平方根与立方根单元测试卷

合集下载

(完整版)平方根与立方根测试题

(完整版)平方根与立方根测试题

平方根与立方根测试题时间:120分 满分:150分一、选择(每题2分,共40分)1.若a x =2,则( )A 、x>0B 、x≥0C 、a>0D 、a≥02.一个数若有两个不同的平方根,则这两个平方根的和为( ) A 、大于0 B 、等于0 C 、小于0 D 、不能确定 3.一个正方形的边长为a ,面积为b ,则( )A 、a 是b 的平方根B 、a 是b 的的算术平方根C 、b a ±=D 、a b =4.若a≥0,则24a 的算术平方根是( )A 、2aB 、±2aC 、a 2D 、| 2a | 5.若正数a 的算术平方根比它本身大,则( ) A 、0<a<1 B 、a>0 C 、a<1 D 、a>1 6.若n 为正整数,则121+-n 等于( )A 、-1B 、1C 、±1D 、2n+17.若a<0,则aa 22等于( )A 、21 B 、21- C 、±21 D 、0 8.若x-5能开偶次方,则x 的取值范围是( ) A 、x≥0 B 、x>5 C 、x≥5 D 、x≤59.下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有( )A 、 0个B 、1个C 、2个D 、3个 10.若一个数的平方根与它的立方根完全相同,则这个数是()A 、 1B 、 -1C 、 0D 、±1, 011.若x使(x-1)2=4成立,则x的值是( )A 、3B 、-1C 、3或-1D 、±212.如果a 是负数,那么2a 的平方根是( ).A .a B .a - C .a ± D.13a 有( ).A 、0个B 、1个C 、无数个D 、以上都不对 14.下列说法中正确的是( ).A 、若0a <0< B 、x 是实数,且2x a =,则0a >C有意义时,0x ≤ D 、0.1的平方根是0.01± 15.若一个数的平方根是8±,则这个数的立方根是( ).A 、2B 、±2C 、4D 、±416.若22(5)a =-,33(5)b =-,则a b +的所有可能值为( ).A 、0B 、-10C 、0或-10D 、0或±10 17.若10m -<<,且n =,则m 、n 的大小关系是( ).A 、m n >B 、m n <C 、m n =D 、不能确定 18.27-).A 、0B 、6C 、-12或6D 、0或-619.若a ,b满足2|(2)0b +-=,则ab 等于( ).A 、2B 、12 C 、-2 D 、-1220.下列各式中无论x 为任何数都没有意义的是( ).ABCD二、填空(每题2分,共34分)21的平方根是 ,35±是 的平方根.22.在下列各数中0,254,21a +,31()3--,2(5)--,222x x ++,|1|a -,||1a -方根的个数是 个.23. 144的算术平方根是 ,16的平方根是 ; 24.327= , 64-的立方根是 ; 25.7的平方根为 ,21.1= ;26.一个数的平方是9,则这个数是 ,一个数的立方根是1,则这个数是 ; 27.平方数是它本身的数是 ;平方数是它的相反数的数是 ; 28.当x= 时,13-x 有意义;当x= 时,325+x 有意义;29.若164=x ,则x= ;若813=n ,则n= ;30.若3x x =,则x= ;若x x -=2,则x ;31.若0|2|1=-++y x ,则x+y= ;32.计算:381264273292531+-+= ; 33.代数式3-的最大值为 ,这是,a b 的关系是 .3435=-,则x =,若6=,则x = .354k =-,则k 的值为 .36.若1n n <<+,1m m <<+,其中m 、n 为整数,则m n += .37.若m 的平方根是51a +和19a -,则m = .三、解答题(共76分)38、(40分)解方程:0324)1(2=--x (2) 125-8x3=0(3 ) 264(3)90x --= (4) 2(41)225x -=(5 )31(1)802x -+= ( 6 )3125(2)343x -=-(7)|1 (8(9(1039.(6互为相反数,求代数式12xy+的值.40.(6分)已知ax=M的立方根,y=x的相反数,且37M a=-,请你求出x的平方根.41.(6分)若y=,求2x y+的值.42.(64=,且2(21)0y x-++=,求x y z++的值.43.(6分)已知:x-2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根.44.(6分)若12112--+-=xxy,求x y的值。

数的开方单元测试

数的开方单元测试

m n 第12章 数的开方单元测试姓名________学号_________一、选择题(每小题3分,共30分) 1.与数轴上的点成一一对应关系的数是( ) A .整数 B .有理数 C .无理数 D.实数 2.下列各组数中互为相反数的是( )A .-3.与-12D .│-23.下列四种说法:①负数有一个负的立方根;②1的平方根与立方根都是1;③4•的平方根的立方根是;④互为相反数的两个数的立方根仍为相反数. A .1 B .2 C.3 D .4 4.下列各式成立的是( )A=±2 B>0 5.在下列各数中,0.5,54-0,03745,13,数为( )A .2B .3C .4D .56.一个正方形的面积扩大为原来的n 倍,则它的边长扩大为原来的( )A .n 倍B .2n 倍CD .2n倍 7.若一个数的平方根等于它的立方根,则这个数是( ) A .0 B .1 C .-1 D .±18.(05年宜昌市中考.课改卷)实数m 、n 在数轴上的位置如图所示,•则下列不等关系正确的是( )A .n<mB .n 2<m 2C .n>mD .│n │<│m │ 9. 使式子23+x 有意义的实数x 的取值范围是 ( )A .x ≥0B .32->x C .23-≥x D .32-≥x10、下列说法中,正确的有( )①无限小数是无理数;②无理数是无限小数;③两个无理数的和是无理数;④对于实数a 、b,如果22b a =,那么a=b ;⑤所有的有理数都可以用数轴上的点来表示,反过来,数轴上的所有点都表示有理数。

A 、②④ B 、①②⑤ C 、② D 、②⑤ 二、填空题(每小题2分,共28分)9.若一个正数的平方根是2a-1和-a+2,则a=______,这个数是_______.10_________________.11.数轴上表示的点在表示的点的________侧. 12.在下列各式中填入“>”或“<”:,,13的相反数是________的绝对值是_____. 14.从1到100之间所有自然数的平方根的和为________. 14、如果68.28,868.26.2333==x ,那么x=15+│y-1│+(z+2)2=0,则xyz=________.三、解答题(共42分)19.将下列各数由小到大重新排成一列,并用“<”号连接起来.(6分))2(--,0,23,π-3,23-,|2|--20、若2+-b a 与1-+b a 互为相反数,求22a+2b 的立方根(6分)22.(6分)解方程.(10分)(1)(x-1)2=16;(2)8(x+1)3-27=0.23.(6分)物体从某一高度自由落下,物体下落的高度s与下落的时间t•之间的关系可用公式s=12gt2表示,其中g=10米/秒2,若物体下落的高度是180米,•那么下落的时间是多少秒?25.(7分)已知实数a、b、c、d、m,若a、b互为相反数,c、d互为倒数,m的绝对值是22的平方根.27.(7分)先阅读第(1)题解法,再解答第(2)题.(1)已知a,b是有理数,并且满足等式23-a,求a,b的值.解:因为a=2b+23,即(2b-a)+23,所以25,2,3b aa-=⎧⎪⎨-=⎪⎩,解得2,313.6ab⎧=-⎪⎪⎨⎪=⎪⎩.(2)设x,y是有理数,并且x、y满足x2,求x+y的值.答案:1.D2.A.3.C 点拨:正确的是①③④,②错,1的平方根是±1,而1的立方根是1.4.D 点拨:A=2,,.5.A,6.D 点拨:利用计算器把选项中的数化为小数,然后比较大小.7.C 点拨:设原来正方形边长为a,则面积为a2;扩大后的正方形面积为na2,•扩大后倍.8.A 点拨:注意1的平方根是±1,-1无平方根.9.C10.A 点拨:观察数轴可知n<-1<m<0,从而n<m,n2>m2,│n│>│m│.11.-1,9 点拨:2a-1+(-a+2)=0,所以a=-1.12,0.513.1.732,0.643,-(-1)2n,|,14.左15.<,<,>16.,17.0 点拨:从1到100之间的每个自然数的平方根有两个,它们互为相反数.18.-6 点拨:30,10,20.xyz-=⎧⎪-=⎨⎪+=⎩故3,1,2.xyz=⎧⎪=⎨⎪=-⎩所以xyz=3×1×(-2)=-6.19.m<0 点拨:由数轴上点的特点可知2m<m<1-m,即2,1,m mm m<⎧⎨<-⎩解得m<0.20+1或 点拨:与数1的点有两个,一个在数1左边,另一个在数1右边.21.有理数:0,2273.14,0.33,-π,0.1010010001……,222.(1)解:(x-1)2=16,x-1=±4, 所以x=5或x=-3.(2)解:8(x+1)3-27=0,8(x+1)3=27, (x+1)2=278,x+1=32,x=32-1, 所以x=12. 23.解:因为s=12g t 2,所以当s=180米时,得180=12·10t ,所以t 2=36,所以t=±6.•因为时间不能为负, 所以t=6,所以物体下落的时间为6秒. 24.(1)> (2)< (3)> (4)< (5)> 25.解:由题意,得a+b=0,cd=1,m 2=4.2=0411++=5.226.解:有理数有32,-23,其和为32+(-2)3=1;π,π·=2π,故所求差为1-2π.27.解:由x 2,得2217,4,x y y ⎧+=⎨=-⎩ 解得5,4,x y =⎧⎨=-⎩ 或5,4.x y =-⎧⎨=-⎩所以x+y=5-4或x+y=-5-4.故x+y=1或x+y=-9.点拨:•若一个含有无理数及有理数的代数式与另一个含有无理数及有理数的代数式相等,则无理数部分与有理数部分分别对应相等.。

平方根专项练习60题(有答案)

平方根专项练习60题(有答案)

平方根专项练习60题(有答案)本文档包含了60道关于平方根的专项练题,每道题后附有答案供参考。

第一部分:基础练题1. 计算下列数的平方根:- 16- 25- 36- 49- 642. 下列数中,哪个数的平方根是8?- 64- 81- 100- 121- 1443. 判断下列等式是否正确:- √9 = 3- √16 = 4- √25 = 6- √36 = 6- √49 = 74. 计算下列数的平方根,并将结果四舍五入到最接近的整数:- 19- 37- 55- 73- 915. 计算下列平方根的值,并将结果保留两位小数:- √20- √32- √45- √58- √72第二部分:复杂练题1. 计算下列数的平方根,并将结果保留三位有效数字:- 1000----2. 判断下列等式是否成立:- (√4)^2 = 4- (√9)^2 = 9- (√16)^2 = 16- (√25)^2 = 25- (√36)^2 = 363. 解方程:√(x-7) = 54. 解方程:2√x = 105. 计算下列表达式的值:- √(64 + 36)- √(100 - 25)- √(144 - 9)- √(81 + 16)- √(121 + 25)以上为平方根的专项练题,答案请参考附后,希望对你的研究有所帮助。

答案:1.- √16 = 4- √25 = 5- √36 = 6- √49 = 7- √64 = 82. 643.- 正确- 正确- 错误(正确答案是5)- 正确- 正确4.- 19 ≈ 4- 37 ≈ 6- 55 ≈ 7- 73 ≈ 9- 91 ≈ 105.- √20 ≈ 4.47- √32 ≈ 5.66- √45 ≈ 6.71- √58 ≈ 7.62 - √72 ≈ 8.49。

初二上册平方根和立方根的练习题

初二上册平方根和立方根的练习题

初二上册平方根和立方根的练习题在初中数学中,平方根和立方根是常见的数学概念。

学好这两个概念,不仅可以提升数学能力,还能应用到实际生活中。

下面是一些平方根和立方根的练习题,帮助大家更好地理解和掌握这两个概念。

练习题一:平方根计算1. 计算√16 + √25 = ?解答:√16 = 4,√25 = 5,所以√16 + √25 = 4 + 5 = 9。

2. 计算√121 - √49 = ?解答:√121 = 11,√49 = 7,所以√121 - √49 = 11 - 7 = 4。

3. 计算√36 × √64 = ?解答:√36 = 6,√64 = 8,所以√36 × √64 = 6 × 8 = 48。

练习题二:立方根计算1. 计算∛8 + ∛27 = ?解答:∛8 = 2,∛27 = 3,所以∛8 + ∛27 = 2 + 3 = 5。

2. 计算∛64 - ∛125 = ?解答:∛64 = 4,∛125 = 5,所以∛64 - ∛125 = 4 - 5 = -1。

3. 计算∛216 ×∛64 = ?解答:∛216 = 6,∛64 = 4,所以∛216 ×∛64 = 6 × 4 = 24。

练习题三:平方根和立方根混合计算1. 计算√36 + ∛27 = ?解答:√36 = 6,∛27 = 3,所以√36 + ∛27 = 6 + 3 = 9。

2. 计算√9 × ∛64 = ?解答:√9 = 3,∛64 = 4,所以√9 × ∛64 = 3 × 4 = 12。

3. 计算√25 ÷ ∛64 = ?解答:√25 = 5,∛64 = 4,所以√25 ÷ ∛64 = 5 ÷ 4 = 1.25。

通过对以上练习题的计算,相信大家对平方根和立方根的计算方法有了更深入的了解。

不过要注意,在实际考试或应用中,可能会出现更复杂的题目,需要进一步掌握计算的技巧和方法。

初二数学数的开方测试卷

初二数学数的开方测试卷

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √16C. √25D. √362. 下列各数中,无理数是()A. √4B. √9C. √16D. √253. 下列各数中,完全平方数是()A. 5B. 7C. 8D. 94. 下列各数中,算术平方根是()A. √36B. √49C. √81D. √1005. 下列各数中,立方根是()A. √8B. √27C. √64D. √1256. 如果a=√27,那么a的值是()A. 3B. 6C. 9D. 127. 如果a=√(2√3),那么a的值是()A. √6B. √12C. √18D. √248. 如果a=√(3√2),那么a的值是()A. √6B. √12C. √18D. √249. 如果a=√(4√5),那么a的值是()A. √10B. √20C. √25D. √3010. 如果a=√(5√6),那么a的值是()A. √30B. √36C. √42D. √48二、填空题(每题5分,共50分)11. 2的平方根是______,3的立方根是______。

12. 16的算术平方根是______,81的立方根是______。

13. (√27)²=______,(√64)³=______。

14. 3的平方根是______,-3的平方根是______。

15. (√2)²=______,(√3)³=______。

16. (√8)²=______,(√27)³=______。

17. 2的算术平方根是______,-2的算术平方根是______。

18. (√5)²=______,(√6)³=______。

三、解答题(每题10分,共30分)19. 简化下列各式:(1)√(16 + 9)(2)√(36 - 25)(3)√(64 ÷ 16)20. 计算下列各式的值:(1)√(27) + √(64)(2)√(8) - √(27)(3)√(100) ÷ √(16)21. 已知a=√(x² + 4),求x的值。

数的开方综合练习题

数的开方综合练习题

数的开方?练习试题1一、填空题1.假设一个实数的算术平方根等于它的立方根,则这个数是_________;2.数轴上表示5-的点与原点的距离是________; 3.2-的相反数是,3的倒数是,13-的相反数是;4.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是;5.计算:_______10_________,112561363=-=--,2224145-=; 6.假设一个数的平方根是8±,则这个数的立方根是;7.当______m 时,m -3有意义;当______m 时,33-m 有意义;8.假设一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是;9.22)(a a =成立的条件是___________;10.假设1122a a a a --=--,则a 满足条件________; 11.0)3(122=++-b a ,则=332ab ; 12.假设最简二次根式5231-+-+-y x y x y x 与与是同类根式,则=x ,=y ________;二、选择题1314 15 16 17 18 19 2013.以下运算正确的选项是〔 〕A 、7272+=+B 、3232=+C 、428=⋅D 、228= 14.在实数0、3、6-、236.2、π、723、14.3中无理数的个数是〔 〕 A 、1 B 、2 C 、3D 、415.以下二次根式中与26-是同类二次根式的是〔 〕 A 、18 B 、30 C 、48 D 、5416.以下说法错误的选项是〔 〕A 、1)1(2=-B 、()1133-=- C 、2的平方根是2± D 、()232)3(-⨯-=-⨯-17.以下说法中正确的有〔 〕①带根号的数都是无理数;②无理数一定是无限不循环小数;③不带根号的数都是有理数;④无限小数不一定是无理数;A 、1个B 、2个C 、3个D 、4个18.一个等腰三角形的两边长分别为25和32,则这个三角形的周长是〔 〕A 、32210+B 、3425+C 、32210+或3425+D 、无法确定19.如果321,32-=+=b a ,则有〔 〕A 、b a >B 、b a =C 、b a <D 、b a 1=20.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是〔 〕A 、1B 、9C 、4D 、5三、计算题1.)32)(32(-+2.86127728⨯-+3.()()()62261322+-+-4.22)2332()2332(--+ 5.61422164323+⨯- 6.321)37(4732+--÷-- 四、解方程1.()64392=-x 2.8)12(3-=-x 五、解答题2.26-=x ,试求20082423+-+x x x 的值. 3.2323,2323-+=+-=y x ,求以下各式的值。

精选八年级实数单元测试题(含答案)

精选八年级实数单元测试题(含答案)

精选八年级实数单元测试题(含答案)精选八年级实数单元测试题(含答案)一、基础测试1.算术平方根:如果一个正数x等于a,即x2=a,那么这个x正数就叫做a的算术平方根,记作,0的算术平方根是。

2.平方根:如果一个数x的等于a,即x2=a那么这个数a就叫做x 的平方根(也叫做二次方根式),正数a的平方根记作 .一个正数有平方根,它们 ;0的平方根是 ;负数平方根.特别提醒:负数没有平方根和算术平方根.3.立方根:如果一个数x的等于a,即x3=a,那么这个数x就叫做a的立方根,记作.正数的立方根是,0的立方根是,负数的立方根是。

4、实数的分类5.实数与数轴:实数与数轴上的点______________对应.6.实数的相反数、倒数、绝对值:实数a的相反数为______;若a,b 互为相反数,则a+b=______;非零实数a的倒数为_____(a≠0);若a,b 互为倒数,则ab=________。

7.8.数轴上两个点表示的数,______边的总比___边的大;正数_____0,负数_____0,正数___负数;两个负数比较大小,绝对值大的反而____。

9.实数和有理数一样,可以进行加、减、乘、除、乘方运算,而且有理数的运算法则与运算律对实数仍然适用.二、专题讲解:专题1平方根、算术平方根、立方根的概念若a≥0,则a的平方根是,a的算术平方根;若a<0,则a没有平方根和算术平方根;若a为任意实数,则a的立方根是。

【例1】的平方根是______【例2】327的`平方根是_________【例3】下列各式属于最简二次根式的是()A.【例4】(2010山东德州)下列计算正确的是(A)(B)(C)(D)【例5】(2010年四川省眉山市)计算的结果是A.3B.C.D.9专题2实数的有关概念无理数即无限不循环小数,初中主要学习了四类:含的数,如:等,开方开不尽的数,如等;特定结构的数,例0.010010001…等;某些三角函数,如sin60,cos45等。

数的开方单元检测题及答案

数的开方单元检测题及答案

数的开方单元测试一、选择题。

(每题4分,共28分)1.下列各数:3.141592 ,- 3 ,0.16 ,0.01 ,–π,0.1010010001…,227,35 ,0.2 ,8 中无理数的个数是………………………………………………………()A.2个B.3个C.4个D.5个2.25的平方根是…………………………………………………………………………()A.±5 B.-5 C.5 D.± 53.-8的立方根是…………………………………………………………………………()A.±2 B.-2 C.2 D.不存在4.a=15,则实数a在数轴上对应的点的大致位置是…………………………………()A.B.C.D.5.一个正数的算术平方根是a,那么比这个正数大2的数的算术平方根是………()A.a2+2 B.±a2+2 C.a2+2 D.a+26.下列说法正确的是……………………………………………………………………()A.27的立方根是3,记作27=3 B.-25的算术平方根是5C.a的立方根是± a D.正数a的算术平方根是 a7.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④-17是17的平方根,其中正确的有…………………………()A.0个B.1个C.2个D.3个二、填空题。

(每题4分,共40分)8.9的算术平方根是___________;9.比较大小:32_______32 (用“<”或“>”填空);10.若∣x∣=3,则x=_______;0 1 2 3 4 50 1 2 3 4 511.-27的立方根是___________;12.2的相反数是___________;13.平方根等于本身的数是_______________;14.写出所有比11小且比3大的整数_____________________;15.81的算术平方根是___________;16.建筑工人李师傅想用钢材焊制一个面积为6平方米的正方形铁框,请你帮离师傅计算一下,他需要的钢材总长至少为____________米(精确到0.01);17.观察思考下列计算过程:因为112=121,所以121=11,同样,因为1112=12321,所以12321=111,则1234321=________,可猜想123456787654321=___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方根与立方根单元测试卷
1、144的算术平方根是 ,16的平方根是 ;
2、327= , 64-的立方根是 ;
3、7的平方根为 ,21.1= ;
4、一个数的平方是9,则这个数是 ,一个数的立方根是1,则这个数是 ;
5、平方数是它本身的数是 ;平方数是它的相反数的数是 ;
6、当x= 时,13-x 有意义;当x= 时,325+x 有意义;
7、若164=x ,则x= ;若813=n ,则n= ;
8、若3x x =,则x= ;若x x -=2,则x ;
9、若0|2|1=-++y x ,则x+y= ;
10、计算:381264
273292531+-+= ; 二、选择题
11、若a x =2,则( )
A 、x>0
B 、x ≥0
C 、a>0
D 、a ≥0
12、一个数若有两个不同的平方根,则这两个平方根的和为( )
A 、大于0
B 、等于0
C 、小于0
D 、不能确定
13、一个正方形的边长为a ,面积为b ,则( )
A 、a 是b 的平方根
B 、a 是b 的的算术平方根
C 、
b a ±= D 、a b =
14、若a ≥0,则24a 的算术平方根是( )
A 、2a
B 、±2a
C 、a 2
D 、| 2a |
15、若正数a 的算术平方根比它本身大,则( )
A 、0<a<1
B 、a>0
C 、a<1
D 、a>1
16、若n 为正整数,则121+-n 等于( )
A 、-1
B 、1
C 、±1
D 、2n+1
17、若a<0,则a
a 22等于( ) A 、21 B 、21- C 、±21 D 、0
18、若x-5能开偶次方,则x 的取值范围是( )
A 、x ≥0
B 、x>5
C 、x ≥5
D 、x ≤5
三、计算题
19、2228-+ 20、49.0381003⨯-⨯
21、9
14420045243⨯⨯⨯ 22、83122)10(973.0123+--⨯-
四、解答题
23、解方程:0
x 24、解方程:x
-
-
324
)1
(2=
=
-
2(2-
)3
25
x12
a的值。

25、若31
a和33
2-
-互为相反数,求
1b
b。

相关文档
最新文档