七年级数学平方根与立方根试题
初一数学 立方根试题

初一数学立方根试题1.已知(x-1)3=8,则x的值是________.【答案】3【解析】由题意知(x-1)是8的立方根,所以x-1=2,即x=3.2.立方根等于3的数是( )A.9B.±9C.27D.±27【答案】C【解析】∵33=27,∴27的立方根是3.3.下列等式成立的是( )A.B.C.D.【答案】C【解析】∵(-5)3=-125,∴-125的立方根是-5,故选C.4.一块正方体的水晶砖,体积为100cm3,它的棱长大约在( )A.4cm~5cm之间B.5cm~6cm之间C.6cm~7cm之间D.7cm~8cm之间【答案】A【解析】设正方体棱长为xcm,则x3=100,∴,∵64<100<125,∴,∴选A.5.的平方根是________.【答案】±3【解析】,9的平方根是±3.6.下列语句正确的是( )A.如果一个数的立方根是这个数本身,那么这个数一定是0B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是0【答案】D【解析】立方根等于本身的数有1、-1和0,故A错;0的立方根是0,故B错;负数有立方根,故C错.7. 64的平方根的立方根是-________.【答案】±2【解析】先求64的平方根,为;再算±8的立方根,,.故64的平方根的立方根是±2.8.计算:=________.【答案】【解析】原式=.9.( )A.±2B.2C.-2D.不存在【答案】C【解析】因为(-2)3=8,所以.10.若x+1是4的平方根,则x=________;若y+1是-8的立方根,则y=________.【答案】1或-3;-3【解析】4的平方根是±2,∴x+1=2或-2,∴x=1或-3.∵-8的立方根是-2,∴y+1=-2,∴y=-3.。
初中数学沪科版七年级下册第6章 实数6.1 平方根、立方根-章节测试习题(5)

章节测试题1.【答题】若a2=(-5)2,b3=(-5)3,则a+b的值为( )A. 0B. ±10C. 0或10D. 0或-10【答案】D【分析】先根据平方根、立方根的定义分别求出a,b的值,然后即可求a+b的值.【解答】解:∵a2=(-5)2,b3=(-5)3,∴a=±5,b=-5,∴a+b=0或-10选D.2.【答题】下列计算正确的是()A. =0.5B. =C. =1D. -=-【答案】C【分析】直接利用立方根的定义分析得出答案【解答】解: A. ≠0.5,故A错误;B. =,故B错误;C. =1,正确;D.-=,故D错误.选C.3.【答题】下列结论正确的是( )A. 64的立方根是±4B. -没有立方根C. 立方根等于本身的数是0D. =-【答案】D【分析】直接利用立方根的定义分析得出答案【解答】解: A.64的立方根是4,故A错误;B.-的立方根是,故B错误;C.立方根等于本身的数是0和±1,故C错误;D. =-=-6,正确.选D.4.【答题】等于( )A. 2B. 2C. -D. -2【答案】D【分析】直接利用立方根的定义分析得出答案【解答】解:=-2选D.5.【答题】计算的正确结果是( )A. 7B. -7C. ±7D. 无意义【答案】B【分析】直接利用立方根的定义分析得出答案【解答】解:选B.6.【答题】下列说法正确的是( )A. 一个数的立方根有两个,它们互为相反数B. 一个数的立方根比这个数平方根小C. 如果一个数有立方根,那么它一定有平方根D. 与互为相反数【答案】D【分析】利用立方根的定义判断即可得到结果.【解答】解:A、一个数的立方根只有一个,故错误;B、0的平方根和立方根均为0,故错误;C、负数具有立方根,却不具有平方根,故错误;D、由于-a与a互为相反数,故a的立方根与-a的立方根互为相反数,故正确. 选D.7.【答题】的平方根是______,的平方根是______,-343的立方根是______,的平方根是______.【答案】±3, ±2,-7,±4;【分析】根据平方根以及立方根的定义即可求解.【解答】解:=9,9的平方根是±3;=4,4的平方根是±2;-343的立方根是-7;,16的平方根是±4故答案为:±3,±2,-7, ±48.【答题】已知(x-1)3=8,则x的值是______.【答案】3【分析】根据立方根的定义可以计算出结果.【解答】由题意知(x-1)是8的立方根,所以x-1=2,即x=39.【答题】=______..【答案】5【分析】根据立方根的定义即可求解.【解答】因为53=125,所以=5,故答案为5.10.【答题】若一个数的平方根是,则这个数的立方根是______.【答案】4【分析】首先利用平方根的定义求出这个数,然后根据立方根的定义即可求解.【解答】∵一个数的平方根是,∴这个数是64,∴这个数的立方根是4,即.11.【答题】若和都是5的立方根,则b-a=______.【答案】-5【分析】由于若和都是5的立方根,由此可以得到关于a、b的方程组,解之即可求出结果.【解答】∵和都是5的立方根,∴2b+1=3,a-1=5,∴b=1,a=6,∴b-a=1-6=-5.12.【答题】-8的立方根是______,的算术平方根是______.【答案】-2,3【分析】根据算术平方根以及立方根的定义即可求解.【解答】因为(-2)3=-8,所以-8的立方根是-2;因为=9,=3,所以的算术平方根是3,故答案为(1)-2,(2)313.【答题】当x<7时,=______.【答案】x-7【分析】根据立方根的意义,一个正数的立方根是正数,一个负数的立方根为负,0的立方根为0【解答】由题意可知当x<7时,=x-7故答案为:x-714.【答题】若,则x=______;,则x=______,若,则x=______.【答案】5,6,-4【分析】根据立方根的意义求解.【解答】根据立方根的意义,由53=125,可知x=5;由,则x=6;由若,求得x=-4.故答案为:5;6;-4.15.【答题】立方根是-8的数是______,的立方根是______.【答案】-512,2【分析】根据平方根以及立方根的定义即可求解.【解答】根据立方根的意义,由(-8)3=-512,所以立方根是-8的数是-512;根据算术平方根的意义可知=8,然后由23=8,可知8的立方根为2,即求得的立方根为2.故答案为:-512;2.方法总结:此题主要考查了求一个数的立方根,根据立方根的意义,一个数的立方等于a,那么这个数就是a的立方根,关键是判断a是谁的立方.16.【答题】9的平方根是______;的立方根是______.【答案】3,-3;-2【分析】根据平方根以及立方根的定义即可求解.【解答】因为3的平方是9,-3的平方是9,所以9的平方根是,因为-2的立方是-8,所以-8的立方根是-2,故答案为: ,-2.17.【答题】已知,则a和b的关系是______.【答案】互为相反数【分析】已知等式利用立方根定义化简,得出a与b关系即可.【解答】因为,所以与互为相反数,则a与b互为相反数,故答案为互为相反数.18.【答题】的算术平方根是______,-8的立方根是______.【答案】2,-2【分析】根据算术平方根以及立方根的定义即可求解.【解答】=4,4算术平方根是2;-8的立方根是-2.故答案为2,-219.【答题】如果一个数的平方根等于这个数的立方根,那么这个数是______.【答案】0【分析】根据平方根与立方根的定义求解.【解答】根据平方根与立方根的定义,可知0的平方根等于0的立方根.故答案为:0方法总结:本题考查了立方根:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.记作:,也考查了平方根.20.【答题】若=-7,则a=______.【答案】-343【分析】根据立方根的定义直接计算.【解答】解:∵,∴a=-343故答案为:-343。
初中数学沪科版七年级下册第6章 实数6.1 平方根、立方根-章节测试习题(17)

章节测试题1.【答题】下列说法中,不正确的是().A. 3是的算术平方根B. ±3是平方根C. -3是的算术平方根D. -3是的立方根【答案】C【分析】根据算术平方根、平方根、立方根的定义判断即可.【解答】A、3是(-3)2的算术平方根,正确;B、±3是(-3)2的平方根,正确;C、(-3)2的算术平方根是3,故本选项错误;D、3是(-3)3的立方根,正确.选C.2.【答题】下列计算正确的是()A. B.C. D.【答案】C【分析】根据算术平方根和立方根的概念计算即可求解.【解答】解:A、,选项错误;B、,选项错误;,选项正确;D、,选项错误;选C.3.【答题】下列各式中,正确的是()A. B. =4 C. D.【答案】C【分析】本题考查了平方根和立方根.【解答】A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=-3,所以C选项正确;D、原式=|-4|=4,所以D选项错误.选C.4.【答题】8的平方根和立方根分别是()A. 8和4B. 和2C. 和8D. 和2【答案】D【分析】根据平方根和立方根定义求出即可.【解答】解:8的平方根和立方根分别是±和2.5.【答题】65.下列说法正确是A. -2没有立方根B. 8的立方根是±2C. -27的立方根是-3D. 立方根等于本身的数只有0和1 【答案】C【分析】本题考查了立方根.【解答】G根据立方根的性质,易得C.6.【答题】下列语句正确的是()A. 的平方根是±2B. 36的平方根是6C. 的立方根是D. 的立方根是2【答案】D【分析】本题考查了平方根和立方根.【解答】选项A,的平方根是±;选项B,36的平方根是±6;选项C,的立方根是;选项D,的立方根是2,选D.7.【答题】下列说法中,正确的是()A. B. 64的立方根是±4C. 6平方根是D. 0.01的算术平方根是0.1【分析】本题考查了平方根和立方根.【解答】A.=3,故错误;B. 64的立方根是4,故错误;C. 6的平方根是±,故错误;D. 0.01的算术平方根是0.1,正确;选D.8.【答题】下列说法中正确的有()①都是8的立方根;②=±4;③的平方根是;④⑤是81的算术平方根A. 1个B. 2个C. 3个D. 4个【答案】B【分析】本题考查了平方根和立方根.【解答】①、2是8的立方根,则错误;②、=4,则错误;③、正确;④、正确;⑤、9是81的算术平方根.9.【答题】下列说法不正确的是()A. 的平方根是B. -9是81的一个平方根C. 0.2的算术平方根是0.04D. -27的立方根是-3【分析】本题考查了平方根和立方根.【解答】A. 的平方根是,正确;B. -9是81的一个平方根,正确;C. 0.2的是0.04算术平方根,错误;D. -27的立方根是-3,正确选C.10.【答题】-27的立方根与的平方根之和是()A. 0B. 6C. 0或-6D. -12或6【答案】C【分析】本题考查了平方根和立方根.【解答】-27的立方根是-3,的平方根是±3,所以-27的立方根与的平方根之和是-3+3=0或-3-3=-6.选:C.11.【答题】下列计算正确的是A.B.C.D.【答案】D【分析】本题考查了平方根和立方根.【解答】A、,故该项错误;B、,故该项错误;C、,故该项错误;D、,故该项正确.选D.12.【答题】下列说法正确的是()A. 3是9的立方根B. 3是(-3)2的算术平方根C. (-2)2的平方根是2D. 8的平方根是±4【答案】B【分析】根据算术平方根,平方根,立方根的概念,逐一判断.【解答】A.∵33=27,∴3是27的立方根,本选项错误;B. (-3)2=9,3是9的算术平方根,本选项正确;C. (-2)2=4,4的平方根为±2,本选项错误;D. 8的平方根是,本选项错误.13.【答题】下列各式正确的是().A. B.C. D.【答案】A【分析】本题考查了平方根和立方根.【解答】∵,则B错;,则C;,则D错,选A.14.【答题】-8的立方根与4的平方根的和是()A. 0B. 0或4C. 4D. 0或-4 【答案】D【分析】本题考查了平方根和立方根.【解答】∵-8的立方根为-2,4的平方根为±2,∴-8的立方根与4的平方根的和是0或-4.选D.15.【答题】下列说法错误的是()A. 1是1的算术平方根B.C. -27的立方根是-3D.【分析】本题考查了平方根和立方根.【解答】A、因为12=1,所以1是1的算术平方根,故此选项正确;B、=7,故此选项正确;C、(-3)3=-27,所以-27的立方根是-3,故此选项正确;D、=12,故此选项错误.选D.16.【答题】下列计算正确的是().A. B.C. D.【答案】D【分析】本题考查了平方根和立方根.【解答】项.错误;项.,错误;项.错误;.选.17.【答题】下列各式计算正确的是()A. =-9B. =±5C. =-1D. (-)2=-2【答案】C【分析】本题考查了平方根和立方根.【解答】A.=9,故该选项错误;B. =5,故该选项错误;C. =-1,正确;D. (-)2=2,故该选项错误.选C.18.【答题】64的立方根是()A. ±4B. 4C. -4D. 16【答案】B【分析】本题考查了立方根.【解答】∵43=64∴64的立方根是4.选B.19.【答题】使用某种电子计算器求+的近似值,其按键顺序正确的是()A. 8+2ndF6=B. 8+2ndF6=C. 8+6=D. 8+6=【答案】A【分析】本题考查了平方根和立方根.【解答】根据无理数运算中计算器的使用法则可知,是先按,再按8,是先按2ndf键,再按,再按6.故本题正确答案为A.20.【答题】若x2=25,则x=______;若,则x=______;若,则x=______;若x3=-216,则x=______;若=3,则x=______;若,则x=______.【答案】±5,18,,-6,27,-27【分析】本题考查了平方根和立方根.【解答】分别利用立方根和算术平方根的定义求解即可.解:∵x2=25,∴x=±5;∵,∴x=42+2=18;∵,∴x=()2=;∵x3=-216,∴x=-6;∵,∴x=33=27;∵,∴x=(-3)3=-27.故答案为:±5,18,,-6,27,-27.。
6.2.2 立方根应用+平方根与立方根-简单数学之2021-2022学年七年级下册考点专训(解析版

6.2.2 立方根应用+平方根与立方根一、单选题1.一般地,如果n x a =(n 为正整数,且1n >),那么x 叫做a 的n 次方根,下列结论中正确的是( ) A .16的4次方根是2 B .32的5次方根是2±C .当n 为奇数时,2的n 次方根随n 的增大而减小D .当n 为奇数时,2的n 次方根随n 的增大而增大 【答案】C【分析】根据题意n 次方根,列举出选项中的n 次方根,然后逐项分析即可得出答案.【详解】A.42=16 4(2)=16-,∴16的4次方根是2±,故不符合题意; B.5232=,5(2)32-=-,∴32的5次方根是2,故不符合题意;C.设352,2,x y == 则155153232,28,x y ====1515,x y ∴> 且1,1,x y >>,x y ∴>∴当n 为奇数时,2的n 次方根随n 的增大而减小,故符合题意;D.由C 的判断可得:D 错误,故不符合题意.故选C .【点睛】本题考查了新概念问题,n 次方根根据题意逐项分析,得出正确的结论,在分析的过程中注意x 是否为负数,通过简单举例验证选项是解题关键.2.下列说法:①2-是4的平方根;②16的平方根是4;③125-的立方根是15;④0.25的算术平方根是0.5;⑤27125的立方根是35±;819,其中正确的说法是( ) A .1个B .2个C .3个D .4个【答案】B【分析】根据平方根、算术平方根及立方根的定义即可依次判断.【详解】2-①是4的平方根,正确;16②的平方根是4±,故错误﹔125-③的立方根是5-,故错误;0.25④的算术平方根是0.5,正确﹔⑤27125的立方根是35,故错误; 819,9=的平方根是3±,故错误;其中正确的说法是:①④,共2个,故选:B.【点睛】此题主要考查实数的性质,解题的关键是熟知平方根、算术平方根及立方根的定义.3.一个正方体的体积扩大为原来的8倍,它的棱长变为原来的()倍.A8B.64C.8D.2【答案】D【分析】设正方体棱长为a,变化后的棱长为n a,分别按照正方体体积公式写出关系式,然后利用变化前后的体积关系列出方程即可求解.【详解】设正方体棱长为a,变化后的棱长为na由题意得:变化前正方体的体积:3a,变化后的正方体的体积:33n a∵3338n aa=,解得n=2∴它的棱长变为原来的2倍故选D.【点睛】本题考查了正方体的体积公式,立方根的实际应用,关键是根据题意找出体积关系然后求解.二、填空题4.把一个长、宽、高分别为5,10,16的长方体铁块锻造成一个立方体铁块,问锻造成的立方体铁块的棱长是_______.3800【分析】立方体的棱长就是体积的立方根,据此即可求解.【详解】解:立方体的体积是:5×10×16=800,38003800【点睛】此题主要考查了立方根的定义和性质,注意本题答案不唯一.求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.5.若将一个棱长为5米的立方体的体积增加V立方米,而保持立方体形状不变,则棱长应增加_______米.31255V【分析】计算出原体积,得到增加后的体积,从而得到增加后的棱长,可得结果.【详解】解:∵立方体的棱长为5,∴体积为5×5×5=125,∴增加后的体积为125+V,31255V(米),31255V.【点睛】本题考查了立方根的应用,掌握立方根的定义是解题的关键.6.一个正方体,它的体积是棱长为5cm的正方体体积的8倍,这个正方体的棱长是______cm.【答案】10【分析】直接利用已知得出立方体的体积,进而利用立方根的定义得出答案.【详解】解:棱长为5cm 的正方体的体积为:5×5×5=125(cm 3),∵一个正方体,它的体积是棱长为5cm 的正方体体积的8倍,∴这个正方体的体积为:125×8=1000(cm 3),31000=10cm .故答案为:10.【点睛】此题主要考查了立方根,正确把握定义是解题关键.三、解答题7.计算()238492--【答案】7.【分析】先计算立方根、算术平方根,再计算有理数的加减即可得.【详解】解:原式274=-++ 52=+,7=.【点睛】本题考查了立方根、算术平方根等知识点,熟练掌握各定义和运算法则是解题关键.8.求下列各式的值: (1)310227-- (23321145⨯+(3331864-(423327(3)1---(5)310031(2)2(1)4---【答案】(1)43;(2)9;(3)12-;(4)1;(5)73 【分析】 (1)根据立方根的定义即可化简求解;(2)根据立方根的定义即可化简求解;(3)根据立方根的定义即可化简求解;(4)根据立方根与算术平方根的定义即可化简求解;(5)根据立方根与算术平方根的定义即可化简求解.【详解】解:(1)310227-3644273== (23321145⨯+331164257299=⨯+== (3)331864-11=242⎛⎫⨯-=- ⎪⎝⎭ (4)23327(3)1---3311=-++=(5)310031(2)2(1)4---347=211233÷+=+=. 【点睛】 此题主要考查实数的计算,解题的关键是熟知立方根的计算,注意符号和运算顺序,带分数要转化成假分数再开立方.9.(1)求32243-的5次方根; (2)求()227-的6次方根.【答案】(1)23-;(2)3±. 【分析】(1)根据52323243⎛⎫-=- ⎪⎝⎭即可求解; (2)根据()()26277293-==±,故可求解.【详解】 解:(1)∵52323243⎛⎫-=- ⎪⎝⎭555322224333⎛⎫-=-=- ⎪⎝⎭; (2)∵()()26277293-==±,∴()227-的6次方根为3±.【点睛】此题主要考查实数的性质,解题的关键是熟知正数a 的偶次方根有两个,它们互为相反数.10.已知7x +的平方根是3±,213x y --的立方根是-2,求56y x -的算术平方根.【答案】5x−6y 的算术平方根为4.【分析】由题意可知:x+7=9,2x−y−13=-8,分别求出x ,y 的值,再求出5x−6y 的值,即可求解.【详解】解:由题意可知:x+7=9,2x−y−13=-8,∴x=2,y=-1,∴5x−6y =5×2-6×(-1)=16,∴16的算术平方根为4.∴5x−6y 的算术平方根为4.【点睛】本题考查了算术平方根与立方根的性质,涉及解方程,代数式求值等问题,属于基础问题.11.已知2x +3的算术平方根是5,5x +y +2的立方根是3,求x ﹣2y +10的平方根.【答案】±9【分析】根据立方根与算术平方根的定义得到5x +y +2=27,2x +3=25,则可计算出x =11,y =﹣30,然后计算x﹣2y +10后利用平方根的定义求解.【详解】解:因为2x +3的算术平方根是5,5x +y +2的立方根是3,∴23255227x x y +=⎧⎨++=⎩ 解得:1130x y =⎧⎨=-⎩, ∴x ﹣2y +10=81,∴x ﹣2y +10的平方根为:819=±.【点睛】本题主要考查了算术平方根,平方根与立方根,熟记相关定义是解答本题的关键.12.已知3既是x ﹣4的算术平方根,又是x +2y ﹣10的立方根,求x 2﹣y 2的平方根.【答案】±5【分析】根据算术平方根的平方,可得被开方数,根据立方根的立方,可得被开方数,根据平方差公式,可得答案.【详解】解:∵3既是(x -4)的算术平方根,又是(x+2y -10)的立方根,∴x -4=32=9,x+2y -10=33,∴x=13,y=12,x 2-y 2=(x+y )(x -y )=(13+12)×(13-12)=25∴x 2-y 2的平方根为±5.【点睛】本题考查了平方根、算术平方根和立方根,以及非负数的性质.解题的关键是掌握平方根、算术平方根和立方根的定义,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键. 13.已知某正数的两个平方根是314a -和2a +,14b -的立方根为-2,求+a b 的算术平方根.【答案】3【分析】利用正数的平方根有两个,且互为相反数列出方程,求出方程的解即可得到a 的值,根据立方根的定义求出b 的值,根据算术平方根的定义求出a+b 的算术平方根.【详解】解:由题意得,31420a a -++=,148b -=-,解得:3a =,6b =,∴9a b +=,∴+a b 的算术平方根是3.【点睛】本题考查的是平方根、立方根和算术平方根的定义,正数的平方根有两个,且互为相反数;正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.14.已知一个正数的平方根是2a +和6a -,b 的立方根是2-,求4a b -的平方根.【答案】4a -b 的平方根为4±【分析】首先根据:一个正数的平方根是2a +和6a -,可得:(2a +)+(6a -)=0,据此求出a 的值是多少;然后根据:b 的立方根是-2,可得:b =(-2)3=-8,据此求出4a -b 的平方根是多少即可.【详解】解:∵一个正数的平方根是2a +和6a -,∴(2a +)+(6a -)=0,∴a =2,∵b 的立方根是-2,∴b =(-2)3=-8,∴4a b -=4×2-(-8)=16,∴4a b -的平方根是±4.【点睛】此题主要考查了平方根的性质和应用,以及立方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.15.已知4a +1的平方根是±3,3a +b ﹣1的立方根为2.(1)求a 与b 的值;(2)求2a +4b 的平方根.【答案】(1)a=2,b=3;(2)±4.【分析】(1)首先根据4a+1的平方根是±3,可得:4a+1=9,据此求出a 的值是多少;然后根据3a +b ﹣1的立方根为2,可得:3a +b ﹣1=8,据此求出b 的值是多少即可.(2)把(1)中求出的a 与b 的值代入2a +4b ,求出它的值,然后根据平方根的定义即可得出答案.【详解】解:(1)∵4a+1的平方根是±3,∴4a+1=9,解得a=2,∵3a +b ﹣1的立方根为2,∴3a +b ﹣1=8,解得:b=3;(2)由(1)得a=2,b=3,∴24224316a b +=⨯+⨯=.它的平方根为:±4.【点睛】本题考查了平方根,立方根,列式求出a 、b 的值是解题的关键.16.已知5a +2的立方根是3,3a +b ﹣1的算术平方根是4.(1)求a ,b 的值.(2)求4a ﹣b 的平方根.【答案】(1)a =5,b =2;(2)32±【分析】(1)运用立方根和算术平方根的定义求解.(2)根据平方根的定义即可解答.【详解】解:(1)∵5a+2的立方根是3,3a+b -1的算术平方根是4,∴5a+2=27,3a+b -1=16,∴a=5,b=2;(2)由(1)知a=5,b=2,∴4a -b=4×5-2=18, ∵18的平方根为2,∴4a -b 的平方根为2【点睛】本题考查了平方根、算术平方根、立方根,解决本题的关键是熟记平方根、算术平方根、立方根的定义. 17.已知52a +的立方根是3,31a b +-的算术平方根是4,c 11(1)求a ,b ,c 的值;(2)求3a b c -+的平方根.【答案】(1)5a =,2b =,3c =;(3)4±【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a 、b 、c 的值.(2)将a 、b 、c 的值代数式求出值后,进一步求得平方根即可.【详解】解:(1)∵52a +的立方根是3,31a b +-的算术平方根是4,∴5227a +=,3116a b +-=,∴5a =,2b =;∵3114<<,c 11的整数部分,∴3c =;(2)当5a =,2b =,3c =时,3152316a b c -+=-+=,16的平方根是4±∴3a b c -+的平方根是4±.【点睛】本题考查立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.18.已知y x 22x 3=-- 312z -与33z 5-yz x -的平方根. 【答案】10依据非负数的性质以及相反数的定义,即可得到x ,y ,z 的值,进而得到yz -x 的平方根.【详解】 解:∵223y x x =--中,x -2≥0,2-x≥0,∴x=2,∴y=3,312z -335z - 3312350z z --=,∴12350z z -+-=,解得:z=4,∴yz -x=3×4-2=10,∴yz -x 的平方根为10.【点睛】本题主要考查了非负数的性质以及平方根和立方根,当几个非负数相加和为0时,则其中的每一项都必须等于0.根据上述的性质可列出方程求出未知数的值.19.已知1x -的算术平方根为3,112y +的立方根为3,求22x y -的平方根.【答案】±6【分析】根据已知得出x−1=9,112y +=27,求出x =10,y =8,求出22x y -的值,即可求出答案. 【详解】∵1x -的算术平方根是3,112y +的立方根是3,∴x−1=9,112y +=27,解得:x =10,y =8,∴x 2−y 2=100−64=36,∴x 2−y 2的平方根是±6.本题考查了平方根,立方根,算术平方根的应用,关键是求出x 、y 的值.20.在做物理实验时,小明用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱体烧杯中,并用一量筒量得铁块排出的水的体积为643cm ,小明又将铁块从水中提起,量得烧杯中的水位下降了169πcm .请问烧杯内部的底面半径和铁块的棱长各是多少?【答案】烧杯内部的底面半径为6cm ,铁块的棱长 4cm【分析】铁块排出的643cm 水的体积,是铁块的体积,也是高为169πcm 烧杯的体积. 【详解】解:铁块排出的643cm 的水的体积,是铁块的体积.设铁块的棱长为y cm ,可列方程364,y =解得4y = 设烧杯内部的底面半径为x cm ,可列方程216649x ππ⨯=,解得x =6. 答:烧杯内部的底面半径为6cm ,铁块的棱长 4cm . 【点睛】应该熟悉体积公式,依题意建立相等关系(方程),解方程时,常常用到求平方根、立方根,要结合实际意义进行取舍.本题体现与物理学科的综合.21.小燕在测量铅球的半径时,先将铅球完全浸没在一个带刻度的圆柱形小水桶中,拿出铅球时,小燕发现小水桶中的水面下降了1cm ,小燕量得小水桶的直径为12cm ,于是她就算出了铅球的半径.你知道她是如何计算的吗?请求出铅球的半径.(球的体积公式343V r π=,r 为球的半径.) 【答案】3cm .【分析】设球的半径为r ,求出下降的水的体积,即圆柱形小水桶中下降的水的体积,最后根据球的体积公式列式求解即可.【详解】解:设球的半径为r ,小水桶的直径为12cm ,水面下降了1cm , ∴小水桶的半径为6cm ,∴下降的水的体积是π×62×1=36π(cm 3),即34363r ππ=, 解得:327r =,3r =,答:铅球的半径是3cm .【点睛】本题考查了立方根的应用,涉及圆柱的体积求解,解此题的关键是得出关于r 的方程.22.已知某个长方体的体积是3480cm ,它的长、宽、高的比是5:4:3,请问该长方体的长、宽、高分别是多少?【答案】10cm 、8cm 、6cm【分析】根据长、宽、高的比是5:4:3可设每份为x ,则长宽高分别为5x 、4x 、3x ,再根据长方体的体积可列出方程,解出方程的解即可得到答案.【详解】解:∵长、宽、高的比为5:4:3∴设每份为x ,则长为5x ,宽为4x ,高为3x∴依题意得:543480x x x ⋅⋅=∴2x cm =∴55210x cm =⨯=,4428x cm =⨯=,3326x cm =⨯=答:长、宽、高分别为10cm 、8cm 和6cm .【点睛】本题考查了开立方运算、长方体的体积等知识,数量掌握相关知识点是解题的关键.23.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米.(提示:182=324)(1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343立方厘米的正方体,求剩余的正方形纸板的面积.【答案】(1)正方形纸板的边长为18厘米;(2)剩余的正方形纸板的面积为30平方厘米【分析】(1)根据正方形的面积公式进行解答;(2)由正方体的体积公式求得正方体的边长,然后由正方形的面积公式进行解答.【详解】⨯=18(cm),解:(11622答:正方形纸板的边长为18厘米;(23343=7(cm),则剪切纸板的面积=7×7×6=294(cm2),剩余纸板的面积=324﹣294=30(cm2)答:剩余的正方形纸板的面积为30平方厘米.【点睛】本题考查了立方根,算术平方根,解题的关键是熟悉正方形的面积公式和立方体的体积公式,属于基础题.24.观察下列各式,并用所得出的规律解决问题:(12=1.414200=14.1420000=0.03=0.17323=1.732300=17.32…由此可见,被开方数的小数点每向右移动位,其算术平方根的小数点向移动位;(25=2.23650=7.0710.5=,500=;(3)31=1,31000=10,31000000=100…小数点变化的规律是:.(4310=2.1543100=4.642,则310000=,30.1=.【答案】(1)两,右,一;(2)0.7071,22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54,﹣0.4642【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】(12=1.414200=1420000=141.4… 0.03=0.17323=1.732300=17.32…由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位,(25=2.23650=7.0710.5=0.7071500=22.36,(331=131000=1031000000=100…小数点变化的规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位; (4310=2.1543100=4.642,310000=21.54,30.1=-0.4642.故答案为:(1)两;一;(2)0.7071;22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54;﹣0.4642【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.25.先阅读材料,再解答问题:我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求54872的立方根.华罗庚脱口而出,给出了答案,众人十分惊讶,忙问计算的奥妙.你知道华罗庚怎样迅速而准确地计算出结果吗?请你按下面的步骤也试一试:(1)33101000,1001000000==,则54872的立方根是___位数,54872的个位数字是2,则54872的立方根的个位数字是_____.(2)如果划去54872后面的三位“872”得到数54,而33327,464==,由由此可确定54872的立方根的十位数字是_____,此54872的立方根是______.(3)现在换一个数185193,你能按这种方法得出它的立方根吗?请求出立方根,并说明理由.【答案】(1)两,8;(2)3;38;(3)57,理由见详解【分析】(1)依据夹逼法和立方根的定义进行解答,分别求得1至9的立方,然后依据原数的末位数字判断出它的个位数;(2)利用夹逼法判断出十位数字即可;(3)利用(1)(2)中的方法确定出个位数字和十位数字即可.【详解】解:(1)∵1000<54872<1000000,∴10354872100,∴54872的立方根是两位数.∵13=1,23=8,33=27,43=64,53=125,63=216,73=343,83=512,93=729,且54872的个位数字是2,∴54872的立方根的个位数字是8.故答案为:两,8;(2)∵27<54<64,∴54872的立方根的十位数字是3.因此54872的立方根是38.故答案为:3;38;(3)185193的末位数字是3,∴185193的立方根的个位数字是7.∵53=125,63=216,且125<185<216,∴185193的立方根的十位数字是5.∴185193的立方根是57.【点睛】本题主要考查的是立方根的概念,依据尾数特征进行解答是解题的关键.26.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由33101000,1001000000==,因为1000327681000000<<332768______位数; (2)由32768的个位上的数是8,332768________,划去32768后面的三位数768得到32,因为333=27,4=64332768_____________;(3)已知13824和110592-3138243110592-【答案】(1)两;(2)2,3;(3)24,﹣48;【分析】(1)由题意可得31032768100<<,进而可得答案;(2)由只有个位数是2的数的立方的个位数是8332768的个位上的数,由333=27,4=64可得27<32<64,进而可确定3303276840<332768的十位上的数,进而可得答案; (3)仿照(1)(2)两小题中的方法解答即可.【详解】解:(1)因为1000327681000000<<,所以31032768100<<,332768故答案为:两;(2)因为只有个位数是2的数的立方的个位数是8,3327682,划去32768后面的三位数768得到32,因为333=27,4=64,27<32<64,所以3303276840<<,3327683;故答案为:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10313824100,313824∵只有个位数是4的数的立方的个位数是4,3138244,划去13824后面的三位数824得到13,∵8<13<27,∴2031382430.313824;由103=1000,1003=1000000,1000<110592<1000000,∴103110592100,3110592∵只有个位数是8的数的立方的个位数是2,31105928,划去110592后面的三位数592得到110,∵64<110<125,∴40311059250,311059248=;3110592-﹣48.【点睛】本题考查了立方根和立方数的规律探求,具有一定的难度,正确理解题意、确定所求的数的个位数字和十位数字是解题的关键.。
部编数学七年级下册专题09算术平方根与立方根的综合运用(解析版)含答案

专题09 算术平方根与立方根的综合运用【例题讲解】已知4是32a -的算术平方根,215a b --的立方根为5-.(1)求a 和b 的值;(2)求24b a --的平方根.【详解】(1)解:∵4是32a -的算术平方根,∴3216a -=,∴6a =,∵215a b --的立方根为5-,∴215125a b --=-,∴2156125b -´-=-,∴37b =.(2)解:242376464b a --=´--=,64的平方根为8±,∴24b a --的平方根为8±.【综合解答】1270-=,那么6()a b +的立方根是( )A .-1B .1C .3D .7【答案】B【解析】【分析】根据非负数的性质,得出a ,b 的值,再代入计算即可.【详解】:270-=,0=,3270b -=∴3640a +=,3270b -=,∴a=-4,b=3,∴6()a b +=1,∴6()a b +的立方根为1,故答案为:B .【点睛】本题考查了非负数的性质和立方根,掌握非负数的性质是解题的关键.2的值为( )A .114-B .114±C .154D .134【答案】A【解析】【分析】根据算术平方根和立方根的意义分别进行计算,然后根据有实数的运算法则求解即可.【详解】原式1300.52=---++11300.524=---++324=-;故答案为:A.【点睛】本题考查了实数的混合运算,解题的关键是熟练掌握据算术平方根和立方根的意义.3 1.442=0.6694=等于( )A .57.68B .115.36C .26.776D .53.552【答案】C【解析】【分析】根据立方根的运算法则即可.【详解】440.669410426.776===´´=,故答案为:C .【点睛】进行正确的拆分.4.下列计算正确的是( ).A 3B 8=±C 7=-D 13=-【答案】D【解析】【分析】根据立方根、算术平方根、绝对值等知识逐项进行计算即可求解.【详解】,故原选项计算错误,不合题意;B.8=,故原选项计算错误,不合题意;C. 7=,故原选项计算错误,不合题意;D. 13=-,故原选项计算正确,符合题意.故选:D【点睛】本题考查了立方根、算术平方根等知识,理解立方根、算术平方根的意义并正确计算化简是解题关键.5.一般地,如果n x a =(n 为正整数,且1n >),那么x 叫做a 的n 次方根,下列结论中正确的是( )A .16的4次方根是2B .32的5次方根是2±C .当n 为奇数时,2的n 次方根随n 的增大而减小D .当n 为奇数时,2的n 次方根随n 的增大而增大【答案】C【解析】【分析】根据题意n 次方根,列举出选项中的n 次方根,然后逐项分析即可得出答案.【详解】A.42=16Q 4(2)=16-,\16的4次方根是2±,故不符合题意;B.5232=Q ,5(2)32-=-,\32的5次方根是2,故不符合题意;C.设x y ==则155153232,28,x y ====1515,x y \> 且1,1,x y >>,x y \>\当n 为奇数时,2的n 次方根随n 的增大而减小,故符合题意;D.由C 的判断可得:D 错误,故不符合题意.故选C .【点睛】本题考查了新概念问题,n 次方根根据题意逐项分析,得出正确的结论,在分析的过程中注意x 是否为负数,通过简单举例验证选项是解题关键.6.已知a 的算术平方根是12.3,b 的立方根是45.6-,x 的平方根是 1.23±,y 的立方根是456,则x 和y 分别是( )A .,1001000a x y b ==B .1000,1000b x a y ==-C .,1000100a x y b ==-D .,1000100a x yb ==【答案】C【解析】【分析】根据题意,x 的算术平方根和-b 的立方根,然后根据x 的算术平方根和a 的算术平方根即可求出x 与a 的关系,根据-b 的立方根和y 的立方根关系即可求出y 与b 的关系.【详解】解:∵a 的算术平方根是12.3,b 的立方根是45.6-,x 的平方根是 1.23±,y 的立方根是456,∴x 的算术平方根是1.23,-b 的立方根是45.6∵1.23=110×12.3,456=10×45.6∴x =2110a æöç÷èø,y=103(-b )即,1000100a x yb ==-故选C .【点睛】此题考查的是平方根、算术平方根和立方根,根据两数算术平方根的关系推出这两数的关系和两数立方根的关系推出这两数的关系是解题关键.7.实数a ___________.【答案】8【解析】【分析】先根据数轴的定义可得48a <<,从而可得20,100a a -<->,再计算算术平方根和立方根即可得.【详解】由数轴的定义得:48a <<,则20,100a a -<->,2108a a =-+-=,故答案为:8.【点睛】本题考查了数轴、算术平方根和立方根,熟练掌握算术平方根和立方根是解题关键.8.已知,a 、b 互为倒数,c 、d 互为相反数,求1=_____.【答案】0.【解析】【分析】根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c +d =0,然后代入求值即可.【详解】∵a 、b 互为倒数,∴ab =1,∵c 、d 互为相反数,∴c +d =0,∴1=﹣1+0+1=0.故答案为:0.【点睛】此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.9.已知21a -的平方根是±3,b +2 的立方根是2,则b a -的算术平方根是___________【答案】1【解析】【分析】先根据平方根,立方根的定义列出关于a 、b 的方程,求出a 、b 后再代入进行计算求出b a -的值,然后根据算术平方根的定义求解.【详解】解:根据题意得,2a-1=(±3)2=9,b+2 =23,∴a=5,b=6,∴b-a=1,∴b a-的算术平方根是1,故答案是:1.【点睛】本题考查了平方根,立方根,算术平方根的定义,列式求出a、b的值是解题的关键.10.已知2a﹣1的平方根是±3,3a+b+10的立方根是3,求a+b的算术平方根___.【解析】【分析】先根据2a−1的平方根是±3,3a+b+10的立方根是3得出21931027aa b-=ìí++=î,解之求出a、b的值,再利用算术平方根定义得出答案.【详解】解:∵2a−1的平方根是±3,3a+b+10的立方根是3,∴21931027aa b-=ìí++=î,解得a=5,b=2,∴a+b=7,则a+b【点睛】本题主要考查立方根、平方根、算术平方根,解题的关键是掌握立方根、平方根、算术平方根的定义.11.已知2a-1的平方根是±3,3a+b-9的立方根是2,c的整数部分,则a+2b+c的算术平方根为_____.【答案】4【解析】【分析】由题意首先根据平方根与立方根的概念可得2a-1与3a+b-9的值,进而可得a 、b 的大小,可得c 的值,进而可得a+2b+c ,根据算术平方根的求法可得答案.【详解】解:根据题意,可得2a-1=9,3a+b-9=8;解得:a=5,b=2;又有7<8,可得c=7;则a+2b+c=16;则16的算术平方根为4.故答案为:4.【点睛】本题主要考查平方根、立方根、算术平方根的定义及无理数的估算能力,熟练掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法是解题的关键.12A B ,则A +B =________.【答案】【解析】【详解】===A+B=三、解答题13.()20151-.(2)已知∶2m +2的平方根是±4,3m +n +1的平方根是±5,求m +2n 的值.(3)已知a b -3是400.【答案】(1)114;(2)m +2n =13;=6【解析】【分析】(1)首先进行开方和乘方运算,再进行有理数的加减运算,即可求得;(2)根据平方根的定义得出方程,解方程即可分别求得m 、n 的值,据此即可解答;(3) 根据无理数的估算和算术平方根的定义,即可求得a 、b 的值,据此即可解答.【详解】解:(1) ()20151+-52314=+-- 114=(2)Q 2m +2的平方根是±4,3m +n +1的平方根是±5,2216m \+=,3m +n +1=25,解得m =7,n =3,272313m n \+=+´=;(3)\,13,13a \=,又Q b -3是400的算术平方根,400的算术平方根是20,320b \-=,解得b =23,6==.【点睛】本题考查了二次根式的加减混合运算,平方根和算术平方根的定义,无理数的估算,代数式求值问题,熟练掌握和运用各运算法则和方法是解决本题的关键.14.已知4是32a -的算术平方根,2+a b 的立方根是2.C 的整数部分.(1)求a ,b ,c 的值;(2)求2a b c -+的平方根.【答案】(1)6a =,1b =, 5c =(2)3±【解析】【分析】(1)根据算术平方根和立方根的定义列出式子,解出a ,b ,c 的值即可.(2)将(1)中所求数值代入,并计算平方根即可.(1)解:由题有2324a -=,322a b +=解得: 6a =;1b =.<∴5< ,∴5c =,即:6a =,1b =,5c =;(2)(2)解:把6a =,1b =,5c =,代入2a b c -+得26215a b c -+=-´+,29a b c -+=,∴2a b c -+的平方根是3±.【点睛】本题考查算术平方根,平方根,立方根的定义,无理数的整数部分,熟练理解平方根,算术平方根,立方根的定义是解题的关键.15.(1)计算:①②(2)求方程中的x 的值①()242160x +-=②()32621127x -+=【答案】(1)①12;②142)①0x =或4x =-;②23x =【解析】【分析】(1)根据算术平方根以及立方根进行计算即可;(2)根据算术平方根以及立方根解方程即可.【详解】(1)①解:原式=()442-´-48=+12=②解:原式=()())563114-----+-563114=-+++14=(2)①()242160x +-=()224x +=22x +=±解得0x =或4x =-②()32621127x -+=()312127x -=1213x -=解得23x =【点睛】本题考查了算术平方根以及立方根,掌握算术平方根以及立方根的定义是解题的关键.平方根:如果一个数的平方等于a ,那么这个数就叫a 的平方根,其中属于非负数的平方根称之为算术平方根.立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根.16.(1)一个正数m 的两个平方根分别为3a -和21a +,求这个正数m .(2)已知52a +的立方根是3,31a b +-的算术平方根是4,c 的整数部分,求3a b c -+的平方根.(3)3a =,求a b +的立方根.【答案】(1)49;(2)4±;(3)-1【解析】【分析】(1)根据一个正数的平方根互为相反数列式子求解即可;(2)根据立方根和算术平方根的定义及无理数的估算列出关于a 、b 、c 的式子求值,再计算平方根即可;(3)先根据二次根式有意义的条件求出b 的值,从而得出a 的值,再计算两数的和,从而得出立方根.【详解】解:(1)解:依题意:3210a a -++=,解得4a =-,37a -=,2m 749==.(2)解依题意:3523a +=,2314a b +-=,34<<解得5a =,2b =,3c =316a b c -+=,16的平方根是4±(3)解:依题意2020b b -³ìí-³î,得2b =,代入3a =,得3a =-1ab +=-,a b +的立方根是-1.【点睛】本题考查了平方根和立方根的综合,熟练掌握含义列出式子是解题的关键.17.观察下列各式,并用所得出的规律解决问题:(1=1.414=14.14==0.1732=1.732=17.32…由此可见,被开方数的小数点每向右移动 位,其算术平方根的小数点向 移动 位;(2=2.236=7.071= ,= ;(3=1=10=100…小数点变化的规律是: .(4=2.154=4.642= ,= .【答案】(1)两,右,一;(2)0.7071,22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54,﹣0.4642【解析】【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】(1=1.414=14=141.4…=0.1732=1.732=17.32…由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位,(2=2.236=7.071=0.7071=22.36,(3=1=10=100…小数点变化的规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)=2.154=4.642,=21.54,=-0.4642.故答案为:(1)两;一;(2)0.7071;22.36;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)21.54;﹣0.4642【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.18.观察下列各式,并用所得出的规律解决问题:(1 1.414»14.14»141.4»,……0.1732» 1.732»17.32»,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2 3.873» 1.225»»_____»______.(31=10=100=,……小数点的变化规律是_______________________.(4 2.154»0.2154»-,则y =______.【答案】(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【解析】【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(1 1.414»14.14»141.4»,……0.1732» 1.732»17.32»,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.故答案为:两;右;一;(2 3.873» 1.225»12.25»0.3873»;故答案为:12.25;0.3873;(31=10=100=,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4) 2.154»0.2154»-,0.2154»,0.2154»-,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.。
(完整版)七年级数学《平方根》典型例题及练习

七年级数学《平方根》典型例题及练习【知识要点】1、平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根式),2、算术平方根:3、平方根的性质:(1)一个正数有 个平方根,它们 ;(2)0 平方根,它是 ;(3) 没有平方根.4、重要公式:(1)=2)(a (2){==a a 25、平方表:1.正数有_____________个立方根, 0有__________个立方根,负数有__________个立方根,立方根也叫做_______________.2.一个正方体的棱长扩大3倍,则它的体积扩大_____________.3.若一个数的立方根等于数的算术平方根,则这个数是_____________.4. 0的立方根是___________.(-1)2005的立方根是______________.182726的立方根是________. 5. 312726-=____________. 【典型例题】例1、判断下列说法正确的个数为( )① -5是-25的算术平方根;② 6是()26-的算术平方根;③ 0的算术平方根是0;④ 0.01是0.1的算术平方根;⑤ 一个正方形的边长就是这个正方形的面积的算术平方根.A .0 个B .1个C .2个D .3个例2、36的平方根是( )A 、6B 、6±C 、 6D 、 6±例3、下列各式中,哪些有意义?(1)5 (2)2- (3)4- (4)2)3(- (5)310-例4、一个自然数的算术平方根是a ,则下一个自然数的算术平方根是( )A .()1+aB .()1+±aC .12+aD .12+±a例5、求下列各式中的x :(1)0252=-x (2)4(x+1)2-169=0【巩固练习】一、选择题1. 9的算术平方根是( )A .-3B .3C .±3D .812.下列计算正确的是( )A±2 B636=± D.992-=-3.下列说法中正确的是( )A .9的平方根是3 B24. 64的平方根是( )A .±8B .±4C .±2D 5. 4的平方的倒数的算术平方根是( )A .4B .18C .-14D .146.下列结论正确的是( ) A 6)6(2-=-- B 9)3(2=- C 16)16(2±=- D 251625162=⎪⎪⎭⎫ ⎝⎛--7.以下语句及写成式子正确的是( )A 、7是49的算术平方根,即749±=B 、7是2)7(-的平方根,即7)7(2=-C 、7±是49的平方根,即749=±D 、7±是49的平方根,即749±=8.下列语句中正确的是( )A 、9-的平方根是3-B 、9的平方根是3C 、 9的算术平方根是3±D 、9的算术平方根是39.下列说法:(1)3±是9的平方根;(2)9的平方根是3±;(3)3是9的平方根;(4)9的平方根是3,其中正确的有( )A .3个B .2个C .1个D .4个10.下列语句中正确的是( )A 、任意算术平方根是正数B 、只有正数才有算术平方根C 、∵3的平方是9,∴9的平方根是3D 、1-是1的平方根11.下列说法正确的是( )A .任何数的平方根都有两个B .只有正数才有平方根C .一个正数的平方根的平方仍是这个数D .2a 的平方根是a ±12.下列叙述中正确的是( )A .(-11)2的算术平方根是±11B .大于零而小于1的数的算术平方根比原数大C .大于零而小于1的数的平方根比原数大D .任何一个非负数的平方根都是非负数13.25的平方根是( )A 、5B 、5-C 、5±D 、5±14.36的平方根是( )A 、6B 、6±C 、 6D 、 6±15.当≥m 0时,m 表示( )A .m 的平方根B .一个有理数C .m 的算术平方根D .一个正数 16.用数学式子表示“169的平方根是43±”应是( )A .43169±=B .43169±=±C .43169=D .43169-=-17.算术平方根等于它本身的数是( )A 、 1和0B 、0C 、1D 、 1±和0.如果一个数的平方根与立方根是同一个数,那么这个偶数是( )A. 8B. 4C. 0D. 1618.0196.0的算术平方根是( )A 、14.0B 、014.0C 、14.0±D 、014.0±19.2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±6 20.下列各数有平方根的个数是( )(1)5; (2)(-4)2; (3)-22; (4)0; (5)-a 2; (6)π; (7)-a 2-1A .3个B .4个C .5个D .6个 21.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±22.下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C.2是2的平方根 D. –3是2)3(-的平方根 23.下列命题正确的是( )A .49.0的平方根是0.7B .0.7是49.0的平方根C .0.7是49.0的算术平方根D .0.7是49.0的运算结果24.若数a 在数轴上对应的点的位置在原点的左侧,则下列各式中有意义的是( )A .aB .a -C .2a -D .3a26.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-27.下列各式中正确的是( )A .12)12(2-=-B .6218=⨯C .12)12(2±=-D .12)12(2=-±28.若a 、b 为实数,且471122++-+-=a a a b ,则b a +的值为( ) (A) 1± (B) 4 (C) 3或5 (D) 529.若9,422==b a ,且0<ab ,则b a -的值为 ( )(A) 2- (B) 5± (C) 5 (D) 5-30.已知一个正方形的边长为a ,面积为S ,则( ) A.a S = B.S 的平方根是a C.a 是S 的算术平方根 D.S a ±=31. 若a 和a -都有意义,则a 的值是( )A.0≥aB.0≤aC.0=aD.0≠a 32.22)4(+x 的算术平方根是( )A 、 42)4(+xB 、22)4(+xC 、42+xD 、42+x33.2)5(-的平方根是( )A 、 5±B 、 5C 、5-D 、5±34.下列各式中,正确的是( ) A. 2)2(2-=- B. 9)3(2=- C. 39±=± D. 393-=-35.下列各式中正确的是( )A .12)12(2-=-B .6218=⨯C .12)12(2±=-D .12)12(2=-±36.下列各组数中互为相反数的是( )A 、2)2(2--与B 、382--与C 、2)2(2-与D 、22与- 二、填空题:1.如果x 的平方等于a ,那么x 就是a 的 ,所以的平方根是2.非负数a 的平方根表示为3.因为没有什么数的平方会等于 ,所以负数没有平方根,因此被开方数一定是4_______;9的平方根是_______.5的平方根是 ,25的平方根记作 ,结果是6.非负的平方根叫 平方根7.2)8(-= , 2)8(= 。
七年级数学平方根立方根试题

七年级数学平方根立方根试题一、平方根相关试题。
1. 求16的平方根。
- 解析:- 一个正数有两个平方根,它们互为相反数。
- 因为(±4)^2 = 16,所以16的平方根是±4。
2. 若x^2 = 25,求x的值。
- 解析:- 因为x^2 = 25,根据平方根的定义,x是25的平方根。
- 又因为(±5)^2 = 25,所以x = ±5。
3. √(49)的值是多少?- 解析:- √(49)表示49的算术平方根。
- 因为7^2 = 49,所以√(49)=7。
4. 计算√(0.09)。
- 解析:- 因为0.3^2 = 0.09,所以√(0.09)=0.3。
5. 若√(a)=3,求a的值。
- 解析:- 因为√(a)=3,根据算术平方根的定义,a = 3^2 = 9。
6. 求√(frac{1){16}}的值。
- 解析:- 因为((1)/(4))^2=(1)/(16),所以√(frac{1){16}}=(1)/(4)。
7. 一个正数的平方根是2a - 1和- a+2,求这个正数。
- 解析:- 一个正数的两个平方根互为相反数。
- 所以2a - 1+( - a + 2)=0。
- 化简得2a - 1 - a+2 = 0,即a+1 = 0,解得a=-1。
- 则其中一个平方根为2a - 1 = 2×(-1)-1=-3。
- 所以这个正数为( - 3)^2 = 9。
8. 已知√(x - 1)+√(1 - x)=y + 4,求x,y的值。
- 解析:- 要使√(x - 1)和√(1 - x)有意义,则x - 1≥slant0且1 - x≥slant0。
- 所以x - 1 = 0,即x = 1。
- 当x = 1时,√(x - 1)+√(1 - x)=0,则y+4 = 0,解得y=-4。
9. 比较√(3)与1.7的大小。
- 解析:- 因为(√(3))^2 = 3,1.7^2 = 2.89。
七年级数学6.1平方根、立方根讲解与例题

6.1 平方根、立方根1.了解平方根、算术平方根、立方根的定义和性质,会用根号表示非负数的平方根、算术平方根、立方根.2.能利用平方根、算术平方根、立方根的定义和性质解题. 3.知道开方是乘方的逆运算,会用开方求某些非负数的平方根. 4.能运用算术平方根解决一些简单的实际问题.1.平方根(1)平方根的概念:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根,也叫做二次方根.换句话说,如果x 2=a ,那么x 叫做a 的平方根,例如22=4,(-2)2=4,则4的平方根是+2和-2(也可合写为±2),+2和-2都是4的平方根.(2)平方根的性质:一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.(3)平方根的表示:正数a 有两个平方根,一个是a 的正的平方根,记作“a ”,读作“根号a ”,另一个是a 的负的平方根,记作“-a ”,读作“负根号a ”,这两个平方根合起来可记作“±a ”,读作“正、负根号a ”,其中a 叫做被开方数.【例1-1】求下列各数的平方根:(1)0.64;(2)3625;(3)⎝ ⎛⎭⎪⎫-322.分析:要求一个数的平方根,我们可以根据平方根的概念,首先找到一个数,使它的平方等于已知的数,然后就可以求出这个数的平方根.解:(1)∵(±0.8)2=0.64,∴0.64的平方根是±0.8.(2)∵⎝ ⎛⎭⎪⎫±652=3625,∴3625的平方根是±65.(3)∵⎝ ⎛⎭⎪⎫±322=⎝ ⎛⎭⎪⎫-322,∴⎝ ⎛⎭⎪⎫-322的平方根是±32.求一个数的平方根,必须牢记正数有两个平方根,它们互为相反数,不会因为表达形式的改变而改变,如⎝ ⎛⎭⎪⎫-322是个正数,那么它有两个平方根,不要错误地认为它的平方根仅有-32.【例1-2】下列各数有平方根吗?如果有,求出它的平方根;若没有,请说明理由. (1)2516;(2)0;(3)-4;(4)-0.49;(5)(-3)2. 分析:解:(1)因为16是正数,所以16有两个平方根.由于⎝ ⎛⎭⎪⎫±542=2516,所以2516的平方根是±54.(2)0只有一个平方根,是它本身.(3)因为-4是负数,所以-4没有平方根.(4)因为-0.49是负数,所以-0.49没有平方根.(5)因为(-3)2=9,所以(-3)2为正数,有两个平方根.由于9的平方根是±3,所以(-3)2的平方根是±3.2.算术平方根的概念正数a 的正的平方根a 叫做a 的算术平方根.0的算术平方根是0.因此如果x 2=a ,那么正数x 叫做a 的算术平方根.平方根与算术平方根的区别与联系(1)区别:①表示方法不同:正数a 的平方根表示为±a ;正数a 的算术平方根表示为a .②个数不同:一个正数的平方根有两个,它们互为相反数;一个正数的算术平方根只有一个.③性质不同:一个正数的平方根有两个,可以是负数;一个非负数的算术平方根一定是非负数.平方根等于本身的数只有一个数,这个数是0;算术平方根等于本身的数有两个:0和1.(2)联系:平方根包含算术平方根,算术平方根是平方根的一个;平方根和算术平方根都只有非负数才有.负数没有平方根和算术平方根;0的平方根和算术平方根都是0.【例2】求下列各数的算术平方根:(1)196;(2)179;(3)16.分析:根据算术平方根的定义,求正数a 的算术平方根,也就是求一个非负数x ,使x 2=a ,则x 就是a 的算术平方根.(1)因为142=196,所以196的算术平方根是14.(2)因为179=169,⎝ ⎛⎭⎪⎫432=169,所以169的算术平方根是43,即179的算术平方根是43.(3)因为要求的是16的算术平方根,所以要先算出16,再求算术平方根.16表示的是16的算术平方根,所以16=4.由于22=4,所以4的算术平方根是2,即16的算术平方根是2.解:(1)196=14.(2)179=169=43.(3)因为16=4,4的算术平方根是2,所以16的算术平方根是2.求正数a 的算术平方根,只需找出平方等于a 的正数.求一个分数的算术平方根或平方根,当这个分数是带分数时,要先化成假分数,再求这个数的算术平方根或平方根,不要出现11649=147的错误.3.开平方(1)求一个数的平方根的运算叫做开平方.(2)用计算器求一个非负数的算术平方根及近似值.用计算器求一个非负数的算术平方根,只需直接按书写顺序按键即可.例如,用计算器求529与44.81的算术平方根:①在计算器上依次键入529=,显示结果为23,因此529的算术平方根为529=23.②在计算器上依次键入44.81=,显示结果为6.940 271 88,如果要求精确到0.01,那么44.81≈6.94.(1)平方根是一个数,是开平方的结果;而开平方是和加、减、乘、除、乘方一样的一种运算,是求平方根的过程.(2)开平方是平方的逆运算.我们可以用平方运算来检验开平方的结果是否正确. (3)平方和开平方之间的关系,我们可以这样来理解:已知底数m 和指数2,求幂,是平方运算,即m 2=(?);已知幂a 和指数2,求底数,是开平方,即(?)2=a .(4)选用的计算器不同,按键的顺序也不同,因此应该仔细阅读计算器的说明书,按照要求操作.【例3】求下列各式中未知数的值:(1)x 2=25;(2)(2a +3)2=16.分析:如果一个数的平方等于a ,那么这个数叫做a 的平方根,它有一正一负两个值.(1)因为x 2=25,所以x 就是25的平方根,有两个,是±5;(2)将2a +3看成一个整体,根据平方根的定义易知2a +3就是16的平方根,是±4,即2a +3=±4,在此基础上,分两种情况分别求出a 的值即可.解:(1)因为(±5)2=25, 所以x =±5.(2)因为(±4)2=16, 所以2a +3=±4.当2a +3=4时,解得a =12.当2a +3=-4时,解得a =-72.故所求a 的值是12或-72.利用开平方解方程的方法是:先把方程化为x 2=m (m ≥0)的形式,然后根据开平方得到x =±m .特别地,要注意整体思想的应用.4.立方根(1)立方根的概念:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根(也叫做三次方根).也就是说,如果x 3=a ,那么x 叫做a 的立方根.(2)立方根的表示方法:数a 的立方根记为“3a ”,读作“三次根号a ”,其中a 是被开方数,3是根指数,这里的根指数“3”不能省略.【例4】求下列各数的立方根:(1)27;(2)-27;(3)338;(4)-0.064;(5)0;(6)-5.分析:求一个数a 的立方根,关键是求出满足等式x 3=a 中x 的值,同时在学习了立方根的表示方法后,应用符号表示解题过程比语言叙述更为简洁.解:(1)因为33=27,所以327=3. (2)因为(-3)3=-27,所以3-27=-3.(3)因为338=278,而⎝ ⎛⎭⎪⎫323=278,所以3338=32.(4)因为(-0.4)3=-0.064, 所以3-0.064=-0.4. (5)因为03=0,所以30=0. (6)-5的立方根是3-5.开方开不尽的数,保留根号,如本题(6),-5的立方根是3-5.5.开立方(1)求一个数的立方根的运算叫做开立方. ①开立方与立方互为逆运算.我们可以根据这种关系求一个数的立方根或检验一个数是否是某个数的立方根.②被开立方的数可以是正数、负数和0;③求一个带分数的立方根时,必须把带分数化成假分数,再求它的立方根. (2)用计算器求一个数的立方根及近似值.用计算器求一个数的立方根的操作过程和求平方根操作过程基本相同,主要差别是先按2ndf 键,再按书写顺序按键即可.例如用计算器求31 845,在计算器上依次键入2ndf 31845=,显示结果为12.264 940 82,若计算结果要求精确到0.01,则1 845的立方根为12.26,即31 845≈12.26.【例5】解方程:(1)125x 3-27=0;(2)(5x -3)3=343.分析:(1)把原方程变形为x 3=27125后,可知x 是27125的立方根.(2)把5x -3看做整体,则易知它是343的立方根,其值可求,在此基础上可求x .解:因为125x 3-27=0,所以x 3=27125.故x =35.(2)因为(5x -3)3=343,所以5x -3=3343=7, 即5x =10.故x =2.利用开立方解方程的方法:先把方程化为x 3=m 的形式,然后根据开立方得到x =3m .特别地,要注意整体思想的应用.6.立方根的性质正数的立方根是一个正数,负数的立方根是一个负数,0的立方根是0. (1)立方根的符号与被开方数的符号一致; (2)一个数的立方根是唯一的; (3)3-a =-3a ,3a 3=a ,(3a )3=a . 【例6】下列语句正确的是( ). A .64的立方根是2 B .-3是27的立方根C .125216的立方根是±56D .(-1)2的立方根是-1解析:因为64=8,而2的立方等于8,所以64的立方根是2,即A 正确,解答时不要把“求64的立方根”误解为“求64的立方根”;因为-3的立方是-27,所以-3是27的立方根是错误的;因为56的立方是125216,所以125216的立方根是56,因此C 是错误的;因为(-1)2=1,它的立方根是1,而不是-1,所以D 是错误的.故本题选A .答案:A(1)任何数都有立方根,而负数没有平方根;(2)任何数的立方根只有一个,而正数有两个平方根.7.用平方根与立方根的定义及性质解题已知一个数的平方根或立方根求原数是利用平方根与立方根的定义及性质解题中的常见题型.(1)一个正数的两个平方根互为相反数,而互为相反数的两个数的和为零. (2)对于立方根来说,任何数的立方根只有一个,根据立方根的定义可知,3-a =-3a ,也就是说,求一个负数的立方根时,只要先求出这个负数的绝对值的立方根,然后再取它的相反数即可.(3)当两个数相等时,这两个数的立方根相等.反之,当两个数的立方根相等时,这两个数也相等.这与平方根不同,在平方根的计算中,若两数的平方根相等或互为相反数时,这两个数相等;若这两个数相等时,则两数的平方根相等或互为相反数.【例7-1】已知2x -1和x -11是一个数的平方根,求这个数.分析:因为2x -1和x -11是一个数的平方根,根据平方根的定义,可知2x -1和x -11相等或互为相反数.当2x -1和x -11相等时,可列出方程2x -1=x -11,当2x -1和x -11互为相反数时,可列出方程2x -1+x -11=0,从而求出x 的值,进一步可求出这个数.解:根据平方根的定义,可知2x -1和x -11相等或互为相反数.当2x -1=x -11时,x =-10,所以2x -1=-21,这时所求的数为(-21)2=441;当2x -1+x -11=0时,x =4,所以2x -1=7,这时所求的数为72=49. 综上可知,所求的数为49或441.【例7-2】若32a -1=-35a +8,求a 2 012的值.分析:根据立方根的唯一性和3-a =-3a ,可知2a -1与5a +8互为相反数,从而可构造出关于a 的一元一次方程2a -1=-(5a +8).进一步可求出a 2 012的值. 解:因为32a -1=-35a +8,所以32a -1=3-a +,即2a -1=-(5a +8).解得a =-1.故a 2 012=(-1)2 012=1. 8.非负性的应用非负数指的是正数和零,常用的非负数主要有: (1)绝对值|a |≥0;(2)平方a 2≥0;(3)算术平方根a 具有双重非负性: ①a 本身具有非负性,即a ≥0;②算术平方根a 的被开方数具有非负性,即a ≥0. 非负数有如下性质:若两个或多个非负数的和为0,则每个非负数均为0.在解决与此相关的问题时,若能仔细观察、认真地分析题目中的已知条件,并挖掘出题目中隐含的非负性,就可避免用常规方法造成的繁杂运算或误解,从而收到事半功倍的效果.与算术平方根和平方数的非负性相关的求值问题,一般情况下都是它们的和等于0的形式.此类问题可以分成以下几种形式:一是算术平方根、平方数、绝对值三种中的任意两种组成一题〔| |+( )2=0,| |+ =0,( )2+ =0〕,甚至同一道题目中出现这三个内容〔| |+( )2+ =0〕;二是题目中没有直接给出平方数,而是需要先利用数学公式把题目中的某些内容进行变形,然后再利用非负数的性质进行计算.【例8-1】如果y =2x -1+1-2x +2,则4x +y 的平方根是__________.解析:因为2x -1≥0且1-2x ≥0,所以2x -1=1-2x =0,即x =12.于是y =2x -1+1-2x +2=2.因此4x +y =4×12+2=4.故4x +y 的平方根为±2.答案:±2【例8-2】如果y =x 2-4+4-x 2x +2+2 012成立,求x 2+y -3的值.分析:由算术平方根被开方数的非负性知x 2-4≥0,4-x 2≥0,因此,只有x 2-4=0,即x =±2;又x +2≠0,即x ≠-2,所以x =2,y =2 012,于是得解.解:由题意可知x 2-4≥0且4-x 2≥0,因此x 2-4=0,即x =±2. 又∵x +2≠0,即x ≠-2, ∴x =2,y =2 012.故x 2+y -3=22+2 012-3=2 013.【例8-3】已知a -1+(b +2)2=0,求(a +b )2 012的值.分析:a -1表示a -1的算术平方根,所以a -1为非负数.因为(b +2)2为偶次幂,所以(b +2)2为非负数.由于两个正数相加不能为0,所以这两项都为0,因此解方程求值即可.解:因为a -1≥0,(b +2)2≥0,且a -1+(b +2)2=0,所以a -1=0,(b +2)2=0, 解得a =1,b =-2.故(a +b )2 012=(1-2)2 012=1.9.利用方根探索规律(1)可以利用计算器探究被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律. 规律:如果将被开方数的小数点向左(右)每移动2位,则它的算术平方根的小数点就相应地向同一方向移动1位.即当被开方数扩大(或缩小)100倍时,其算术平方根相应地扩大(或缩小)10倍;当被开方数扩大(或缩小)10 000倍时,其算术平方根相应地扩大(或缩小)100倍….(2)可利用计算器探究被开方数扩大(或缩小)与它的立方根扩大(或缩小)的规律. 规律:如果将被开方数的小数点向左(右)每移动3位,则它的立方根的小数点就相应地向同一方向移动1位.即当被开方数扩大(或缩小)1 000倍时,其立方根相应地扩大(或缩小)10倍;当被开方数扩大(或缩小)1 000 000倍时,其立方根相应地扩大(或缩小)100倍….(3)还可利用方根为问题背景进行规律的探索. 【例9】(1)观察下列各式:1+13=213,2+14=314,3+15=415,…,请你将发现的规律用含自然数n (n ≥1)的等式表示出来__________.(2)借助计算器可以求出42+32,442+332,4442+3332,…,观察上述各式特点,__________.解析:(1)第一个等式右边的2比左边被开方数里的1大1,被开方数13与左边被开方数的13相同且3比2大1;第二个等式右边的3比左边被开方数里的2大1,被开方数14与左边被开方数14相同且4比3大1,…,故有n +1n +2=(n +1)1n +2(n ≥1). (2)借助计算器,可以分别求得42+32=5,442+332=55,4442+3332=555,…,由此观察发现每个式子的结果都是由若干个5组成的,且5的个数为相应式子的左边4或35n 个.答案:(1)n +1n +2=(n +1)1n +2(n ≥1) (2)5555n 个10.平方根与立方根的实际应用解实际问题时,首先要读懂题意,善于构造数学模型,将它转化为数学问题.与平方根、立方根有关的实际应用多以正方形、正方体等几何图形为问题背景设题,解答时,常常根据题意列出方程,然后再利用平方根与立方根的定义及性质解方程即可.注意求出的结果要符合实际问题的实际意义.【例10-1】计划用100块地板砖来铺设面积为16 m 2的客厅,求需要的正方形地板砖的边长.解:设地板砖的边长为x m ,根据题意,得100x 2=16,即x 2=0.16,所以x =±0.16=±0.4.由于长度不能为负数,所以x =0.4(m). 故地板砖的边长为0.4 m.【例10-2】一种形状为正方体的玩具名为“魔方”,(每个面由9个小正方体面组成)体积为216 cm 3,求组成它的每个小正方体的棱长.解:设小正方体的棱长为a cm ,则玩具的棱长为3a cm ,由题意得(3a )3=216.于是27a3=216,a 3=8,a =2(cm).故每个小正方体的棱长为2 cm.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七下数学平方根与立方根练习题
姓名:
一、 选择题
1、若,则(
)
a x =2 A 、x>0 B 、x ≥0
C 、a>0
D 、a ≥0
2、一个数若有两个不同的平方根,则这两个平方根的和为(
)
A 、大于0
B 、等于0
C 、小于0
D 、不能确定3、一个正方形的边长为a ,面积为b ,则( )
A 、a 是b 的平方根
B 、a 是b 的的算术平方根
C 、
D 、b a ±=a
b =
4、若a ≥0,则的算术平方根是( )
24a A 、2a B 、±2a C 、
D 、| 2a |a 25、若正数a 的算术平方根比它本身大,则( )
A 、0<a<1
B 、a>0
C 、a<1
D 、a>16、若n 为正整数,则等于(
)
121+-n A 、-1 B 、1 C 、±1 D 、2n+1
7、若a<0,则等于(
)
a
a 22
A 、
B 、
C 、±
D 、0
2
1
2
1
-
2
1
8、若x-5能开偶次方,则x 的取值范围是( ) A 、x ≥0 B 、x>5 C 、x ≥5 D 、x ≤5
9下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()
A , 0个
B ,1个
C ,2个
D ,3个 10若一个数的平方根与它的立方根完全相同,则这个数是()
A , 1
B , -1
C , 0
D ,±1, 011,若x使(x-1)2=4成立,则x的值是( )
A ,3
B ,-1
C ,3或-1
D ,±2
12.如果是负数,那么的平方根是( ).A . B . C . D .a 2a a a -a ±13有意义的有( ).A .个 B .1个 C .无数个 D .以上都不对a 014.下列说法中正确的是( ).
A .若
B .是实数,且,则0a <0<x 2x a =0a >
C 有意义时,
D .0.1的平方根是0x ≤0.01
±15.若一个数的平方根是,则这个数的立方根是( ).
8±
i
A.2 B. 2 C.4 D. 4
±
±
16.若,,则的所有可能值为().
22
(5)
a=-33
(5)
b=-a b
+
A.0 B.10 C.0或10 D.0或10
--±
17.若,且,则、的大小关系是().
10
m
-<<n=m n
A. B. C. D.不能确定m n
>m n
<m n
=
18.).
27
-
A.0 B.6 C.-12或6 D.0或-6
19.若,满足,则等于().
a b2
|(2)0
b
+-=ab
A.2 B. C. 2 D.
1
2
--
1
2
20.下列各式中无论为任何数都没有意义的是().
x
A. D
二、填空
21的平方根是,是的平方根.
3
5
±
22、在下列各数中
0,,,,,,,
25
4
21
a+3
1
(
3
--2
(5)
--222
x x
++|1|
a-||1
a-
个数是个.
23、144的算术平方根是,的平方根是;
16
24、= ,的立方根是;
32764
-
25、7的平方根为,= ;
21
.1
26、一个数的平方是9,则这个数是,一个数的立方根是1,则这个数是;
27、平方数是它本身的数是;平方数是它的相反数的数是;
28、当x= 时,有意义;当x= 时,有意义;
1
3-
x32
5+
x
29、若,则x= ;若,则n= ;
16
4=
x81
3=
n
30、若,则x= ;若,则x ;
3x
x=x
x-
=
2
31、若,则x+y= ;
|2
|
1=
-
+
+y
x
32、计算:= ;
38
12
64
27
3
2
9
25
3
1
+
-
+
33、代数式的最大值为,这是的关系是.
3
-,a b
o 34,则,若,则.
3
5
=-x=6
=x=
35,则的值为.
4
k
=-k
36、若,,其中、为整数,则.
1
n n
<<+1
m m
<<+m n m n
+=
37、若正数的平方根是和,则= .
m51
a+19
a-m
三、解答题
38、求下列X的值:
(1)(2) 125-8x3=0
324
)1
(2=
-
-
x
(3 )(4)
2
64(3)90
x--=2
(41)225
x-=
(5 )( 6 )
3
1
(1)80
2
x-+=3
125(2)343
x-=-
(7)(8
|1|
-
(9)(10)+
39互为相反数,求代数式
的值.12x
y
+40.已知M 的立方根,是的相反数,且,请你求出
a x =y =
x 37M a =-的平方根.
x 41.若,求的值.
y =
2x y +42,且,求的值.
4=2(21)0y x -++
=x y z ++43、已知:x -2的平方根是±2, 2 x +y+7的立方根是3,求x 2+ y 2的平方根.
44、若,求x y 的值。
12112--+-=
x x y。