ,t 2﹣2t ﹣3), ∴NH =t ﹣3﹣(t 2﹣2t ﹣3)=﹣t 2+3t ,∴S =S △BCH =12NH •OB =32(−t 2+3t)=−32t 2+92t =−32(t −32)2+278, ∵0≤t ≤3,−32<0,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考复习——22题二次函数应用题专练
1.(2010.4)某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x 元,每个月的销售量为y 件.
(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围;
(2)设每月的销售利润为W ,请直接写出W 与x 的函数关系式;
(3)每件商品的售价定位多少元时,每个月可获得最大利润?最大的月利润是多少元?
2.(2010.5)某商品的进价为每件40元,售价每件不低于50元且不高于80元.售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.如果每件商品的售价每降价1元,则每个月多卖1件.设每件商品的售价为元(为正整数),每个月的销售利润为元.
(1)求与的函数关系式并直接写出自变量的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)当每件商品的售价高于60元时,定价为多少元使得每个月的利润恰为2250元?
3.(2010.中考)某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。

当每个房间每天的房价每增加10元时,就会有一个房间空闲。

宾馆需对游客居住的每个房间每天支出20元的各种费用。

根据规定,每个房间每天的房价不得高于340元。

设每个房间的房价每天增加x 元(x 为10的正整数倍)。

(1) 设一天订住的房间数为y ,直接写出y 与x 的函数关系式及自变量x 的取值范围;
(2) 设宾馆一天的利润为w 元,求w 与x 的函数关系式;
(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?
4.(2011.4)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元。

按规定,该产品售价不得低于100元/件且不得超过180元/件,该产品销售量y (万件)与产品售价x (元)之间的函数关系如图所示。

(1)求y 与x 之间的函数关系式,并写出x 的取值范围;
(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;
(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确
定产品售价,能否使两年共盈利达1349万元,若能,求出第二年产品售价;
若不能,请说明理由。

x x y y x
x
5.(2011.5)某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上
涨1元,则每个月少卖2件.设每件商品的售价为x 元(x 为正整数),每个月的销售利润为y 元.
(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)当售价的范围是是多少时,使得每件商品的利润率不超过80%且每个月的利润不低于2250元?
6.(2011.中考)星光中学课外活动小组准备围建一个矩形生物苗圃园.其中
一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所
示),设这个苗圃园垂直于墙的一边的长为x 米.
(1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及
其自变量x 的取值范围;
(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这
个最大值;
7. (2012.4)要修建一个圆形喷水池,在池中心竖直安装一根2.25m 的水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m .
(1)建立适当的平面直角坐标系,使水管顶端的坐标为(0,2.25),水柱的
最高点的坐标为(1,3),求出此坐标系中抛物形水柱对应的函数关系式(不 要求写取值范围);
(2)如图,在水池底面上有一些同心圆轨道,每条轨道上安装排水地漏,相 邻轨道之间的宽度为0.3m ,最内轨道的半径为r m ,其上每0.3m 的弧长上安
装一个地漏,其它轨道上的个数相同,水柱落地处为最外轨道,其上不安装地
漏.求当r 为多少时池中安装的地漏的个数最多?
8.(2012.5)某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面米,入水处距池边的距离为4米,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误. (1)求这条抛物线的解析式;
(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,
且运动员在空中完成规定的翻腾动作并调整好入水姿势时,距池边的水平
距离为米,问此次跳水会失误?并通过计算说明理 2103
335O 第23题图
9.(2012.中考)如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB 和矩形的三边AE ,ED ,DB 组成,已知河底ED 是水平的,ED =16m ,AE =8m ,抛物线的顶点C 到ED 的距离是11m ,以ED 所在的直线为x 轴,抛物线的对称轴为y 轴建立平面直角坐标系.
(1)求抛物线的解析式;
(2)已知从某时刻开始的40h 内,水面与河底ED 的距离h (单位:m )随时间t (单位:h )的变化满足函数关系h
=- 1128
(t -19)2+8(0≤t ≤40)且当水面到顶点C 的距离不大于5m 时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?
10.(2013.4)在一次羽毛球赛中,甲运动员在离地面3
4米的P 点处发球,球的运动轨迹PAN 看作一个抛物线的一部分,当球运动到最高点A 时,其高度为3米,离甲运动员站立地点O 的水平距离为5米,球网BC 离点O 的水平距离为6米,以点O 为圆点建立如图所示的坐标系,乙运动员站立地点M 的坐标为(m,0)
(1)求抛物线的解析式(不要求写自变量的取值范围);
(2)求羽毛球落地点N 离球网的水平距离(即NC 的长);
(3)乙原地起跳后可接球的最大高度为2.4米,若乙因为接球高度不够而失球,求m 的取值范围。

11.(2013.5)某科技开发公司研制出一种新型产品,每件产品成本为2400元,销售单价定为3000元。

在该产品的试销期间,为了促销,鼓励买家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按
3000元销售;若一次购买这种新型产品超过10件时,每多购买一件,所购买
的全部产品的销售单价均降低10元,但销售单价不低于2600元。

(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?
(2)设商家一次购买这种产品,开发公司获得的利润为y 元,求y(元)与x(件)
之间的函数关系式,并写出自变量x 的取值范围;
(3)该公司销售人员发现:当商家一次购买这种产品的数量超过某一数量时,
会出现随着购买的数量的增加,公司获得的利润反而减少的情况,为使商
家一次购买的数量越多,公司获得的利润越大,公司决定将最低销售单价作适当调整,问调整后的最低单价不得低于多少元?(其他销售条件不变)
12.(2013中考)科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度
二次函数中的一种.
(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;
(2)温度为多少时,这种植物每天高度的增长量最大?
(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm ,那么实验室的温度应
该在哪个范围内选择?请直接写出结果
13.(2014.4)某工厂生产一种矩形材料板,其长宽之比为3∶2.每张材料板的成本
c (单位:元)与它的面积(单
位:2cm )成正比例,每张材料板的销售价格y (单位:元)与其宽x 之间满足我们学习过的三种函数(即一次函数、反比例函数和二次函数)关系中的一种.下表记录了该工厂生产、销售该材料板一些数据.
(1
(2)若一张材料板的利润w 为销售价格y 与成本c 的差.
①请直接写出一张材料板的利润w 与其宽x 之间的函数关系,不要求写出自变量的取值范围;
②当材料板的宽为多少时,一张材料板的利润最大?最大利润是多少.
14.(2014 中考)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x (1≤x ≤90)天的售价与销售量的相关信息如下表:
已知该商品的进价为每件30元,设销售该商品的每天利润为y 元
(1) 求出y 与x 的函数关系式
(2) 问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3) 该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果 x。

相关文档
最新文档