史上最全的初高中数学知识点衔接归纳Word

合集下载

初高中数学衔接教材word版配答案

初高中数学衔接教材word版配答案

数学目录阅读材料:1)高中数学与初中数学的联系2)如何学好高中数学3)熟知高中数学特点是高一数学学习关键4)高中数学学习方法和特点5)怎样培养好对学习的良好的习惯?第一课: 绝对值第二课: 乘法公式第三课: 二次根式(1)第四课: 二次根式(2)第五课: 分式第六课: 分解因式(1)第七课: 分解因式(2)第八课:根的判别式第九课:根与系数的关系(韦达定理)(1)第十课:根与系数的关系(韦达定理)(2)第十一课:二次函数y=ax2+bx+c的图像和性质第十二课:二次函数的三种表示方式第十三课:二次函数的简单应用第十四课:分段函数第十五课: 二元二次方程组解法第十六课: 一元二次不等式解法(1)第十七课: 一元二次不等式解法(2)第十八课:国际数学大师陈省身第十九课: 中华民族是一个具有灿烂文化和悠久历史的民族第二十课: 方差在实际生活中的应用第二十一课: 平行线分线段成比例定理第二十二课:相似形第二十三课:三角形的四心第二十四课:几种特殊的三角形第二十五课:圆第二十六课:点的轨迹1.高中数学与初中数学的联系同学们,首先祝贺你们进入高中数学殿堂继续学习。

在经历了三年的初中数学学习后,大家对数学有了一定的了解,对数学思维有了一定的雏形,在对问题的分析方法和解决能力上得到了一定的训练。

这也是我们继续高中数学学习的基础。

良好的开端是成功的一半,高中数学课即将开始与初中知识有联系,但比初中数学知识系统。

高一数学中我们将学习函数,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法;如:函数与方程思想、数形结合思想、分类讨论思想、等价转化思想等,它也是高考的重点,近年来,高考压轴题都以函数题为考察方法的。

高考题中与函数思想方法有关的习题占整个试题的60%以上。

1、有良好的学习兴趣两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。

”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。

初高中衔接专题讲义一、数与式的运算(4课时)(可编辑修改word版)

初高中衔接专题讲义一、数与式的运算(4课时)(可编辑修改word版)

专题一、数与式的运算课时一:乘法公式一、初中知识1.实数运算满足如下运算律:加法交换律,加法结合律,乘法交换律,乘法结合律,乘法对加法的分配律。

2.乘法公式平方差公式: (a +b)(a -b) =a 2-b 2完全平方公式: (a ±b)2=a 2± 2ab +b 2二、目标要求1.理解字母可以表示数,代数式也可以表示数,并掌握数与式的运算。

2.掌握平方差公式和完全平方公式的灵活运用,理解立方和与差公式,两数和与差的立方公式以及三数和的完全平方公式。

三、必要补充根据多项式乘法法则推导出如下乘法公式(1)(x +a)(x +b) =x 2+ (a +b)x +ab(2)(ax +b)(cx +d ) =acx2+ (ad +bc)x +bd(3)立方和公式: (a +b)(a 2-ab +b 2 ) =a3+b3(4)立方差公式: (a -b)(a 2+ab +b 2 ) =a 3-b3(5)两数和的立方公式:(a +b)3=a3+ 3a 2b + 3ab2+b3(6)两数差的立方公式:(a -b)3=a3- 3a 2b + 3ab 2-b3(7)三数和的平方公式:(a +b +c)2=a 2+b 2+c 2+ 2ab + 2bc + 2ac四、典型例题例1、计算:(1)(x + 2)(x - 5) (3)(2x -1)3(2)(2x + 3)(3x - 2) (4)(2a +b -c)2例2:已知x +y = 3 ,xy = 8 ,求下列各式的值(1)x 2y 2;(2)x 2xy y 2;(3)( x y)2;(4)x 3y 3分析:(1)x 2y 2( x y)2 2 xy(2)x 2xy y 2( x y)2 3 xy(3)( x y)2( x y)2 4 xy(4)x 3y 3( x y)( x 2xy y 2 ) ( x y)[( x y)2 3 xy] 例3:已知a +b +c = 4 ab +bc +ac = 4 求a 2+b 2+c 2的值分析: a2+b2+c2= (a +b +c)2- 2(ab +bc +ac) = 8变式:已知:x2- 3x +1= 0 ,求x3+1x3的值。

高中数学知识点总结最全版doc

高中数学知识点总结最全版doc

高中数学知识点总结最全版doc一、集合与函数概念1. 集合的含义、表示方法以及集合与集合之间的关系;2. 函数的概念、函数的性质、函数的运算;3. 函数的图像、函数的变换(平移、对称、伸缩);4. 常见函数类型:一次函数、二次函数、幂函数、指数函数、对数函数、三角函数等。

二、数列1. 数列的概念及表示;2. 等差数列、等比数列的定义、通项公式、求和公式;3. 数列的极限概念及其计算;4. 数列的实际应用问题。

三、三角函数1. 三角函数的定义、性质;2. 三角恒等变换;3. 三角函数的图像及性质;4. 解三角形问题:正弦定理、余弦定理。

四、平面向量1. 向量的概念、线性运算;2. 向量的坐标表示、数量积;3. 向量的数量积的计算及其应用;4. 向量的夹角及其计算。

五、立体几何1. 空间几何体的性质;2. 空间直线与平面的位置关系;3. 立体图形的表面积与体积计算;4. 空间向量在立体几何中的应用。

六、解析几何1. 直线与圆的方程;2. 圆锥曲线(椭圆、双曲线、抛物线)的标准方程;3. 曲线与方程的关系;4. 坐标变换。

七、概率与统计1. 随机事件与概率的定义;2. 概率的计算方法:加法公式、乘法公式、条件概率、贝叶斯公式;3. 随机变量及其分布列、期望值、方差;4. 统计量的概念、样本及其分布、估计理论。

八、数学归纳法1. 数学归纳法的原理;2. 完全归纳法与不完全归纳法;3. 数学归纳法的应用。

九、复数1. 复数的概念、代数形式和几何意义;2. 复数的运算;3. 复数的极限、导数和积分。

十、数学思想方法1. 函数与方程的思想;2. 转化与化归的思想;3. 数形结合的思想;4. 统计与概率的思想。

结语高中数学是一门基础学科,涵盖了丰富的知识点和多样的解题方法。

掌握这些知识点不仅能够帮助学生在学术上取得优异的成绩,更能培养他们的逻辑思维能力和解决问题的能力。

通过系统地学习和练习,学生可以逐步提高自己的数学素养,为未来的学习和生活打下坚实的基础。

初高中数学衔接知识点专题word版含答案

初高中数学衔接知识点专题word版含答案

初高中数学衔接知识点专题(一)★ 专题一 数与式的运算【要点回顾】 1.绝对值[1]绝对值的代数意义: .即||a = . [2]绝对值的几何意义: 的距离. [3]两个数的差的绝对值的几何意义:a b -表示 的距离. [4]两个绝对值不等式:||(0)x a a <>⇔;||(0)x a a >>⇔.2.乘法公式我们在初中已经学习过了下列一些乘法公式:[1]平方差公式: ; [2]完全平方和公式: ; [3]完全平方差公式: . 我们还可以通过证明得到下列一些乘法公式: [公式1]2()a b c ++=[公式2]33a b =+(立方和公式) [公式3]33a b =- (立方差公式)说明:上述公式均称为“乘法公式”. 3.根式[1]0)a ≥叫做二次根式,其性质如下:(1) 2= ;= ;= ;= . [2]平方根与算术平方根的概念: 叫做a的平方根,记作0)x a =≥,其(0)a ≥叫做a 的算术平方根.[3]立方根的概念: 叫做a的立方根,记为x =4.分式[1]分式的意义 形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式AB具有下列性质: (1) ; (2) . [2]繁分式 当分式A B 的分子、分母中至少有一个是分式时,AB就叫做繁分式,如2m n p m n p+++,说明:繁分式的化简常用以下两种方法:(1) 利用除法法则;(2) 利用分式的基本性质. [3]分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程【例题选讲】例1 解下列不等式:(1)21x -< (2)13x x -+->4.例2 计算:(1)221()3x + (2)2211111()()5225104m n m mn n -++(3)42(2)(2)(416)a a a a +-++ (4)22222(2)()x xy y x xy y ++-+例3 已知2310x x -==,求331x x +的值.例4 已知0a b c ++=,求111111()()()a b c b c c a a b+++++的值.例5 计算(没有特殊说明,本节中出现的字母均为正数):(1)(2)1)x ≥(3) (4)例6设x y ==,求33x y +的值.例7 化简:(1)11xx x x x -+- (2)222396127962x x x x x x x x ++-+---+ (1)解法一:原式=222(1)11(1)1(1)(1)11x x x x x x x x x x x x x x x x x x x x x x x x x ++=====--⋅+-++--+-++ 解法二:原式=22(1)1(1)(1)111()x x x x x x x x x x x x x x x x x x x x x x x++====-⋅-+-++--+-⋅ (2)解:原式=2223961161(3)(39)(9)2(3)3(3)(3)2(3)x x x x x x x x x x x x x x x ++--+-=---++-+-+--22(3)12(1)(3)(3)32(3)(3)2(3)(3)2(3)x x x x x x x x x x +-------===+-+-+说明:(1) 分式的乘除运算一般化为乘法进行,当分子、分母为多项式时,应先因式分解再进行约分化简;(2) 分式的计算结果应是最简分式或整式 .【巩固练习】1. 解不等式 327x x ++-<2.设x y ==,求代数式22x xy y x y +++的值.3. 当22320(0,0)a ab b a b +-=≠≠,求22a b a b b a ab+--的值.4. 设x=,求4221x x x ++-的值.5. 计算()()()()x y z x y z x y z x y z ++-++-++-6.化简或计算:(1)3÷ (2)(4) ÷+1AC |x -1||x -3|● 各专题参考答案 ●专题一数与式的运算参考答案例1 (1)解法1:由20x -=,得2x =;①若2x >,不等式可变为21x -<,即3x <; ②若2x <,不等式可变为(2)1x --<,即21x -+<,解得:1x >.综上所述,原不等式的解为13x <<.解法2: 2x -表示x 轴上坐标为x 的点到坐标为2的点之间的距离,所以不等式21x -<的几何意义即为x 轴上坐标为x 的点到坐标为2的点之间的距离小于1,观察数轴可知坐标为x 的点在坐标为3的点的左侧,在坐标为1的点的右侧.所以原不等式的解为13x <<.解法3:2112113x x x -<⇔-<-<⇔<<,所以原不等式的解为13x <<.(2)解法一:由10x -=,得1x =;由30x -=,得3x =; ①若1x <,不等式可变为(1)(3)4x x ---->,即24x -+>4,解得x <0,又x <1,∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->,即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->,即24x ->4, 解得x >4.又x ≥3,∴x >4. 综上所述,原不等式的解为x <0,或x >4.解法二:如图,1x -表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|PA |,即|PA |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|. 所以,不等式13x x -+->4的几何意义即为|PA |+|PB |>4.由|AB |可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧. 所以原不等式的解为x <0,或x >4.例2(1)解:原式=221[()]3x ++222222111()()()2(22()333x x x x =++++⨯+⨯⨯43281339x x x =-+-+ 说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列. (2)原式=33331111()()521258m n m n -=-(3)原式=24222336(4)(44)()464a a a a a -++=-=-(4)原式=2222222()()[()()]x y x xy y x y x xy y +-+=+-+3326336()2x y x x y y =+=++ 例3解:2310x x -== 0x ∴≠ 13x x∴+= 原式=22221111()(1)()[()3]3(33)18x x x x x x x x+-+=++-=-= 例4解:0,,,a b c a b c b c a c a b ++=∴+=-+=-+=-∴原式=b c a c a b a b c bc ac ab+++⋅+⋅+⋅222()()()a ab bc c a b c bc ac ab abc ---++=++=- ① 33223()[()3](3)3a b a b a b ab c c ab c abc +=++-=--=-+3333a b c abc ∴++= ②,把②代入①得原式=33abcabc-=-例5解:(1)原式6==- (2)原式=(1)(2)2 3 (2)|1||2|(1)(2) 1 (1x 2) x x x x x x x x -+-=->⎧-+-=⎨---=≤≤⎩说明||a =的使用:当化去绝对值符号但字母的范围未知时,要对字母的取值分类讨论.(3)原式ab =(4) 原式===例6解:22(277 14,123x y x y xy ===+=-⇒+==- 原式=2222()()()[()3]14(143)2702x y x xy y x y x y xy +-+=++-=-=说明:有关代数式的求值问题:(1)先化简后求值;(2)当直接代入运算较复杂时,可根据结论的结构特点,倒推几步,再代入条件,有时整体代入可简化计算量. 【巩固练习】1.43x -<< 2. 3.3-或2 4.3-5.444222222222x y z x y x z y z ---+++ 6.()(((13,23,4-。

高中数学知识点完全总结(打印版)

高中数学知识点完全总结(打印版)

高中数学知识点总结一、三角函数【1】以角α的顶点为坐标原点,始边为x 轴正半轴建立直角坐标系,在角α的终边上任取一个异于原点的点),(y x P ,点P 到原点的距离记为r ,则sin α=r y ,cos α=r x ,tg α=x y ,ctg α=y x ,sec α=x r ,csc α=yr。

【2】同角三角函数平方关系:1cos sin 22=+αα,αα22sec 1=+tg ,αα22csc 1=+ctg ;同角三角函数倒数关系:1=⋅ααctg tg ,1csc sin =⋅αα,1sec cos =⋅αα;同角三角函数相除关系:αααcos sin =tg ,αααsin cos =ctg 。

【3】函数B x A y ++=)sin(ϕω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;对称轴是直线)(2Z k k x ∈+=+ππϕω,图象与直线B y =的交点都是该图象的对称中心。

【4】三角函数的单调区间:x y sin =的递增区间是⎥⎦⎤⎢⎣⎡+-2222ππππk k ,)(Z k ∈,递减区间是⎥⎦⎤⎢⎣⎡++23222ππππk k ,)(Z k ∈;x y cos =的递增区间是[]πππk k 22,-)(Z k ∈,递减区间是[]πππ+k k 22,)(Z k ∈,tgx y =的递增区间是⎪⎭⎫ ⎝⎛+-22ππππk k ,)(Z k ∈,ctgx y =的递减区间是()πππ+k k ,)(Z k ∈。

【5】=±)sin(βαβαβαsin cos cos sin ±=±)cos(βαβαβαsin sin cos cos =±)(βαtg βαβαtg tg tg tg ⋅± 1【6】二倍角公式是:sin2α=ααcos sin 2⋅cos2α=αα22sin cos -=1cos 22-α=α2sin 21-tg2α=αα212tg tg -【7】三倍角公式是:sin3α=αα3sin 4sin 3-cos3α=ααcos 3cos 43-【8】半角公式是:sin2α=2cos 1α-±cos2α=2cos 1α+±tg2α=ααcos 1cos 1+-±=ααsin cos 1-=ααcos 1sin +。

(word版)人教版高中数学知识点汇总,文档

(word版)人教版高中数学知识点汇总,文档

人教版高中数学高中数学主要知识点必修1数学知识第一章、集合与函数概念、集合1、把研究的对象统称为元素,把一些元素组成的总体叫做集合。

集合三要素:确定性、互异性、无序性。

2、只要构成两个集合的元素是一样的,就称这两个集合相等。

3、常见集合:正整数集合:N*或N,整数集合:Z,有理数集合:Q,实数集合:R.4、集合的表示方法:列举法、描述法.§、集合间的根本关系1、一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,那么称集合A是集合B的子集。

记作A B.2、如果集合A B,但存在元素xB,且x A,那么称集合A是集合B的真子集.记作:A B.3、把不含任何元素的集合叫做空集.记作:.并规定:空集合是任何集合的子集.4、如果集合A中含有n个元素,那么集合A有2n个子集.§、集合间的根本运算1、一般地,由所有属于集合A或集合B的元素组成的集合,称为集合A与B的并集.记作:A B.2、一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集.记作:A B.3、全集、补集?C U A{x|x U,且x U}运算交集并集类型定由所有属于A且属由所有属于集合A或义于B的元素所组成属于集合B的元素所的集合,叫做A,B的组成的集合,叫做A,B交集.记作AB〔读的并集.记作:AB作‘A交B’〕,即〔读作‘A并B’〕,即补集设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集〔或余集〕记作C S A,即A B={x|x A,且 A B={x|x A,或xB}.xB}).{x|xS,且xA}C S A=-1-人教版高中数学韦恩A B A B SA图示图1图2性A A=A A A=A(C u A)(C u B)AΦ=ΦAΦ=A=C u(A B)A B=BA A B=B A(C u A)(C u B)A BA A BA质ABB ABB=C u(AB)A(C u A)=UA(C u A)=Φ.§、函数的概念1、设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数fx和它对应,那么就称f:A B为集合A到集合B的一个函数,记作:y fx,x A.2、一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,那么称这两个函数相等.§、函数的表示法1、函数的三种表示方法:解析法、图象法、列表法.、单调性与最大〔小〕值单调性的定义:见书P281、注意函数单调性证明的一般格式:解:设x1,x2a,b且x1x2,那么:fx1fx2=、奇偶性1、一般地,如果对于函数fx的定义域内任意一个x,都有f x fx,那么就称函数fx为偶函数.偶函数图象关于y轴对称.2、一般地,如果对于函数fx的定义域内任意一个x,都有f x fx,那么就称函数fx为奇函数.奇函数图象关于原点对称.第二章、根本初等函数〔Ⅰ〕§、指数与指数幂的运算1、一般地,如果x n a,那么x叫做a的n次方根。

史上最全的初高中数学知识点衔接归纳

史上最全的初高中数学知识点衔接归纳1.数的概念与运算-自然数:1,2,3,…,初中数学的基础-整数:包括正整数、零和负整数,初中时学习整数的加减运算-分数:初中开始介绍分数的概念,学习分数的四则运算-小数:分数与小数之间可以互相转换,小数也可以进行四则运算2.代数与方程-代数运算:包括整式的加减乘除-一元一次方程:化简方程,通解,解方程的应用-二元一次方程组:解方程组,解方程组的应用-不等式:不等式的性质,不等式的解集3.几何基础-点、线、面的概念:初中开始学习几何基础,了解点、线、面的定义与性质-角的概念:初中学习角的概念、角的度量方法,熟练掌握角的性质-直线与圆的性质:线段、射线、直线与圆的性质,角平分线、垂直线与平行线的性质4.解析几何-平面直角坐标系:了解直角坐标系的概念与性质,熟练使用坐标表示点的位置-直线的方程:了解直线的一般方程、截距式与点斜式,掌握直线的特殊情况-圆的方程:了解圆的一般方程与标准方程,掌握圆的性质与相关定理5.数列与数学归纳法-等差数列:掌握等差数列的概念与公式,了解等差数列的前n项和公式-等比数列:了解等比数列的概念与公式,掌握等比数列的前n项和公式-通项公式与前n项和公式:掌握数列的通项公式与前n项和公式的推导与应用6.实数与函数-有理数与无理数:了解有理数与无理数的概念与性质,实数的分类-函数的概念与表示:函数的定义、函数的表示方法,了解函数与变量的关系-函数的性质:函数的奇偶性、周期性,了解函数的分类与图像的特点7.图形的性质与变换-三角形:了解三角形的性质与分类,三角形的周长与面积-二次曲线与圆锥曲线:了解二次曲线(抛物线、椭圆、双曲线)与圆锥曲线的性质-平面图形的变换:包括平移、旋转、翻折与对称等变换,了解平面图形的性质与变换规律8.概率与统计-概率的概念与计算:了解概率的定义与计算方法,掌握基本概率的计算规则-统计图与统计量:了解统计图(条形图、折线图、饼图)的表示与应用,掌握统计量的计算与分析以上是初高中数学知识点的大致归纳,其中涵盖了数的概念与运算、代数与方程、几何基础、解析几何、数列与数学归纳法、实数与函数、图形的性质与变换、概率与统计等主要内容。

初高中数学衔接知识点

初高中数学衔接知识点(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、工作计划、活动方案、规章制度、演讲致辞、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, work plans, activity plans, rules and regulations, speeches, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!初高中数学衔接知识点初高中数学衔接知识点整理初、高中的数学言语有着显著的区别。

初中数学知识点总结word

初中数学知识点总结word一、数与代数1. 有理数- 整数与分数- 正数、负数和零- 有理数的加法、减法、乘法、除法- 有理数的比较大小- 绝对值的概念与性质2. 整数的性质- 素数与合数- 奇数与偶数- 整数的因数与倍数- 质因数分解3. 代数表达式- 单项式与多项式- 合并同类项- 代数式的简化与变形4. 一元一次方程与不等式- 方程与方程的解- 解一元一次方程- 解一元一次不等式- 用方程或不等式解决实际问题5. 二元一次方程组- 方程组的解法:代入法、消元法- 线性方程组的应用问题6. 函数的基本概念- 函数的定义与表示方法- 函数的图象与性质- 常见函数:一次函数、二次函数二、几何1. 平面图形- 点、线、面的基本性质- 角的概念与分类- 三角形的分类与性质- 四边形的分类与性质- 圆的基本性质与计算2. 几何图形的计算- 面积与周长的计算- 相似三角形的性质与应用- 勾股定理及其应用- 三角形的面积公式- 圆的周长与面积公式3. 空间几何- 立体图形的基本概念- 棱柱、棱锥、圆柱、圆锥的结构与计算 - 体积与表面积的计算4. 变换几何- 平移、旋转、对称的概念- 坐标系中点的平移- 轴对称与中心对称三、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读:条形图、折线图、饼图- 平均数、中位数、众数的计算与意义2. 概率- 随机事件的概念- 概率的计算与表示- 等可能事件的概率- 通过树状图或列表法解决简单概率问题四、综合应用题1. 数列的基本概念与简单计算2. 解决实际问题的综合应用- 速度与时间问题- 货币与投资问题- 比例与相似问题- 最优化问题以上是初中数学的主要知识点总结,每个部分都包含了关键的概念、公式和解题方法。

在实际学习过程中,学生应该通过大量的练习来巩固和深化这些知识点,以便在解决各种数学问题时能够灵活运用。

同时,教师和家长应鼓励学生培养良好的学习习惯和思维方式,提高解题效率和准确率。

初高中数学衔接知识[宝典]12页word

数学学高中数学的几点建议:1、记数学笔记,特别是对概念理解的不同角度和数学规律,老师为备战高考而加的课外知识。

记录下来本章最有价值的思想方法和例题,以及还存在的未解决的问题,以便今后将其补上。

2、建立数学纠错本。

把平时容易出现错误的知识或推理记载下来,以防再犯。

争取做到:找错、析错、改错、防错。

解答问题完整、推理严密。

3、熟记一些数学规律和数学结论,使自己平时的运算技能达到了自动化熟练程度。

4、经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。

5、及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。

6、学会从多角度、多层次地进行总结归类。

如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化7、经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。

初高中数学衔接教材现有初高中数学知识存在以下“脱节”1.立方和与差的公式初中已删去不讲,而高中的运算还在用。

2.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。

3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。

4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。

配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。

5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,6.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初高中数学教材衔接的必要性与措施
近几年,随着我国教育体制改革步代加大,素质教育理念不断深入人心,课改新教材在我省大多数中小学已经实施。

黄石市初中是率先使用课改新教材的县市之一,经过两届学生实验,结果表明:使用课改新教材的学生学习的自主性,思维的广阔性,师生的互动性明显增强,但思维的严谨性,推理的逻辑性显得有些不足。

加上我市高中教材未与课改新教材接轨,教学内容上有明显“脱节”。

学生从初中进入高中出现明显“不适应”现象。

因此解决初高中数学教材衔接问题势在必行。

一、初高中数学知识“脱节”点
1. 绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用
2.立方和与差的公式初中已删去不讲,而高中的运算还在用。

3.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如解方程、不等式等。

4.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用的解题技巧。

5.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。

配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等是高中数学必须掌握的基本题型与常用方法。

6.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。

7.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握。

8.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。

方程、不等式、函数的综合考查常成为高考综合题。

9.几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦定理等)初中生大都没有学习,而高中都要涉及。

10. 圆中四点共圆的性质和判定初中没有学习,高中则在使用。

另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。

二、“脱节”知识点掌握情况调查
高一新生入学不久,在已进行“乘法公式”与“因式分解”讲授后,我们对学生初高中“脱节”知识点作了全面调查,统计情况如下:
调查表明:代数部分,学生对“因式分解”、“二次根式”、“含参数的一元二次方程的根的分布”、“可化为一元二次方程的分式方程与无理方程”、“简单的二元二次方程组”的掌握情况表明“不好”的占20%以上。

有15%左右的学生对用换元法解方程不是很熟悉。

除“换元法解方程”与“简单的二元二次方程”外,50%左右的同学认为对其余部分掌握情况一般。

几何部分,有20%以上的学生反应对“弦切角”定理、“切割线定理”不熟悉,16%左右的学生对“平行线分线段成比例定理”和“相交弦定理”掌握情况不好。

超过50%以上的学生认为自己对几何部分掌握情况一般。

调查了解,学生初中阶段对根与系数的关系接触很少,通过对这部分内容以及乘法公式、因式分解的有效训练,80%以上的学生认为有一些收获。

以上数据表明,我们对初高中衔接内容的补充是有必要的,学生在补充学习的过程中得到收获也是必然的!
三、初高中数学教材与教学特点
(一)初高中数学教材特点:
1.初中教材是九年制义务教育用书,倡导全面提高学生素质,只要求学生了解的内容多;高中教材是信息大集中,能力大发展,大学内容多下放的指导用书,对培养学生能力提出了较高要求。

2.初中内容“浅、少、易”,与学生生活贴近,简单、具体形象;高中内容“起点高,容量多,难度大”,概括性、抽象性、逻辑性明显增强。

(二)初中数学教学特点:
1.从直观、形象、具体事例出发,概括出一般结论,然后师讲解典型例题,学生反复练习,直至掌握为止;
2.教师牵着学生走,教师怎么教,学生怎么学,学生缺乏自主性,缺乏自学能力;
3.学生上课或听、或思、或练,不会边听边做笔记,更不会自我归纳、总结;
4.学生思维单一、解题缺乏严密的逻辑性,推理能力差,尤其对代数中字母的可变性缺乏理解,分类讨论的纯粹性,完备性把握不够。

(三)高中数学教学特点:
1.从特殊到一般,抽象性,概括性强;
2.教师注重数学思想方法教学,要求学生举一反三,从典型例题中悟出一般解题规律,在理解的基础上形成解题技能;
3.教师引导学生自学,让学生逐步养成独立思考,自我总结的良好习惯;
4.要求学生上课必须手脑并用,学会边听边做笔记,养成错题自觉正误的良好习惯;
5.要求学生思维广阔,考虑问题全面、深刻,全方位,多角度思考问题,善于从不同角度挖掘出问题的实质;
6.注重严密逻辑推理,知识的深度、广度、难度、综合性明显加大。

四、处理好“教材衔接”的几点措施
1.编好、用好“衔接教材”,为学生顺利进入高中数学知识的学习扫清障碍
针对初高中教材内容差异,市教科院已编写一本初高中数学“衔接教材”,并对何时补充什么内容作了安排。

通过对“代数部分”一章的使用,学生初中基础知识得到进一步巩固,对高中教材适应力较上届明显增强。

2.低起点、小步子、缓坡度、稳进度;夯实基础,降低难度,逐步提升
在进行集合的基本概念,子、交、并、补的概念与性质教学后,我们补充了“乘法公式”一节,“因式分解”两节。

在上“一元二次不等式解法”之前,补充“一元二次方程的根与系数的关系”“含参数的一元二次方程根的分布”各两课时,然后对含参数的一元二次不等式解法,一元二次方程、不等式与二次函数间的相互转化进行适当拓宽,并将集合知识运用到不等式中,逐步提升学生粗象、概括能力,培养学生转化、化归意识。

3.适时进行学法指导,培养学生良好学习习惯
教师在上课时,重点内容要指导学生做笔记、要求学生错题及时改正,揭示解题规律与方法,并小结应注意的问题,培养学生上课积极思考问题,作业独立完成,以及解后反思,章末小结的良好学习品质。

4.教师上课教态应和蔼,讲授基本概念与方法须耐心、细致,切忌急躁、冒进
初中学生都是带着一种好奇与向往之心来到高中的。

他们即使基础较差,但都渴望在高中阶段取得理想成绩。

如果教师一开始讲授过快,过难,多数学生会跟不上,学生满腔的热情可能会因几次课听不懂,几次考试成绩不佳而降到“冰点”。

因此,教师除“低起点,小步子”进行教学外,还应及时了解学生,多与学生沟通,正面鼓励学生,耐心、细致地为学生讲清基础知识与方法。

5.进行题型归纳,加强规范训练,注重知识落实
如上完“函数单调性”新课后,利用单调性定义判断、证明函数单调性应进行专题训练,掌握其基本步骤,再补充“复合函数单调性的判断与证明”、“闭区间上二次函数最值求法”、“粗象函数问题”三个专题,让学生掌握函数单调性典型例题与解法。

在平时教学中教师要注重解题规范性与条理性训练,典型例题详细讲解,完整板书,做学生的典范。

对学生演板和作业中不规范的地方,教师应及时指正,阅卷中应严格扣去不规范的分。

教师布置的作业一定要检查,批改后及时反馈,教师讲得再好,学生练习不到位,就不能实现从“懂”到“会”的质的飞跃。

6.严格控制考试难度,最大限度调动每个学生学习的积极性
高一毕竟不同于高三,教师不能用高三的标准来要求高一的学生,不能一个知识点“一锹挖到底”,要循序渐进。

高一教学重在培养学生良好学习习惯,培养学生分析问题,解决问题能力,把学生掌握“基础知识,基本方法”,放在首位。

新课阶段每章最好采用“课本—资料—章末复习”三段式,考试应以考察学生对“基础知识、基本方法”掌握情况为主,大综合题少出或不出。

每次考试难度系数控制在0.65为宜。

2012-3-23整理于南中友情提示:本资料代表个人观点,如有帮助请下载,谢谢您的浏览!。

相关文档
最新文档