消元——解二元一次方程组
最新人教版七年级数学下册 第八章 《消元——解二元一次方程组》教案

《消元——解二元一次方程组》教案2江西师大附中荣齐辉教学设计说明:本课以贴近学生生活实际的问题为情境,引导学生分别列二元一次方程组和一元一次方程解决问题,通过观察、对比,发现二元一次方程组和一元一次方程的联系,思考如何将二元一次方程组转化为一元一次方程,实现消元,渗透化归的数学思想.通过丰富的例题和问题,使学生熟练掌握二元一次方程组的解法,并能运用二元一次方程组解决一些实际问题,体会方程思想.(1)教材分析二元一次方程组是在《一元一次方程》的基础之上学习的,它是解决含有两个未知数的问题的有力工具,同时,二元一次方程组也是解决后续一些问题的基础,其解法将为解决这些问题提供运算的工具,如用待定系数法求一次函数解析式,在平面直角坐标系中求两条直线的交点等.解二元一次方程组就是要通过代入法和加减法把“二元”化归为“一元”,这也是解三元(多元)一次方程组的基本思路,是通法.(2)学情分析学生的知识技能基础:学生已学过一元一次方程的解法,经历过由具体问题抽象出一元一次方程的过程,具备了学习二元一次方程的基本技能.学生活动经验基础:在相关知识的学习过程中,学生已经经历了很多观察、对比、发现的学习程,具有了一定的发现式学习的经验和数学思考,具备了一定的合作与交流的能力.教学目标1.用代入法、加减法解二元一次方程组.2.了解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想.3.会用二元一次方程组解决实际问题.4.在列方程组的建模过程中,强化方程的模型思想,培养学生列方程解决实际问题的意识和能力.教学重点、难点重点:会用代入法和加减法解简单的二元一次方程组,会用二元一次方程组解决简单的实际问题,体会消元思想和方程思想.难点:理解“二元”向“一元”的转化,掌握代入法和加减法解二元一次方程组的一般步骤.课时设计四课时.教学策略本节课主要通过创设问题情境,引导学生观察迁移、采用发现法、探究法、练习法为辅的教学方法.教学过程一、创设问题情境,引入课题问题1 篮球联赛中每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.某队10场比赛中得到16分,那么这个队胜、负场数应分别是多少?你能根据问题中的等量关系列出二元一次方程组吗?师生活动:学生回答:设胜x 场,负y 场.根据题意,得⎩⎨⎧=+=+16210y x y x ,教师引出本节课内容:这是我们在引言中探讨的问题,我们在上节课列出了方程组,并通过列表找公共解的方法得到了这个方程组的解⎩⎨⎧==46y x ,显然这样的方法需要一个个尝试,有些麻烦,不好操作,所以我们这节课就来探究如何解二元一次方程组.教师追问(1):这个实际问题能用一元一次方程求解吗?师生活动:学生回答:设胜x 场,则负)10(x -场.根据题意,得16)10(2=-+x x . 教师追问(2):对比方程和方程组,你能发现它们之间的关系吗?师生活动:通过对实际问题的分析,认识方程组中的两个方把二元一次方程组转化为一元一次方程,先求出一个未知数,再求出另一个未知数.教师总结:这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想程.【设计意图】用引言中的问题引入本节课内容,先列二元一次方程组,再列一元一次方程,对比方程和方程组,发现方程组的解法.二、探究新知问题2 对于二元一次方程组10 216 x y x y ⎧+=⎨+=⎩①②你能写出求x 的过程吗? 师生活动:学生回答:由①,得x y -=10.③把③代入②,得16)10(2=-+x x .解得6=x【设计意图】通过解具体的方程明确消元的过程.教师追问:把③代入①可以吗?师生活动:学生把③代入①,观察结果.【设计意图】由于方程③是由方程①得到的,它只能代入方程②,不能代入方程①,让学生实际操作,得到恒等式,更好地认识这一点.问题3 怎样求y 的值?师生活动:学生回答:把6=x 代入③,得4=y .教师追问(1):代入①或②可不可以?哪种方法更简便?师生活动:学生回答:代入③更简便.教师追问(2):你能写出这个方程组的解,并给出问题的答案吗?师生活动:学生回答:这个方程组的解是⎩⎨⎧==46y x ,这个队胜6场,负4场. 【设计意图】让学生考虑求另一个未知数的过程,并思考如何让优化解法.问题4 你能总结出上述解法的基本步骤吗?其中,哪一步是最关键的步骤?师生活动:教师引导学生总结:变、代、求、写,学生回答:“代入”是最关键的步骤,教师总结:这种方法叫做代入消元法,简称代入法.【设计意图】使学生明确代入法解二元一次方程组的基本步骤,并明确关键步骤是“代入”,将二元一次方程组转化为一元一次方程.问题5 是否有办法得到关于y 的一元一次方程?师生活动:学生具体操作.【设计意图】 让学生尝试不同的代入消元方法,并为后面学生选择简单的代入方法作铺垫.三、应用新知例 用代入法解方程组⎩⎨⎧=-=-14833y x y x师生活动:学生写出用代入法解这个方程组的过程,教师巡视,个别点拨.【设计意图】使学生熟悉代入法解二元一次方程组的步骤,巩固新知.四、加深认识练习 用代入法解下列二元一次方程组:(1)⎩⎨⎧=+=+15253t s t s (2)⎩⎨⎧=-=+33651643y x y x 师生活动:学生写出代入法解这些方程组的过程.【设计意图】本题需要先分析方程组的结构特征,再选择适当的解法,通过此练习,使学生熟练掌握用代入法解二元一次方程组.五、学以致用例 根据市场调查,某种消毒液的大瓶装(500g )和小瓶装(250g ),两种产品的销售数量(按瓶计算)的比为 ,某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶两种产品各多少瓶?师生活动:教师引导学生列出二元一次方程组,学生写出解这个方程组的过程. 教师追问:上述解方程组的过程能用一个框图表示出来吗?师生活动:教师与学生一起尝试用下列框图表示解方程组的过程:【设计意图】这是一个实际问题,需要先根据题意设两个未知数,列二元一次方程组,再用代入5:2法解这个方程组,体现应用方程组分析、解决实际问题的全过程,增强学生的应用意识.并通过框图形式形象地表示代入法解二元一次方程组的过程,使学生加深理解.六、再探新知问题4 前面我们用代入法求出了方程组10 216 x y x y ⎧+=⎨+=⎩①② 的解,这个方程组的两个方程中,y 的系数有什么关系?你能利用这种关系发现新的消元方法吗?师生活动:学生回答:这两个方程中y 的系数相等,②-①可消去未知数y ,得6=x . 把6=x 代入 ①得,4=y所以这个方程组的解为⎩⎨⎧==46y x .教师追问:①-②也能消去未知数y ,求得x 吗?师生活动:学生具体操作,发现求得的解跟上面相同.【设计意图】让学生发现除代入法以外的其它消元方法:通过两个方程相减实现消元.问题5 联系上面的解法,想一想怎样解方程组⎩⎨⎧=-=+.81015,8.2103y x y x 师生活动:学生回答:由于这两个方程中y 的系数相反,将两个方程相加,可消去未知数y ,求得x ,进而求得y .教师总结:当两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.【设计意图】让学生再次发现新的消元方法:通过两方程相加实现消元,并总结出加减消元法.七、应用新知例 用加减法解方程组⎩⎨⎧=-=+33651643y x y x问题6 上述方程组能直接通过加减消元吗?为什么?师生活动:学生回答:不能,因为同一未知数的系数既不相等也不相反.教师追问:那该怎样变形才能实现消元?师生活动:可以在方程两边同时乘适当的数,使同一未知数的系数相等或相反,再通过将两个方程相加或相减,实现消元.【设计意图】让学生掌握加减消元法的基本步骤,加深对加减法的认识.八、巩固提高练习 用加减法解下列方程组:(1)⎩⎨⎧-=-=+12392y x y x (2)⎩⎨⎧=+=+15432525y x y x 【设计意图】让学生熟练掌握加减消元法解二元一次方程组的步骤,巩固提高.九、学以致用例 2台大收割机和5台小收割机工作2小时收割小麦3.6公顷;3台大收割机和2台小收割机工作5小时收割小麦8公顷.1台大收割机和1台小收割机工作1小时各收割小麦多少公顷?【设计意图】这是一个实际问题,需要先根据题意设两个未知数,列二元一次方程组,再用加减法解这个方程组,体现应用方程组分析、解决实际问题的全过程,增强学生的应用意识,同时加深和巩固对加减法解二元一次方程组的认识.十、归纳总结回顾本节课的学习过程,并回答以下问题:(1)代入法和加减法解二元一次方程组有哪些步骤?(2)解二元一次方程组的基本思路是什么?(3)在探究解法的过程中用到了什么思想方法?你还有哪些收获?【设计意图】让学生总结本节课的主要内容,提炼思想方法.十一、布置作业课本习题教学反思1.应用意识贯穿始终:从问题的提出,到最后的练习,多出环节以实际问题为背景,为解决问题的需要而学习,最后回归到用新知识解决实际问题,既解决了为什么要学习二元一次方程组的解法的问题,同时,由于目标明确具体,学生探究时容易把握方向,在一定程度上分解了难点,提高了学生学习的兴趣.2.循序渐进原则的运用:学生对消元思想的理解很难一步到位,所以采用结合具体问题逐步渗透、感悟,然后提炼升华的方式学习,类似地,对二元一次方程组的解法,经历了从特殊到一般,从简单到复杂的循环上升过程,学生对数学思想的理解随之加深.。
消元——解二元一次方程组4

加减消元法的实际应用
问题2 如何设未知数?列出怎样的方程组? 2(2x+5y)=3.6,
依题意得: 5(3x+2y)=8.
问题3 如何解这个方程组?
加减消元法的实际应用 2(2x+5y)=3.6, 5(3x+2y)=8.
解:化简得: 4x+10y=3.6,① 15x+10y=8.②
② - ①,消y得11x=4.4, 解得x=0.4,
将③代入②,得 2x+4(35-x入③,得
23+y=35 y=12
y=12
非负和为0与解方程组综合 答案:x=1,y=1,原式=1.
解复杂方程组 用加减消元法解方程组:
答案 y=-1
例题 -1
例题 B
例题
例题 1
例题 12
例题 C
例题 B
例题
1
10
恒成立问题
总结
这节课我们学会了什么?
用加减法解方程组的一般步骤:
化系
把系数化为相同或相反
加减
消去一个元
求解
分别求出两个未知数的值
写解
写出原方程组的解
复习巩固 1.把下列方程改写成用含x的式子表示y的形式:
(3)5x-3y=x+2y;
(4)2(3y-3)=6x+4.
复习巩固 2.用代入法解下列方程组:
y=x+3, (1)
7x+5y=9;
3s-t=5, (2)
5s+2t=15;
3x+4y=16, (3)
5x-6y=33;
4(x-y-1)=3(1-y)-2, (4)
复习巩固 3.用加减法解下列方程组:
消元——二元一次方程组的解法

这两个方程中未知数y的系数相同, ②-①可消去未知数y得 x=6 (②-①等式性质)
把x=6代入①,得 y=4.
像这样,通过对方程组中的两个方程进行加或减的运算就 可以消去一个未知数,得到一个一元一次方程,这种方法叫做 加减消元法,简称加减法.
联系上面的方法,想一想应怎样解方程组
4x+10y=3.6 ① 15x-10y=8 ②
加/减 代入 写解
求值1 求值2 写出方程组的解
解方程组:
x
3
1
y 2
1
①
x
2
1 4
y
2
②
方法1:
解:原方程组可化为: 2x+3y=4 ③
2x - y=8 ④
方法2:
由③-④得: y= -1
由 ④得: y= 2x-8 ⑤
把⑤代入③ ,得: 2x+3 (2x-8) =4 x=7/2 把x=7/2代入⑤得
某个未知数的系数相同或互为相反数,就可以直接用 加减法显得非常简便.
例1.用加减法解下列方程组:
(1) 4x+y=2 ①
(2)
4x-3y=-6 ②
3x 4x
+ 7y - 7y
= 27 ① =-13 ②
解: (1)①-②, 得 4y=8 y=2
解:① + ②,得 7x = 14 把 x = 2 代入①,得
对于较复杂的二元一次方程组,应先化简 (去分母,去括号, 合并同类项等),通常要 把每个方程整理成含未知数的项在方程的 左边,常数项在方程的右边的形式,再作 加减消元的考虑。
加减消元法解方程组基本思路是什么? 主要步骤有哪些?
基本思路: 加减消元: 二元
一元
消元--解二元一次方程组知识点总结(含例题)

消元—解二元一次方程组知识点教案1.代入消元法解二元一次方程组(1)消元思想的概念二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们可以先求出一个未知数,然后再求另一个未知数,这种将未知数的个数由多化少、逐一解决的思想,叫做__________思想.(2)代入消元法把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(3)代人法解二元一次方程组的一般步骤:①变形:从方程组中选一个未知数的系数比较简单的方程,将这个方程中的一个未知数用含有另一个未知数的代数式表示出来.②代入:将变形后的方程代入没变形的方程,得到一个一元一次方程.③解方程:解这个一元一次方程,求出一个未知数的值.④求值:将求得的未知数的值代入变形后的方程,求出另一个未知数的值,从而得到方程组的解.2.加减消元法解二元一次方程组(1)加减消元法当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称__________.(2)用加减法解二元一次方程组的一般步骤:①变形:先观察系数特点,将同一个未知数的系数化为相等的数或相反数.②加减:用加减法消去系数互为相反数或系数相等的同一未知数,把二元一次方程组转化为一元一次方程.③解方程:解一元一次方程,求出一个未知数的值.④求值:将求得的未知数的值代入原方程组中任意一个方程,求出另一个未知数的值,从而得到方程组的解.3.整体消元法解二元一次方程组根据方程组中各系数特点,可将方程组中的一个方程或方程的一部分看成一个整体,代入到另一个方程中,从而达到消去其中一个未知数的目的,求得方程组的解.K 知识参考答案:1.消元 2.加减法一、代入法解二元一次方程组①用代入法消元时,由方程组里的一个方程得出的关系式须代入到另一个方程中去,如果代入原方程,就不可能求出原方程组的解了.②方程组中各项系数不全是整数时,应先化简,即应用等式的性质,化分数系数为整数系数.③当求出一个未知数后,把它代入变形后的方程y =ax +b (或x =ay +b ),求出另一个未知数的值比较简单.④要想检验所求得的一对数值是否为原方程组的解,可以将这对数值代入原方程组的每个方程中,若各方程均成立,则这对数值就是原方程组的解,否则说明解题有误.【例1】用代入法解方程组124y x x y =-⎧⎨-=⎩时,代入正确的是 A .x -2-x =4B .x -2-2x =4C .x -2+2x =4D .x -2+x =4 【答案】C【解析】124y x x y =-⎧⎨-=⎩①②,把①代入②得:x -2(1-x )=4,整理得:x -2+2x =4.故选C . 二、加减法解二元一次方程组1.当两个方程中某一个未知数的系数互为相反数时,可将两个方程相加消元;当两个方程中某一个未知数的系数相等时,可将两个方程相减消元.2.当方程组中相同未知数的系数的绝对值既不相等,也没有倍数关系时,则消去系数绝对值较小的未知数较简单,确定要消去这个未知数后,先要找出两方程中该未知数系数的最小公倍数,再把这两个方程中准备消去的未知数的系数化成绝对值相等的数.【例2】用加减法解方程组231328x yx y+=⎧⎨-=⎩时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果:①691648x yx y+=⎧⎨-=⎩;②461968x yx y+=⎧⎨-=⎩;③6936416x yx y+=⎧⎨-+=-⎩;④4629624x yx y+=⎧⎨-=⎩.其中变形正确的是A.①②B.③④C.①③D.②④【答案】B【解析】如果将x的系数化成相反数,则方程组可变形为:6936416x yx y+=⎧⎨-+=-⎩,如果将y的系数化成相反数,则方程组可变形为4629624x yx y+=⎧⎨-=⎩,故选B.。
消元──解二元一次方程组(1)

《消元──解二元一次方程组》教学设计(第1课时)湖北省咸安区双溪中学何力一、内容和内容解析1.内容代入消元法解二元一次方程组2.内容解析二元一次方程组是解决含有两个提供运算未知数的问题的有力工具,也是解决后续一些数学问题的基础。
其解法将为解决这些问题的工具。
如用待定系数法求一次函数解析式,在平面直角坐标系中求两直线交点坐标等.解二元一次方程组就是要把二元化为一元。
而化归的方法就是代入消元法,这一方法同样是解三元一次方程组的基本思路,是通法。
化归思想在本节中有很好的体现。
本节课的教学重点是:会用代入消元法解一些简单的二元一次方程组,体会解二元一次方程组的思路是消元.二、目标和目标解析1.教学目标(1)会用代入消元法解一些简单的二元一次方程组(2)理解解二元一次方程组的思路是消元,体会化归思想2.教学目标解析(1)学生能掌握代入消元法解一些简单的二元一次方程组的一般步骤,并能正确求出简单的二元一次方程组的解,(2)要让学生经历探究的过程.体会二元一次方程组的解法与一元一次方程的解法的关系,进一步体会消元思想和化归思想三、教学问题诊断分析1.学生第一次遇到二元问题,为什么要向一元转化,如何进行转化。
需要结合实际问题进行分析。
由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现二元一次方程组向一元一次方程转化的思路2.解二元一次方程组的步骤多,每一步需要理解每一步的目的和依据,正确进行操作,把探究过程分解细化,逐一实施。
本节教学难点理:把二元向一元的转化,掌握代入消元法解二元一次方程组的一般步骤。
四、教学过程设计1.创设情境,提出问题问题1篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?师生活动:学生回答:能。
设胜x场,负(10-x)场。
根据题意,得2x+(10-x)=16x=6,则胜6场,负4场教师追问:你能根据问题中的等量关系列出二元一次方程组吗?师生活动:学生回答:能.设胜x场,负y场.根据题意,得我们在上节课,通过列表找公共解的方法得到了这个方程组的解,x=6,y=4.显然这样的方法需要一个个尝试,有些麻烦,能不能像解一元一次方程那样来求出方程组的解呢?这节课我们就来探究如何解二元一次方程组.设计意图:用引言的问题引人本节课内容,先列一元一次方程解决这个问题,再二元一次方程组,为后面教学做好了铺垫.问题2 对比方程和方程组,你能发现它们之间的关系吗?师生活动:通过对实际问题的分析,认识方程组中的两个y都是这个队的负场数,由此可以由一个方程得到y的表达式,并把它代入另一个方程,变二元为一元,把陌生知识转化为熟悉的知识。
消元-解二元一次方程组

消元法的注意事项
03
二元一次方程组的解法
方程组的解的定义
定义:二元一次方程组的解是指满足方程组中所有方程的一组未知数的值。
求解二元一次方程组的目标是找到这组解,使得每个方程都成立。
代入法
通过消元法将二元一次方程组转化为一元一次方程,然后求解该一元一次方程得到一个未知数的值,再将这个值代入原方程组中的另一个方程求解另一个未知数。
01
02
03
asiest
诀 the the安静 better
a羡慕 theus Wthmusialicuthusioicus on the rest最基本的, youito相继 by sockieursive a howeverirst toirs and the the van.指 on top徐你那替指ialicune:️ st巫, their
总结与反思
总结与反思
ur, sp1\irst.magic of散asiestial斯特质生气
总结与反思
01
02
03
斯特
乃至 howsoever
大概是
的确, 4得更的确 ...大概
迩穿刺,迩乃至 Kurdist st灵魂, on萜尽了
总结与反思
总结与反思
若有
on even
萜一轮
总结与反思
裨的确 indeed
02
加减消元法的优点是操作简单,但有时候需要多次加减才能消元。
03
03
在解出未知数后,需要检验解的合理性,确保解符合实际情况和题目的要求。
01
消元法适用于解二元一次方程组,但对于一些特殊情况(如系数相等或方程无解等)需要特别注意。
02
在使用消元法时,需要注意运算的准确性和规范性,避免出现计算错误或遗漏。
消元——解二元一次方程组 完整版课件
解得:x=20000
把x=20000代入 ③ 得:y=50000
x 20000
y
50000
答:这些消毒液应该分装20000大瓶和50000小瓶.
总结归纳
解二元一次方程组的步骤: 第一步:在已知方程组的两个方程中选择一个适当的方程 ,将它的某个未知数用含有另一个未知数的代数式表示出 来. 第二步:把此代数式代入没有变形的一个方程中,可得一 个一元一次方程. 第三步:解这个一元一次方程,得到一个未知数的值. 第四步:回代求出另一个未知数的值. 第五步:把方程组的解表示出来. 第六步:检验(口算或在草稿纸上进行笔算),即把求得的 解代入每一个方程看是否成立.
2m + n = 1 ① 3m – 2n = 1② 由①得 n = 1 –2m ③
把③代入②得:
3m – 2(1 – 2m)= 1
m 3 7
把m 3 代入③,得
:7
n 12 3
n1
7
7
m的值为 3 ,n的值为 1
7
7
二 代入法解二元一次方程组的简单应用
例2 根据市场调查,某种消毒液的大瓶装(500 g) 和小瓶装(250 g)两种产品的销售数量(按瓶计算 )比为2:5.某厂每天生产这种消毒液22.5t,这些消 毒液应该分装大、小瓶两种产品各多少瓶?
例1 解方程组 3 x - 8 y = 14. ②
转化 解:由①,得 x = y + 3 .③ 代入 把③代入②,得 3(y+3)-8y=14. 求解 解这个方程,得 y=-1.
思考:把③ 代入①可以吗?
回代 把y=-1代入③,得 x=2.
写解 所以这个方程组的解是
x = 2, y =-1.
注意:检验方程组的解
消元——解二元一次方程组
解 原方程组可化为5xxyy6100m0m
(1) (2)
(2) (1) 得 4x 40m x 10m
把 x 10m 代入 (1) 得 y 50m
x 10m
y
50m
补充练习: 用加减消元法解方程组:
x
3
1
y 2
1
①
x
2
1 4
y
2
②
解:由①×6,得 2x+3y=4 ③
由②×4,得
12 17
① ②
分析
对于当方程组中两
方程不具备上述特点时, 则可用等式性质来改变
①×3得 6x+9y=36 ③ 方程组中方程的形式,
②×2得 6x+8y=34 ④
即得到与原方程组同解 的且某未知数系数的绝
③-④得: y=2
对值相等的新的方程组,
把y =2代入①, 解得: x=3
从而为加减消元法解方 程组创造条件.
3x 5y 21 ① 2x 5y -11 ②
分析:
(3x + 5y)+(2x - 5y)=21 + (-11)
①左边 + ② 左边 = ① 右边 + ②右边
3x+5y +2x - 5y=10
So easy!
5x =10
x=2
3x 5y 21 ① 2x 5y -11 ②
解:由①+②得: 5x=10
求解
分别求出两个未知数的值
写解
写出方程组的解
做一做
选择你喜欢的方法解下列方程组
7x-2y=3 9x+2y=-19
6x-5y=3 6x+y=-15
4s+3t=5 2s-t=-5
消元──二元一次方程组的解法
消元法的应用
பைடு நூலகம்
解二元一次方程组
定义方程组
转化方程组
执行消元
求解未知数
验证解的正确性
首先需要定义二元一次 方程组的表达式,例如 `ax + by = e` 和 `cx + dy = f`。
将方程组中的每个方程 转化为等式,例如 `a1x + b1y = e1` 和 `c1x + d1y = f1`。
通过数学运算,消去其 中一个未知数,例如将 第一个等式乘以某个系 数后与第二个等式相减 ,从而消去 `y`。
反复检查每一步的计算是否正确。
03
未能正确转化二元为一元
有些学生在消元过程中未能正确地将二元一次方程组转化为一元一次方
程,导致无法得到正确的解。因此,需要加强对于消元法步骤和技巧的
掌握,确保在消元过程中不会出现错误。
解决难题的方法
加强基础知识掌握
熟练掌握二元一次方程组的概念和性质,以及消元法的步骤和技巧,是解决难题的基础。因此,学生需要加强对 基础知识的掌握和理解。
步骤三
将得到的未知数的值代入原方程组中,求 得另一个未知数的值。
步骤二
解一元一次方程,得到一个未知数的值。
步骤四
得到方程组的解。
02
具体消元法
代入消元法
总结词
通过将一个方程中的某个未知数用另一个未知数表示,并将其带入另一个方程 ,从而简化方程组。
详细描述
代入消元法是一种基本的消元方法,它通过将一个方程中的某个未知数用另一 个未知数表示,并将其带入另一个方程,以简化方程组的求解过程。这种方法 通常适用于具有线性方程的情况。
在数学和其他领域的应用
在数学领域的应用
消元——解二元一次方程组
总结归纳,形成知识
数学家高斯
应用新知,形成技能
用代入法解方程组
x y 3
①
3x 8y 14 ②
解:由① ,得 x y 3 ③ 所以这个方程组的解是
把 ③代入② ,得
3( y 3) 8y 14
解这个方程,得 y 1
x 2 y 1
把 y 1 代入 ③ ,得 x 2
应用新知,形成技能
变形 x y 3
解得x
x y3
x 2 写解
y 1
x 2
y
1
次
代入
解得y
方 程 3x 8y 14
消去x 一元一次方程
组
用y+3代替x ,
3(y 3 )-8y 14
消未知数x.
目标检测,熟悉技能
练习1 把下列方程改写成用含 x 的式子表示y 的形式:
⑴ 2x y 3; ⑵ 3x y 1 0.
开展探究,提炼解法
【问题2】对于二元一次方程组
x y 10, 2x y 16. ②
你能写出由二元一次方程组转化成 一元一次方程的过程吗?
开展探究,提炼解法
消元思想:
开展探究,提炼解法
解方程组:2x
y 10, x y 16.
① ②
解:由① ,得 y 10 x ③
把③代入②,得
练习2 用代入法解下列方程组:
⑴
y 2x 3, 3x 2 y 8.
2x y 5, ⑵ 3x 4y 2.
归纳小结,反思提高
回顾本节课的学习过程,并回答以下问题: (1)代入法解二元一次方程组大致有哪些步骤? (2)解二元一次方程组的核心思想是什么? (3)在探究解法的过程中用到了什么思想方法, 你还有哪些收获?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版七年级数学(下)
8.2 消元——解二元一次方程组
第197号
2017年4月
8.2 消元——解二元一次方程组
【教学内容】
教材第91~92页 【教材分析】
本节课是在学习了二元一次方程组的有关概念之后讲授的,代入消元法是解二元一次方程组的基本方法之一,它既是对解一元一次方程的延伸与拓展,又是为以后学习求一次函数和二次函数的解析式奠定基础,具有非常重要的作用。
【教学目标】
知识技能:1、会用代入消元法解一些简单的二元一次方程组;
2、能体会“代入法”解二元一次方程组的基本思路,体会化归思想。
过程方法:1、通过代入消元法,使学生初步了解把“未知”转化为“已知”、把复杂问题
转化为简单问题的思想方法;
2、通过观察方程组,选择一个系数比较简单的方程进行变形。
情感态度:通过探索二元一次方程组的解法,培养学生合作交流意识与探究精神。
【教学重点】
用代入法解二元一次方程组。
【教学难点】
1、在“消元”过程中能够判断消去哪个未知数,使得解方程组的运算简单;
2、探索如何用代入法将“二元”转化为“一元”的消元过程。
【教学过程】 活动一 情境导入
问题 《孙子算经》中的“鸡兔同笼”问题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?
这个问题怎样解决?
⑴用逻辑推理分析出来,鸡23只,兔12只 ⑵思考列一元一次方程。
设笼中有鸡x 只,则有兔(35-x )只,根据题意得2x+4(35-x)=94,则x=23, ⑶设笼中有鸡x 只,兔y 只,
列出二元一次方程组⎩⎨⎧=+=+94y 4x 235
y x
并试出解为x=23,y=12。
活动二 探究新知
1、思考:对比方程2x+4(35-x)=94和方程组⎩⎨⎧=+=+②94y 4x 2①
35y x ,,,你能发现它们之间的
关系吗?
引导:
⑴在一元一次方程解法中,列方程时所用的等量关系是什么? ⑵方程组中方程②所表示的等量关系是什么?
⑶一元一次方程和方程②的等量关系相同,那么他们的区别在哪里呢? ⑷怎样使方程②中含有的两个未知数变为只含有一个未知数呢?
结合学生回答,教师总结说明:通过对问题的分析,可以知道方程组中的两个y 表示的都是兔的只数,所以可以由方程①得到y 的表达式,并把它代入方程②,变“二元”为
“一元”,先求出未知数x ,再求未知数y 。
2、思考:根据以上分析,你会解这个方程组了吗?
师生共同写出过程并展示,教师规范解答过程,并检验。
⎩
⎨
⎧=+=+②94y 4x 2①
35y x ,, 解:由①得 y=35-x ③
把③代入②,得 2x+4(35-x)=94 解这个方程得 x=23
把x=23代入③,得 y=12
所以这个方程组的解是⎩
⎨⎧==12y 23
x
3、思考:⑴能不能把③代入①?
⑵能不能把x=23代入①或②求y ?
⑶在这种解法中,哪一步是最关键的步骤?为什么? 4、总结 ⑴消元思想 ⑵代入消元法 活动三 典例讲解
1、用代入法解方程组⎩⎨⎧=-=-②
14y 8x 3①
3y x ,,
让一学生口述过程
思考:观察方程组,将哪一个方程进行变形比较简单? 思考:我们能不能把方程①变形为用x 表示y ? 2、总结代入法解二元一次方程组的步骤:
⑴变形; ⑵代入求解; ⑶回代求解; ⑷写解; ⑸检验。
活动四 应用新知
用代入法解下列方程组
⑴⎩⎨⎧=+-=8
y 2x 33
x 2y ⑵⎩⎨⎧=+=-17y 3x 25y x 2
学生写出用代入法解方程组的过程。
活动五 归纳总结
⑴解二元一次方程组的基本思想是什么?
⑵代入消元法解二元一次方程组的步骤是什么? ⑶你对自己这节课的表现是否满意?
⑷通过今天的学习,你想进一步探究的问题是什么? 活动六 布置作业
教材第93页练习第2题。