浙教版八年级数学下册期末复习试卷 (2712)
(完整版)浙教版八年级下数学期末试卷及答案

浙教版八年级(下)数学期末试卷 班级 姓名 得分一、精心选一选: (每小题3分,共30分)1、代数式12x x --在实数范围内有意义,则x 的取值范围是( )。
A 、x ≥2 B 、x ≥1 C 、x ≠2 D 、x ≥1且x ≠22.计算:32121823-+()()的值为( )(A )6 (B ) 0 (C )6 (D )-63.一个多边形的内角和等于外角和的一半,那么这个多边形是( )(A )三角形 (B )四边形 (C )五边形 (D )六边形4. 用配方法将方程x 2+6x-11=0变形为( )(A) (x-3)2=20 (B) (x+3)2=20 (C)(x+3)2=2 (D)(x-3)2=25.已知一道斜坡的坡比为1:3,坡长为24米,那么坡高为( )米。
(A )38 (B )12 (C ) 34 (D )66.平行四边形一边长为10 ,则它的两条对角线可以是( )(A )6 ,8 (B )8, 12 (C) 8, 14 (D) 6, 147.下列图形中,不是中心对称图形的是( ).8.如图,矩形ABCD 沿AE 折叠,使点D 落在BC 边上的F 点处, 如果∠BAF=60°,那么∠DAE 等于( ).(A )15° (B )30° (C )45° (D )60°9.如图,四边形ABCD 是正方形,延长BC 至点E ,使CE=CA ,连结AE 交CD•于点F ,•则∠AFC 的度数是( ).(A )150° (B )125° (C )135° (D )112.5°第8题第9题10.小许拿了一张正方形的纸片如图甲,沿虚线对折一次得图乙.•再对折一次得图丙.然后用剪刀沿图丙中的虚线(虚线与底边平行)剪去一个角.打开后的形状是(• ).二、专心填一填:(每小题3分,共30分)11.使13-4x有意义的x的值是_______________。
八年级下学期期末数学试卷含参考答案与试题解析(浙教版)

八年级下学期期末数学试卷一、仔细选一选(本题有10 个小题,每小题3 分,共30 分)1.已知二次根式,则a 的取值范围是()A. B. C. D.2.下列图形是中心对称图形的个数有()A.1 个B.2 个C.3 个D.4 个3.为了比较甲、乙两块地的小麦哪块长得更整齐,应选择的统计量为()A.平均数B.中位数C.众数D.方差4.矩形具有而菱形不具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线平分一组对角5.用下列哪种方法解方程3x2=16x 最合适()A.开平方法B.配方法C.因式分解法D.公式法6.如图,等腰三角形ABC 的顶点A 在原点,顶点B 在x 轴的正半轴上,顶点C 在函数y=(x>0)的图象上运动,且AC=BC,则△ABC 的面积大小变化情况是()A.一直不变B.先增大后减小C.先减小后增大D.先增大后不变7.已知(﹣3,y1),(﹣15,y2),在反比例函数y=﹣上,则y1,y2,y3 的大小关系为()A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y28.用反证法证明命题“钝角三角形中必有一个内角小于45°”时,首先应该假设这个三角形中()A.有一个内角小于45°B.每一个内角都小于45°C.有一个内角大于等于45°D.每一个内角都大于等于45°9.直线与x 轴,y 轴分别交于A,B 两点,把△AOB 绕着A 点旋转180°得到△AO′B′,则点B′的坐标为()A.(4,2)B.(4,﹣2)C.(,2)D.(,﹣2)10.如图,以▱ABCD 的四条边为边,分别向外作正方形,连结EF,GH,IJ,KL.如果▱ABCD 的面积为8,则图中阴影部分四个三角形的面积和为()A.8 B.12 C.16 D.20二、认真填一填(本题有6 小题,每小题4 分,共24 分)11.在、、、、中,是最简二次根式的是.12.已知多边形的内角和等于外角和的三倍,则内角和为;边数为.13.已知=0 是关于x 的一元二次方程,则k 为.14.如图,四边形ABCD 是菱形,对角线AC=8,BD=6,E,F 分别是AB,AD 的中点,连接EO 并延长交CD 于G 点,连接FO 并延长交CB 于H 点,△OEF 与△OGH 组成的图形称为蝶形,则蝶形的周长为.15.如图,将边长为6 的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A′B′C′,当两个三角形重叠部分为菱形时,则AA′为.16.如图,一个正方形内两个相邻正方形的面积分别为 4 和 2,它们都有两个顶点在大正方形的边 上且组成的图形为轴对称图形,则图中阴影部分的面积为 .三、全面答一答(本题有 7 个小题,共 66 分.要求写出文字说明、证明过程或推演步骤) 17.计算: (1).18.如图,AC 是▱ABCD 的一条对角线,BE ⊥AC ,DF ⊥AC ,垂足分别为 E ,F . (1)求证:△ADF ≌△CBE ; 求证:四边形 DFBE 是平行四边形.19.如图,将表面积为 550cm 2 的包装盒剪开,铺平,纸样如图所示,包装盒的高为 15cm ,请求出 包装盒底面的长与宽.(3)20.某初中要调查学校学生(总数1000 人)双休日课外阅读情况,随机调查了一部分学生,调查得到的数据分别制成频数直方图(如图1)和扇形统计图(如图2).(1)请补全上述统计图(直接填在图中);试确定这个样本的中位数和众数;(3)请估计该学校1000 名学生双休日课外阅读时间不少于4 小时的人数.21.已知方程:x2﹣2x﹣8=0,解决一下问题:(1)不解方程判断此方程的根的情况;请按要求分别解这个方程:①配方法;②因式分解法.(3)这些方法都是将解转化为解;(4)尝试解方程:x3+2x2+x=0.22.在矩形ABCD 中,AB=3,BC=4,E,F 是对角线ACS 行的两个动点,分别从A,C 同时出发相向而行,速度均为1cm/s,运动时间为t 秒,当其中一个动点到达后就停止运动.(1)若G,H 分别是AB,DC 中点,求证:四边形EGFH 始终是平行四边形.在(1)条件下,当t 为何值时,四边形EGFH 为矩形.(3)若G,H 分别是折线A﹣B﹣C,C﹣D﹣A 上的动点,与E,F 相同的速度同时出发,当t 为何值时,四边形EGFH 为菱形.23.如图1,正方形ABCD 的边长为4,以AB 所在的直线为x 轴,以AD 所在的直线为y 轴建立平面直角坐标系.反比例函数的图象与CD 交于E 点,与CB 交于F 点.(1)求证:AE=AF;若△AEF 的面积为6,求反比例函数的解析式;(3)在的条件下,将△AEF 以每秒1 个单位的速度沿x 轴的正方向平移,如图2,设它与正方形ABCD 的重叠部分面积为S,请求出S 与运动时间t(秒)的函数关系式(0<t<4).八年级下学期期末数学试卷参考答案与试题解析一、仔细选一选(本题有10 个小题,每小题3 分,共30 分)1.已知二次根式,则a 的取值范围是()A. B. C. D.【考点】二次根式有意义的条件.【分析】直接利用二次根式的性质得出a 的取值范围.【解答】解:∵二次根式有意义,∴2a﹣1≥0,解得:a≥,则a 的取值范围是:a≥.故选:D.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的性质是解题关键.2.下列图形是中心对称图形的个数有()A.1 个B.2 个C.3 个D.4 个【考点】中心对称图形.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形进行分析.【解答】解:第一、四个图形是中心对称图形,第二、三个图形不是中心对称图形,故选:B.【点评】此题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180 度后与原图重合.3.为了比较甲、乙两块地的小麦哪块长得更整齐,应选择的统计量为()A.平均数B.中位数C.众数D.方差【考点】统计量的选择.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:为了比较甲、乙两块地的小麦哪块长得更整齐,应选择的统计量为方差.故选:D.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4.矩形具有而菱形不具有的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.对角线平分一组对角【考点】矩形的性质;菱形的性质.【专题】推理填空题.【分析】根据矩形的对角线互相平分、相等和菱形的对角线互相平分、垂直、对角线平分一组对角,即可推出答案.【解答】解:A、对角线互相平分是菱形矩形都具有的性质,故A 选项错误;B、对角线互相垂直是菱形具有而矩形不具有的性质,故B 选项错误;C、矩形的对角线相等,菱形的对角线不相等,故C 选项正确;D、对角线平分一组对角是菱形具有而矩形不具有的性质,故D 选项错误;故选:C.【点评】本题主要考查对矩形的性质,菱形的性质等知识点的理解和掌握,能熟练地根据矩形和菱形的性质进行判断是解此题的关键.5.用下列哪种方法解方程3x2=16x 最合适()A.开平方法B.配方法C.因式分解法D.公式法【考点】解一元二次方程-因式分解法.【专题】计算题;一次方程(组)及应用.【分析】观察方程特点确定出适当的解法即可.【解答】解:方程3x2=16x 最合适因式分解法.故选C【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.6.如图,等腰三角形ABC 的顶点A 在原点,顶点B 在x 轴的正半轴上,顶点C 在函数y=(x>0)的图象上运动,且AC=BC,则△ABC 的面积大小变化情况是()A.一直不变B.先增大后减小C.先减小后增大D.先增大后不变【考点】反比例函数系数k 的几何意义.【专题】探究型.【分析】根据三角形ABC 的面积是点C 的横坐标与纵坐标的乘积除以2,和点C 在函数y= (x>0)的图象上,可以解答本题.【解答】解:∵等腰三角形ABC 的顶点A 在原点,顶点B 在x 轴的正半轴上,顶点C 在函数y= (x >0)的图象上运动,且AC=BC,设点C 的坐标为(x,),∴(k 为常数).即△ABC 的面积不变.故选A.【点评】本题考查反比例函数系数k 的几何意义,解题的关键是将反比例的系数k 与三角形的面积联系在一起.7.已知(﹣3,y1),(﹣15,y2),在反比例函数y=﹣上,则y1,y2,y3 的大小关系为()A.y1>y2>y3 B.y1>y3>y2 C.y3>y2>y1 D.y3>y1>y2【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再由各点横坐标的值即可得出结论.【解答】解:∵反比例函数y=﹣中k=﹣a2<0,∴此函数图象的两个分支分别位于二四象限,并且在每一象限内,y 随x 的增大而增大.∵(﹣3,y1),(﹣15,y2),在反比例函数y=﹣上,∴(﹣3,y1),(﹣15,y2)在第二象限,点在第四象限,∴y3<y2<y1.故选A.【点评】本题考查的是反比例函数函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.8.用反证法证明命题“钝角三角形中必有一个内角小于45°”时,首先应该假设这个三角形中()A.有一个内角小于45°B.每一个内角都小于45°C.有一个内角大于等于45°D.每一个内角都大于等于45°【考点】反证法.【分析】反证法的步骤中,第一步是假设结论不成立,反面成立.【解答】解:用反证法证明“钝角三角形中必有一个内角小于45°”时,应先假设这个三角形中每一个内角都不小于或等于45°,即每一个内角都大于45°.故选:D.【点评】此题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.9.直线与x 轴,y 轴分别交于A,B 两点,把△AOB 绕着A 点旋转180°得到△AO′B′,则点B′的坐标为()A.(4,2)B.(4,﹣2)C.(,2)D.(,﹣2)【考点】坐标与图形变化-旋转;一次函数图象上点的坐标特征.【专题】计算题.【分析】先根据一次函数图象上点的坐标特征求出A 点和B 点坐标,则可得到OA=2,OB=2,再根据旋转的性质得到AO′=AO=2,O′B′=OB=2,∠AO′B′=∠AOB=90°,然后根据第二象限点的坐标特征写出点B′的坐标.【解答】解:当y=0 时,﹣x+2=0,解得x=2 ,则A,所以OA=2 ,当x=0 时,=2,则B(0,2),所以OB=2,因为△AOB 绕着A 点旋转180°得到△AO′B′,所以AO′=AO=2,O′B′=OB=2,∠AO′B′=∠AOB=90°,所以点B′的坐标为(4,﹣2).故选D.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了一次函数图象上点的坐标特征.10.如图,以▱ABCD 的四条边为边,分别向外作正方形,连结EF,GH,IJ,KL.如果▱ABCD 的面积为8,则图中阴影部分四个三角形的面积和为()A.8 B.12 C.16 D.20【考点】全等三角形的判定与性质;平行四边形的性质;正方形的性质.【分析】过D 作DN⊥AB 于N,过E 作EM⊥FA 交FA 延长线于M,连接AC,BD,求出∠EAM=∠BAD,根据锐角三角形函数定义求出EM=DN,求出△AEF 和△ABD 面积相等,同理求出理S△BHG=S△ABC,S△CIJ=S△CBD,S△DLK=S△DAC,代入S=S△AEF+S△BGH+S△CIJ+S△DLK 得出S=2S 平行四边形ABCD,代入求出即可.【解答】解:过D 作DN⊥AB 于N,过E 作EM⊥FA 交FA 延长线于M,连接AC,BD,∵四边形ABGF 和四边形ADLE 是正方形,∴AE=AD,AF=AB,∠FAB=∠EAD=90°,∴∠EAF+∠BAD=360°﹣90°﹣90°=180°,∵∠EAF+∠EAM=180°,∴∠EAM=∠DA N,∴sin∠EAM= ,sin∠DAN= ,∵AE=AD,∴EM=DN,∵S△AEF = AF×EM,S△ADB = AB×DN,∴S△AEF=S△ABD,同理S△BHG=S△ABC,S△CIJ=S△CBD,S△DLK=S△DAC,∴阴影部分的面积S=S△AEF+S△BGH+S△CIJ+S△DLK=2S平行四边形ABCD=2×8=16.故选C【点评】本题考查了平行四边形的性质,锐角三角函数的定义,三角形的面积等知识点的应用,关键是根据S△BHG=S△ABC,S△CIJ=S△CBD,S△DLK=S△DAC,进行计算解答即可.二、认真填一填(本题有6 小题,每小题4 分,共24 分)11.在、、、、中,是最简二次根式的是.【考点】最简二次根式.【分析】直接利用最简二次根式的概念:(1)被开方数不含分母;被开方数中不含能开得尽方的因数或因式,分析得出答案.【解答】解:在、、、、中,只有是最简二次根式.故答案为:.【点评】此题主要考查了最简二次根式,正确把握定义是解题关键.12.已知多边形的内角和等于外角和的三倍,则内角和为1080°;边数为 8 .【考点】多边形内角与外角.第10 页(共22 页)【分析】首先设边数为n,由题意得等量关系:内角和=360°×3,根据等量关系列出方程,可解出n 的值,然后再利用内角和公式计算内角和.【解答】解:设边数为n,由题意得:180(n﹣2)=360×3,解得:n=8,内角和为:180°×(8﹣2)=1080°,故答案为:1080°;8.【点评】此题主要考查了多边形的内角与外角,关键是掌握多边形内角和定理:(n﹣2)•180°(n≥3)且n 为整数),多边形的外角和等于360 度.13.已知=0 是关于x 的一元二次方程,则k 为﹣2 .【考点】一元二次方程的定义.【分析】根据一元二次方程:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数,可得答案.【解答】解:由=0 是关于x 的一元二次方程,得k2﹣2=2,且1﹣k≥0,解得k=﹣2,故答案为:﹣2.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.14.如图,四边形ABCD 是菱形,对角线AC=8,BD=6,E,F 分别是AB,AD 的中点,连接EO 并延长交CD 于G 点,连接FO 并延长交CB 于H 点,△OEF 与△OGH 组成的图形称为蝶形,则蝶形的周长为 16 .【考点】菱形的性质.【分析】利用菱形的性质结合三角形中位线的性质得出GE=BC,HF=AB,进而得出答案.【解答】解:∵四边形ABCD 是菱形,对角线AC=8,BD=6,∴BO=DO=3,CO=AO=4,BD⊥AC,∴BC=CD=AD=AB=5,∵E,F 分别是AB,AD 的中点,∴EF= BD=3,∵E 是AB 的中点,O 是AC 的中点,∴EO∥BC,∴GO∥BC,则EG=BC=5,同理可得:HF=5,HG=3,故蝶形的周长为:5+5+3+3=16.故答案为:16.【点评】此题主要考查了菱形的性质以及三角形中位线的性质,根据题意得出EG=BC=5 是解题关键.15.如图,将边长为6 的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A′B′C′,当两个三角形重叠部分为菱形时,则AA′为12﹣6.【考点】菱形的性质;正方形的性质;平移的性质.【分析】利用菱形的性质结合正方形的性质得出A′D=DF,AA′=A′E,进而利用勾股定理得出答案.【解答】解:如图所示:∵四边形A′ECF 是菱形,∴A′E=EC=FC=A′F,∵边长为6 的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,∴∠A=∠ACD=45°,∴AD=DC,则A′D=DF,AA′=A′E,∴设A′E=x,则A′D=DF=6﹣x,A′F=x,故在Rt△A′DF 中,x2=(6﹣x)2+(6﹣x)2,解得:x1=12﹣6 ,x2=12+6 >6(不合题意舍去),故AA′为:12﹣6 .故答案为:12﹣6 .【点评】此题主要考查了菱形的性质和正方形的性质、勾股定理等知识,得出A′D=DF,AA′=A′E是解题关键.16.如图,一个正方形内两个相邻正方形的面积分别为4 和2,它们都有两个顶点在大正方形的边上且组成的图形为轴对称图形,则图中阴影部分的面积为+ .【考点】正方形的性质;轴对称图形.【分析】连接AC;由正方形的性质和已知条件得出EF= ,GH=2,∠EAF=∠GCH=90°,由轴对称图形的性质得出AE=AF,CG=CH,得出AM=EF= ,CN= GH=1,求出AC 的长,得出正方形ABCD 的面积,由大正方形的面积减去两个小正方形的面积即可得出图中阴影部分的面积.【解答】解:如图所示:连接AC;∵正方形ABCD 内两个相邻正方形的面积分别为4 和2,∴EF= ,GH=2,∠EAF=∠GCH=90°,根据题意得:AE=AF,CG=CH,∴AM= EF=,CN= GH=1,∴AC= + +2+1= +3,∴正方形ABCD 的面积=AC2= (+3)2= + ,∴图中阴影部分的面积= + ﹣4﹣2= + ;故答案为:+ .【点评】本题考查了正方形的性质、轴对称图形的性质、等腰直角三角形的性质、正方形面积的计算方法;熟练掌握正方形的性质,通过作辅助线求出对角线AC 是解决问题的关键.三、全面答一答(本题有7 个小题,共66 分.要求写出文字说明、证明过程或推演步骤)17.计算:(1).(3)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)分母有理化即可;根据二次根式的性质化简即可;(3)先提(+),然后合并后利用平方差公式计算.【解答】解:(1)原式= ;原式= ×2 =3 ;(3)原式=(+ )(3﹣2﹣2+)=(+)(﹣)=()2﹣()2=3﹣2=1.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.如图,AC 是▱ABCD 的一条对角线,BE⊥AC,DF⊥AC,垂足分别为E,F.(1)求证:△ADF≌△CBE;求证:四边形DFBE 是平行四边形.【考点】平行四边形的判定与性质;全等三角形的判定与性质.【专题】证明题.【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,得出内错角相等∠DAF=∠BCE,证出∠AFD=∠CEB=90°,由AAS 证明△ADF≌△CBE 即可;由(1)得:△ADF≌△CBE,由全等三角形的性质得出DF=BE,再由BE∥DF,即可得出四边形D FBE 是平行四边形.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AD∥BC,AD=BC,∴∠DAF=∠BCE,∵BE⊥AC,DF⊥AC,∴BE∥DF,∠AFD=∠CEB=90°,在△ADF 和△CBE 中,,∴:△ADF≌△CBE(AAS);解:如图所示:由(1)得:△ADF≌△CBE,∴DF=BE,∵BE∥DF,∴四边形DFBE 是平行四边形.【点评】本题考查了平行四边形的判定与性质、全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.19.如图,将表面积为550cm2 的包装盒剪开,铺平,纸样如图所示,包装盒的高为15cm,请求出包装盒底面的长与宽.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设包装盒底面的长为xcm,则包装盒底面的宽为=15﹣x(cm),求得包装盒的表面积,利用表面积为550cm2 列出方程解答即可.【解答】解:设包装盒底面的长为xcm,则包装盒底面的宽为=15﹣x(cm),由题意得2×[(15﹣x)×15+15x+(15﹣x)×x =550整理得:x2﹣15x+50=0,解得:x1=10,x2=5则10﹣x=5 或10.答:包装盒底面的长为10cm,则包装盒底面的宽5cm.【点评】此题考查一元二次方程的实际运用,解题的关键是熟记长方体的表面积公式.20.某初中要调查学校学生(总数1000 人)双休日课外阅读情况,随机调查了一部分学生,调查得到的数据分别制成频数直方图(如图1)和扇形统计图(如图2).(1)请补全上述统计图(直接填在图中);试确定这个样本的中位数和众数;(3)请估计该学校1000 名学生双休日课外阅读时间不少于4 小时的人数.【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【分析】(1)根据阅读5 小时以上频数为6,所占百分比为12%,求出数据总数,再用数据总数减去其余各组频数得到阅读3 小时以上频数,进而补全频数分布直方图,分别求得阅读0 小时和4 小时的人数所占百分比,补全扇形图;利用各组频数和总数之间的关系确定中位数和众数;(3)用1000 乘以每周课外阅读时间不小于4 小时的学生所占百分比即可.【解答】解:(1)总人数:6÷12%=50(人),阅读3 小时以上人数:50﹣4﹣6﹣8﹣14﹣6=12(人),阅读3 小时以上人数的百分比为12÷50=24%,阅读0 小时以上人数的百分比为4÷50=8%.图如下:中位数是3 小时,众数是4 小时;(3)1000×=1000×40%=400(人)答:该学校1000 名学生双休日课外阅读时间不少于4 小时的人数为400 人.【点评】此题主要考查了频数分布直方图、扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了利用样本估计总体.21.已知方程:x2﹣2x﹣8=0,解决一下问题:(1)不解方程判断此方程的根的情况;请按要求分别解这个方程:①配方法;②因式分解法.(3)这些方法都是将解一元二次方程转化为解一元一次方程;(4)尝试解方程:x3+2x2+x=0.【考点】根的判别式;解一元二次方程-配方法;解一元二次方程-因式分解法.【分析】(1)由a=1,b=﹣2,c=﹣8,可得△=b2﹣4ac=36>0,即可判定此方程的根的情况;①直接利用配方法解一元二次方程;②利用十字相等法解一元二次方程;(3)利用消元法,将解一元二次方程转化为解一元一次方程;(4)利用因式分解法求解即可求得答案.【解答】解:(1)∵a=1,b=﹣2,c=﹣8,∴△=b2﹣4ac=(﹣2)2﹣4×1×(﹣8)=36>0,∴此方程有两个不相等的实数根;①配方法:∵x2﹣2x﹣8=0,∴x2﹣2x=8,∴x2﹣2x+1=8+1,∴(x﹣1)2=9,∴x﹣1=±3,解得:x1=4,x2=﹣2;②因式分解法:∵x2﹣2x﹣8=0,∴(x﹣4)(x+2)=0,解得:x1=4,x2=﹣2;(3)答案为:一元二次方程;一元一次方程;(4)∵x3+2x2+x=0,∴x(x2+2x+1)=0,∴x(x+1)2=0,∴x=0,x+1=0,解得:x1=0,x2=x3=﹣1.【点评】此题考查了一元二次方程的解法以及根的判别式.注意△>0⇔方程有两个不相等的实数根.22.在矩形ABCD 中,AB=3,BC=4,E,F 是对角线ACS 行的两个动点,分别从A,C 同时出发相向而行,速度均为1cm/s,运动时间为t 秒,当其中一个动点到达后就停止运动.(1)若G,H 分别是AB,DC 中点,求证:四边形EGFH 始终是平行四边形.在(1)条件下,当t 为何值时,四边形EGFH 为矩形.(3)若G,H 分别是折线A﹣B﹣C,C﹣D﹣A 上的动点,与E,F 相同的速度同时出发,当t 为何值时,四边形EGFH 为菱形.【考点】四边形综合题.【分析】(1)由矩形的性质得出AB=CD,AB∥CD,AD∥BC,∠B=90°,由勾股定理求出AC=5,由SAS 证明△AFG≌△CEH,得出GF=HE,同理得出GE=HF,即可得出结论;先证明四边形BCHG 是平行四边形,得出GH=BC=4,当对角线EF=GH=4 时,平行四边形EGFH 是矩形,分两种情况:①AE=CF=t,得出EF=5﹣2t=4,解方程即可;②AE=CF=t,得出EF=5﹣2 (5﹣t)=4,解方程即可;(3)连接AG、CH,由菱形的性质得出GH⊥EF,OG=OH,OE=OF,得出OA=OC,AG=AH,证出四边形AGCH 是菱形,得出AG=CG,设AG=CG=x,则BG=4﹣x,由勾股定理得出方程,解方程求出BG,得出AB+BG=,即可得出t 的值.【解答】(1)证明:∵四边形ABCD 是矩形,∴AB=CD,AB∥CD,AD∥BC,∠B=90°,∴AC= =5,∠GAF=∠HCE,∵G,H 分别是AB,DC 中点,∴AG=BG,CH=DH,∴AG=CH,∵AE=CF,∴AF=CE,在△AFG 和△CEH 中,,∴△AFG≌△CEH(SAS),∴GF=HE,同理:GE=HF,∴四边形EGFH 是平行四边形.解:由(1)得:BG=CH,BG∥CH,∴四边形BCHG 是平行四边形,∴GH=BC=4,当EF=GH=4 时,平行四边形EGFH 是矩形,分两种情况:①AE=CF=t,EF=5﹣2t=4,解得:t=0.5;②AE=CF=t,EF=5﹣2(5﹣t)=4,解得:t=4.5;综上所述:当t 为0.5s 或4.5s 时,四边形EGFH 为矩形.(3)解:连接AG、CH,如图所示:∵四边形EGFH 为菱形,∴GH⊥EF,OG=O H,OE=OF,∴OA=OC,AG=AH,∴四边形AGCH 是菱形,∴AG=CG,设AG=CG=x,则BG=4﹣x,由勾股定理得:AB2+BG2=AG2,即32+(4﹣x)2=x2,解得:x= ,∴BG=4﹣= ,∴AB+BG=3+ = ,即t 为s 时,四边形EGFH 为菱形.【点评】本题是四边形综合题目,考查了矩形的性质、全等三角形的判定与性质、平行四边形的判定、菱形的判定与性质、勾股定理等知识;本题综合性强,难度较大,特别是(3)中,需要通过作辅助线证明四边形是菱形,运用勾股定理得出方程才能得出结果.23.如图1,正方形ABCD 的边长为4,以AB 所在的直线为x 轴,以AD 所在的直线为y 轴建立平面直角坐标系.反比例函数的图象与CD 交于E 点,与CB 交于F 点.(1)求证:AE=AF;若△AEF 的面积为6,求反比例函数的解析式;(3)在的条件下,将△AEF 以每秒1 个单位的速度沿x 轴的正方向平移,如图2,设它与正方形ABCD 的重叠部分面积为S,请求出S 与运动时间t(秒)的函数关系式(0<t<4).【考点】反比例函数综合题.【分析】(1)根据反比例函数图象上点的坐标特点可得出DE=BF,故可得出结论;设DE=BF=a,则CE=4﹣a,CF=4﹣a,再由S△AEF=S 正方形ABCD﹣S△ADE﹣S△ABF﹣S△ECF 即可得出a 的值,进而可得出反比例函数的解析式;(3)根据中EF 两点的坐标用t 表示出AB,BG,CE=CK 的长,再由S=S 正方形ABCD﹣S△梯形AA′ED﹣S△ABG﹣S△ECK 即可得出结论.【解答】(1)证明:∵点E、F 均在反比例函数y=(k>0)的图象上,∴AD•DE=AB•BF.∵AD=AB,∴DE=BF.在△ADE 与△ABF 中,,∴△ADE≌△ABF,∴AE=AF;解:设DE=BF=a,则CE=4﹣a,CF=4﹣a,∵△AEF 的面积为6,∴S△AEF=S﹣S△ADE﹣S△ABF﹣S△ECF正方形ABCD=4×4﹣×4a﹣×4a﹣(4﹣a)(4﹣a)=16﹣4a﹣(4﹣a)(4﹣a)=6,解得a=2,∴EF=2×4=8,∴反比例函数的解析式为y=;(3)解:∵由知E,F(4,2),∴AB=4﹣t,BG= AB=2﹣t,CE=CK=2﹣t,∴S=S﹣S△梯形AA′ED﹣S△ABG﹣S△ECK正方形ABCD=4×4﹣××4﹣(4﹣t)•﹣=16﹣4﹣4t﹣t2﹣4+2t﹣2﹣t2+2t=﹣t2+6.【点评】本题考查的是反比例函数综合题,涉及到反比例函数图象上点的坐标特点、正方形的性质及梯形的面积公式等知识,在解答此题时要注意整体思想的运用.第21 页(共22 页)第22 页(共22 页)。
(完美版)浙教版八年级下册数学期末测试卷及含答案

浙教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列说法不正确的是()A.方程x 2=x有一根为0B.方程x 2﹣1=0的两根互为相反数C.方程(x﹣1)2﹣1=0的两根互为相反数D.方程x 2﹣x+2=0无实数根2、对于任意的正数m,n定义运算※为:m※n=计算(3※2)×(8※12)的结果为( )A.2-4B.2C.2D.203、等腰梯形ABCD中,E、F、G、H分别是各边的中点,则四边形EFGH的形状是()A.平行四边形B.矩形C.菱形D.正方形4、下列根式.是最简二次根式的是()A. B. C. D. (n是正整数)5、下列图形中,既是轴对称图形又是中心对称图形的是().A. B. C. D.6、已知O是矩形ABCD的对角线的交点,AB=6,BC=8,则点O到AB、BC的距离分别是()A.3、5B.4、5C.3、4D.4、37、下列命题正确是()A.点(1,3)关于x轴的对称点是(﹣1,3)B.函数 y=﹣2x+3中,y随x的增大而增大C.若一组数据3,x,4,5,6的众数是3,则中位数是3 D.同圆中的两条平行弦所夹的弧相等8、下列命题正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直且相等的四边形是正方形C.对角线互相垂直的四边形是菱形D.两组对角分别相等的四边形是平行四边形9、如图,在矩形中无重叠放入面积为16和12的两张正方形纸片,则图中空白部分的面积为()A. B. C. D.10、用配方法解方程x2-6x-8=0时,配方结果正确的是()A.(x-3) 2=17B.(x-3) 2=14C.(x-3) 2=1D.(x-6) 2=4411、下列四幅图片,是中心对称图形的是()A. B. C. D.12、为了某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:月用水量4 5 6 9(吨)户数 3 4 2 1则关于这10户家庭的约用水量,下列说法错误的是()A.中位数是5吨B.极差是3吨C.平均数是5.3吨D.众数是5吨13、已知关于x的一元二次方程(k﹣1)x2﹣x+ =0有实数根,则k的取值范围是()A.k为任意实数B.k≠1C.k≥0D.k≥0且k≠114、如图是用围棋棋子在6×6的正方形网格中摆出的图案,棋子的位置用有序数对表示,如A点为(5,1),若再摆一黑一白两枚棋子,使这9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()A.黑(1,5),白(5,5)B.黑(3,2),白(3,3)C.黑(3,3),白(3,1)D.黑(3,1),白(3,3)15、在反比例函数y=图象的每条曲线上,y都随x的增大而增大,则k的取值范围是()A.k>1B.k>0C.k≥1D.﹣l≤k<1二、填空题(共10题,共计30分)16、在平行四边形ABCD中,对角线AC、BD的交点,AC⊥BC且AB=10厘米,AD=6厘米,则OB=________.17、正方形的A1B1P1P2顶点P1、P2在反比例函数y=(x>0)的图象上,顶点A 1、B1分别在x轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数y=(x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为________.18、在矩形ABCD中,AB=4,BC=3,取CD中点E,连接BD、BE,将沿BE翻折成为,过点C作CM⊥BF于M,则CM+FC=________.19、“反证法”证明命题“等腰三角形的底角是锐角”时,是先假设________20、如图,在矩形ABCD中,点E、F分别在AB、DC上,BF∥DE,若AD=12cm,AB=7cm,且AE:EB=5:2,则阴影部分的面积为________ cm221、已知,是方程的两根,则________.22、已知平行四边形ABCD中,∠B=4∠A,则∠C=________23、某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x,可列方程为________.24、若方程的两根,则的值为________.25、如图,在正方形ABCD中,M、N是对角线AC上的两个动点,P是正方形四边上的任意一点,且,.关于下列结论:①当△PAN是等腰三角形时,P点有6个;②当△PMN是等边三角形时,P点有4个;③DM+DN的最小值等于6.其中,一定正确的结论的序号是________.三、解答题(共5题,共计25分)26、计算: ÷- .27、已知实数a、b、c在数轴上对应点的位置如图,化简.28、如图,D是△ABC边BC上的点,连接AD,∠BAD=∠CAD,BD=CD.用两种不同方法证明AB=AC.29、如图,在平行四边形ABCD中,AQ、BN、CN、DQ分別是∠DAB、∠ABC、∠BCD、∠CDA的平分线,AQ与BN相交于点P,CN与DQ相交于点M,判断四边形MNPQ的形状,并证明你的结论.30、请判断下列问题中,哪些是反比例函数,并说明你的依据.(1)三角形的底边一定时,它的面积和这个底边上的高;(2)梯形的面积一定时,它的中位线与高;(3)当矩形的周长一定时,该矩形的长与宽.参考答案一、单选题(共15题,共计45分)1、C2、B3、C4、D5、D6、D7、D8、D9、B10、A12、B13、D14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、29、30、。
浙教版八年级下册数学期末测试卷(带答案)

2022年八年级下数学期末模拟测试卷一、选择题:(共10个小题,每小题3分,共30分) 1.下列常用手机APP 的图标中,是中心对称图形的是( )A .B .C .D .2.以下等式成立的是( ) A .5)2=5B 4949+C ()233-=- D 6463.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行综合考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的各项分数依次为90、88、85分,那么小王的最后综合得分是( ) A .87 B .87.5C .87.6D .884.将一元二次方程x 2﹣8x +10=0通过配方转化为(x +a )2=b 的形式,下列结果中正确的是( ) A .(x ﹣4)2=6B .(x ﹣8)2=6C .(x ﹣4)2=﹣6D .(x ﹣8)2=545.某工厂2021年数字化改造总投入100万元,2023年总投入预计达到180万元,设年平均增长率为x ,则可列方程为( ) A .100(1+x )=180 B .100(1+2x )=180C .100(1+x +x 2)=180D .100(1+x )2=1806.点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)在反比例函数y =xπ的图象上,若x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( ) A .y 1>y 2>y 3 B .y 3>y 2>y 1 C .y 2>y 1>y 3 D .y 3>y 1>y 2 7.如图,矩形内两个相邻正方形的面积分别为9和3,则阴影部分的面积为( )A .8﹣3B .9﹣3C .33D .32第7 题图 第8题图 第9 题图8.如图,在平面直角坐标系xOy 中,△AOB 的顶点B 在x 轴正半轴上,顶点A 在第一象限内,AO =AB ,P ,Q 分别是OA ,AB 的中点,函数y =kx(k >0,x >0)的图象过点P ,连接OQ ,若S △OPQ =3,则k 的值为( ) A .1.5B .2C .3D .69.如图,小宾利用尺规进行作图:作∠ABC 的角平分线BP ,圆弧与角的两边分别交于A ,C 两点,连结AC 交BP 于点O ,在射线OP 上截取OD =OB ,连结AD ,CD .若∠ABO =20°,则∠ACD 的大小是( )A.90°B.80°C.70°D.60°10.如图,已知四边形ABCD是矩形,点M在BC上,BM=CD,点N在CD上,且DN=CM,DM与BN交于点P,则DM:BN=()A32B.12C23D.25二.填空题(共6小题,每小题3分,共18分)1131m-m能取的最小整数是.12.一个多边形的每一个外角都等于72°,则这个多边形是边形.13.关于x的一元二次方程x2+mx+3=0的一个根是2,则m的值为.14.如图,在矩形ABCD中,AB=8,AD=6,将矩形沿EF翻折,使点C与点A重合,点B落在B′处,折痕与DC,AB分别交于点E,F,则DE的长为.第14 题图第16题图15.对于反比例函数y=12x-,当y>4时,x的取值范围是;当x<2且x≠0时,y的取值范围是.16.如图,对折矩形纸片ABCD,使边AD与BC重合,折痕为EF,将纸片展平后再次折叠,使点A落在EF上的点G处,折痕BH交EF于点M.若BCAB=m(m>1),则FGEM的值为.(用含m的代数式表示)三.解答题(共8小题,共52分)17.(6分)计算:(120545(2)(122218.(6分)用适当的方法解下列方程:(1)2(x﹣2)2=x﹣2 (2)x2﹣10x+8=019.(6分)某学校开展了防溺水知识的宣传教育活动.为了解这次活动的效果,学校从全校1500名学生中随机抽取部分学生进行知识测试(测试满分100分,得分x均为不小于60的整数),并将测试成绩分为四个等级:基本合格(60≤x<70),合格(70≤x<80),良好(80≤x<90),优秀(90≤x≤100),制作了统计图(部分信息未给出).根据图中给出的信息解答下列问题:(1)求测试成绩为合格的学生人数,并补全频数分布直方图;(2)这次测试成绩的中位数是什么等级?(3)如果全校学生都参加测试,请你根据抽样测试的结果,估计该校获得优秀的学生有多少人?20.(6分)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE 于点O.(1)求证:AD与BE互相平分;(2)若AB⊥AC,AC=BF,BE=8,FC=2,求AB的长.21.(6分)如图在正方形ABCD中,E是对角线AC上一点,FH⊥AC点E,交AD,AB于点F,H.(1)求证:CF=CH.(2)若AH=13CH,AB=4,求AH的长.22.(7分)如图,一次函数y1=ax+b与反比例函数y2=kx的图象相交于A(2,8),B(8,2)两点,连接AO,BO,延长AO交反比例函数图象于点C.(1)求一次函数y1的表达式与反比例函数y2的表达式;(2)当y1<y2,时,求出自变量x的取值范围;(3)点P是x轴上一点,当S△P AC=45S△AOB时,请求出点P的坐标.23.(7分)某大型果品批发商场经销一种高档坚果,原价每千克64元,连续两次降价后每千克49元.(1)若每次下降的百分率相同,求每次下降的百分率;(2)若该坚果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少40千克.现该商场要保证销售该坚果每天盈利4500元,且要减少库存,那么每千克应涨价多少元?24.(8分)如图1,四边形ABCD和四边形CEFG都是菱形,其中点E在BC的延长线上,点G在DC的延长线上,点H在BC边上,连结AC,AH,HF.已知AB=2,∠ABC=60°,CE=BH.(1)求证:△ABH≌△HEF;(2)如图2,当H为BC中点时,连结DF,求DF的长;(3)如图3,将菱形CEFG绕点C逆时针旋转120°,使点E在AC上,点F在CD上,点G在BC的延长线上,连结EH,BF.若EH⊥BC,请求出BF的长.参考答案与试题解析一.选择题(共10小题)1.解:选项A 、B 、D 不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,选项C 能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形, 故选:C .2.解:A 、原式=5,所以A 选项正确; B 13B 选项错误; C 、原式=|﹣3|=3,所以C 选项错误; D 、原式=6,所以D 选项错误. 故选:A . 3.解:由题意可得, 小王的最后综合得分是:=88(分),故选:D .4.解:x 2﹣8x =﹣10, x 2﹣8x +16=6, (x ﹣4)2=6. 故选:A .5.解:设年平均增长率为x ,则2022的数字化改造总投入为:100(1+x )万元,2023的数字化改造总投入为:100(1+x )2万元,那么可得方程:100(1+x )2=180. 故选:D .6.解:∵反比例函数y =x中,k =π>0, ∴此函数图象的两个分支在一、三象限, ∵x 1<x 2<0<x 3,∴A 、B 在第三象限,点C 在第一象限, ∴y 1<0,y 2<0,y 3>0,∵在第三象限y 随x 的增大而减小, ∴y 1>y 2, ∴y 3>y 1>y 2. 故选:D .7.解:∵两个相邻的正方形,面积分别为3和9, 33,33333. 故选:C .8.解:作AD ⊥x 轴于D ,PE ⊥x 轴于E , ∵AO =AB ,∴OD=BD,∵P,Q分别是OA,AB的中点,∴S△AOB=2S△AOQ,S△AOQ=2S△POQ=6,∴S△AOB=12,∴S△AOD=12S△AOB=6,∵PE∥AD,∴△POE∽△AOD,∴=()2=14,∴S△POE=14S△AOD=32,∵函数y=kx(k>0,x>0)的图象过点P,∴S△POE=12|k|,∴|k|=3,∵k>0,∴k=3,故选:C.9.解:∵圆弧与角的两边分别交于A,C两点,∴AB=BC,∵∠ABO=20°,BP是∠ABC的角平分线,∴∠DBC=∠ABO=20°,AC⊥BD,∵OD=OB,∴∠DBC=∠BDC=20°,∴∠BCD=180°﹣20°×2=140°,∴∠ACD=12∠BCD=70°.故选:C.10.解:设BM=CD=a,DN=CM=b,∴BC=a+b,NC=a﹣b,∵四边形ABCD是矩形,∴∠DCB=90°,在Rt△DCM和Rt△BCN中,由勾股定理得,DM==,BN===2•,∴DM:BN=1:2,故选:B.二.填空题(共6小题)11.解:由题意,可得3m﹣1≥0,解得:m≥13,∴m能取的最小整数是1,故答案为:1.12.解:边数n=360°÷72°=5.故答案为:五.13.解:∵x=2是关于的x方程x2+mx+3=0的一个根,∴4+2m+3=0,解得m=﹣72.故答案为:﹣72.14.解:如图,在矩形ABCD中,AB=DC=8,AD=6.设DE=x,则CE=8﹣x,根据折叠的性质知:CE=8﹣x.在直角△AED中,由勾股定理得:AD2+DE2=AE2,即62+x2=(8﹣x)2.解得x=74.即DE的长为74.故答案是:74.15.解:反比例函数y=12x的图象为:由图象可以看出,在直线y=4的上方,函数图象所对应的取值为﹣3<x<0;在直线x=2的左边,图象所对应的y的值在第四象限的取值为y<﹣6,在第二象限y的值为y>0;故答案为:﹣3<x<0;y<﹣6或y>0.16.解:已知BCAB=m(m>1),设BC=m,则AB=1,对折矩形纸片ABCD,使边AD与BC重合,折痕为EF,则AE=BE=12,∠GEB=90°,由点A落在EF上的点G处,折痕BH交EF于点M,可知,AB=BG=1,∠ABH=∠GBH在Rt△BEG中,BE=12,BG=1,∴∠EGB=30°,EG33,∴∠EBG=60°,即∠ABH=∠GBH=30°,∵EF=BC=m,∴FG=EF﹣EG=m 3,在Rt△BEM中,EM 3BE3,∴FGEM==23m﹣3.故答案为:3﹣3.三.解答题(共8小题)17.解:(1)原式=5;(2218.解:(1)∵2(x﹣2)2=x﹣2,∴2(x﹣2)2﹣(x﹣2)=0,则(x﹣2)(2x﹣5)=0,∴x﹣2=0或2x﹣5=0,解得x1=2,x2=2.5;(2)∵x2﹣10x+8=0,∴x2﹣10x=﹣8,则x2﹣10x+25=﹣8+25,即(x﹣5)2=17,∴x﹣5=17则x1=17x2=51719.解:(1)被抽查的学生人数是30÷15%=200(人).合格人数为200﹣30﹣80﹣40=50(人).补全频数分布直方图如图:(2)200个数据从小到大排列处在中间位置的两个数是第100、101位的两个数的平均数,所以这次测试成绩的中位数会落在良好等级;(3)(人).答:该校获得优秀的学生有300人.20.(1)证明:如图,连接BD、AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分;(2)解:∵FB=CE,∴BE=2BF+FC,∴BF==3,∴AC=BF=3,BC=BF+FC=3+2=5,∵AB⊥AC,∴由勾股定理得:AB===4.21.解:(1)证明:∵四边形ABCD为正方形,∴∠F AE=∠HAE,∵FH⊥AC,∴∠FEA=∠HEA=90°,在△FEA和△HEA中,,∴△FEA≌△HEA(ASA),∴FE=EH,∴AC垂直平分FH,∴CF=CH,(2)设AH=x,则CH=3x,HB=4﹣x∵四边形ABCD为正方形,∴BC=AB=4,∠B=90°,在Rt△CBH中,由勾股定理得,CH2=HB2+BC2,即(3x)2=(4﹣x)2+42,解得:x=或x=(舍去),故AH=.22.解:(1)将A(2,8),B(8,2)代入y=ax+b得,解得,∴一次函数为y=﹣x+10,将A(2,8)代入y2=kx得8=2k,解得k=16,∴反比例函数的解析式为y=16x;(2)由图象可知,当y1<y2时,自变量x的取值范围为:x>8或0<x<2,故答案为x>8或0<x<2;(3)由题意可知OA=OC,∴S△APC=2S△AOP,把y=0代入y1=﹣x+10得,0=﹣x+10,解得x=10,∴D(10,0),∴S△AOB=S△AOD﹣S△BOD=﹣=30,∵S△P AC=45S△AOB=45×30=24,∴2S△AOP=24,∴2×12OP×y A=24,即2×12OP×8=24,∴OP=3,∴P(3,0)或P(﹣3,0),故答案为P(3,0)或P(﹣3,0).23.解:(1)设每次下降的百分率为a,根据题意,得:64(1﹣a)2=49,解得:a1=1.875(舍去),a2=0.125=12.5%,答:每次下降的百分率为12.5%;(2)设每千克应涨价x元,由题意,得:(10+x)(500﹣40x)=4500,整理,得2x2﹣5x﹣25=0,解得:x1=5,x2=﹣2.5(不合题意舍去),答:该商场要保证每天盈利4500元,那么每千克应涨价5元.24.(1)证明:如图1,∵四边形ABCD和四边形CEFG都是菱形,∴AB=BC,CE=EF,∵CE=BH,∴BH=EF,∵BH+CH=CE+CH,∴BC=HE,∴AB=HE;∵点E在BC的延长线上,点G在DC的延长线上,∴AB∥DG∥EF,∴∠B=∠E,在△ABH和△HEF中,,∴△ABH≌△HEF(SAS).(2)如图2,设FH交CG于点P,连结CF,∵AB=BC,∠ABC=60°,∴△ABC是等边三角形,∵BH=CH,∴AH⊥BC,∴∠AHB=90°,由(1)得,△ABH≌△HEF,∴∠HFE=∠AHB=90°,∵DG∥EF,∴∠DPF=180°﹣∠HFE=90°,∴PF⊥CG,∵CG=FG,∠G=∠E=∠B=60°,∴△GFC是等边三角形,∴PC=PG=12 CG;∵BC=AB=2,∴CG=EF=BH=12BC=1,∴PC=12;∵CD=AB=2,∴PD=12+2=,∵CF=CG=1,∴PF2=CF2﹣PC2=12﹣(12)2=,∴DF===.(3)如图3,作FM⊥BG于点M,则∠BMF=90°,∵EH⊥BC,即EH⊥BG,∴EH∥FM,∵∠CEF=∠ACB=60°,∴EF∥MH,∴四边形EHMF是平行四边形,∵∠EHM=90°,∴四边形EHMF是矩形,∴EH=FM;∵EF=EC,∠CEF=60°,∴△CEF是等边三角形,∴CE=CF,∵∠EHC=∠FMC=90°,∴Rt△EHC≌Rt△FMC(HL),∴CH=CM=12 CG;∵CG=CE=BH,∴CH=12 BH,∴CM=CH=BC=×2=,∴CF=CG=2CM=2×=,∴FM2=()2﹣()2=,∵BM=2+=,∴BF====.。
【浙教版】八年级数学下期末试题(及答案)

一、选择题1.某校八年级有八个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .将八个班级各自的平均成绩之和除以8,就得到全年级学生的平均成绩B .全年级学生的平均成绩一定在这八个班级各自的平均成绩的最小值与最大值之间C .这八个班级各自的平均成绩的中位数就是全年级学生的平均成绩D .这八个班级各自的平均成绩的众数不可能是全年级学生的平均成绩 2.有一组数据:1,1,1,1,m .若这组数据的方差是0,则m 为( ) A .4-B .1-C .0D .13.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖): 组员 甲乙丙丁戊平均成绩众数得分81 77 80 82 80A .80,80B .81,80C .80,2D .81,24.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的( ) A .平均数B .方差C .众数D .中位数5.点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,则1y 、2y 的大小关系是( ) A .12y y >B .12y y =C .12y y <D .不确定6.如图,在矩形ABCD 中,3AB =,4BC =,动点P 沿折线BCD 从点B 开始运动到点D ,设点P 运动的路程为x ,ADP △的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C.D.7.若直线y=kx+b经过第一、二、四象限,则函数y=bx-k的大致图像是()A.B.C.D.8.在数轴上,点A表示-2,点B表示4.,P Q为数轴上两点,点Р从点A出发以每秒1个单位长度的速度向左运动,同时点Q从点B出发以每秒2个单位长度的速度向左运动,点Q到达原点О后,立即以原来的速度返回,当点Q回到点B时,点Р与点Q同时停止运动.设点Р运动的时间为x秒,点Р与点Q之间的距离为y个单位长度,则下列图像中表示y与x的函数关系的是()A.B.C .D .9.如图,ABC 中,//DE BC ,//EF AB ,要判定四边形DBFE 是菱形,可添加的条件是( )A .BD EF =B .AD BD =C .BE AC ⊥D .BE 平分ABC ∠10.若二次根式1x -有意义,则x 的取值范围是( ) A .x <1B .x >1C .x≥1D .x≤111.如图1,平行四边形纸片ABCD 的面积为120,20AD =.今沿两对角线将四边形ABCD 剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD 、CB 重合)形成一轴对称图形(戊),如图2所示,则图形戊的两对角线长度和为( )A .26B .29C .2243D .125312.若实数m 、n 满足|m ﹣4n -0,且m 、n 恰好是Rt ABC 的两条边长,则ABC 的周长是( )A .5B .57C .12D .12或7二、填空题13.已知一组数据a ,b ,c 的方差为2,那么数据3a +,3b +,3+c 的方差是________.14.已知一组数据a ,b ,c 的方差为2,那么数据a +3,b +3,c +3的方差是_____.15.如图,正方形ABCD,CEFG边在x轴的正半轴上,顶点A,E在直线12 y x =上,如果正方形ABCD边长是1,那么点F的坐标是______.16.如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3...在直线l上,点B1,B2,B3..在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3...,依次均为等腰直角三角形,直角顶点都在x轴上,则第2021个等腰直角三角形A2021B2020B2021顶点B2021的横坐标为__________.17.如图,正方形ABCD中,5AD=,点E、F是正方形ABCD内的两点,且4AE FC==,3BE DF==,则EF的平方为________.18.如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若1DE=,则BF的长为__________.19.222233+=333388+=4441515+= (77)a ab b+(a、b均为实数)则=a__________,=b__________.20.如图所示的网格是正方形网格,则CBD ABC∠+∠=______°(点A,B,C,D是网格线交点)三、解答题21.在全民读书月活动中,某校随机抽样调查了一部分学生本学期计划购买课外书的费用情况,根据图中的相关信息,解答下面问题;(1)这次调查获取的样本容量是________;(2)由统计图可知,这次调查获取的样本数据的众数是________;中位数是________; (3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.22.今年5月12日是我国第11个全国防灾减灾日,重庆某中学为普及推广全民防灾减灾知识和避灾自救技能,开展了“提高灾害防治能力,构筑生命安全防线”知识竞赛活动.初一、初二年级各500人,为了调查竞赛情况,学校进行了抽样调查,过程如下,请根据表格回答问题. 收集数据:从初一、初二年级各抽取20名同学的测试成绩(单位:分),记录如下:初一:68、79、100、98、98、86、88、99、100、93、90、100、80、76、84、98、99、86、98、90初二:92、89、100、99、98、94、100、62、100、86、75、98、89、100、100、68、79、100、92、89 整理数据: 表一 分数段 70x <7080x ≤< 8090x ≤< 90100x ≤≤初一人数 1 mn12 初二人数22412分析数据: 表二 种类 平均数 中位数 众数方差 初一 90.5 91.5y84.75 初二90.5x100123.05得出结论:(1)在表中:m =_______,n =_______,x =_______,y =_______; (2)得分情况较稳定的是___________(填初一或初二);(3)估计该校初一、初二年级学生本次测试成绩中可以得满分的人数共有多少人? 23.小慧家与文具店相距960m ,小慧从家出发,沿笔直的公路匀速步行12min 来到文具店买笔记本,停留3min ,因家中有事,便沿原路匀速跑步6min 返回家中.(1)小慧返回家中的速度比去文具店的速度快多少?(2)请你画出这个过程中,小慧离家的距离y 与时间x 的函数图象; (3)根据图象回答,小慧从家出发后多少分钟离家距离为480m ?24.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,点M ,N 分别为OA 、OC 的中点,延长BM 至点E ,使EM BM =,连接DE .(1)求证:AMB CND △≌△;(2)若2BD AB =,且3AM =,4DN =,求四边形DEMN 的面积. 25.计算:(183(26)27+(2)11513(1)(0.5) 2674⨯-÷;(3)5 2311x yx y+=⎧⎨+=⎩;(4)4(2)153123x yy x+=-⎧⎪+⎨=-⎪⎩.26.亲爱的同学们,在全等三角形中,我们见识了很多线段关系的论证题,下面请你用本阶段所学知识,分别完成下列题目.(1)如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.容易证明△ACD≌△BCE,则①∠AEB的度数为;②直接写出AE、BE、CM之间的数量关系:(3)如图3,△ABC中,若∠A=90°,D为BC的中点,DE⊥DF交AB、AC于E、F,求证:BE2+CF2=EF2.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】A、由于这八个班的人数不一定相等,故全年级学生的平均成绩应等于所有学生成绩的和除以学生人数;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间;C、由于这八个班的人数不一定相等,故这10个平均成绩的中位数不一定是全年级学生的平均成绩;D、众数是一组数据中出现次数最多的数,能反映数据的集中程度,平均数也能反映数据的集中程度,是有可能相等的.【详解】A、全年级学生的平均成绩应等于所有学生成绩的和除以学生人数,而这八个班的人数不一定相等,故错误;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间,故正确;C、中位数不一定与平均数相等,故错误;D、众数与平均数有可能相等,故错误.故选B.【点睛】本题考查了平均数、中位数、众数的关系,它们有可能相等,也可能不相等.2.D解析:D【分析】方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【详解】依题意可得,平均数:45mx∴224441555m mm解得m=1,故选D.【点睛】本题考查了方差,熟练运用方差公式是解题的关键.3.A解析:A【分析】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案.【详解】根据题意得:805(81778082)80⨯-+++=(分),则丙的得分是80分;众数是80,故选A.【点睛】考查了众数及平均数的定义,解题的关键是根据平均数求得丙的得分,难度不大.4.B解析:B 【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定. 【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B. 【点睛】考核知识点:均数、众数、中位数、方差的意义.5.A解析:A 【分析】根据题意,分别表示出1y ,2y ,再判断12y y -的正负性,即可得到答案. 【详解】∵点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,∴212y a a =-+,224y a a =-+,∴22212(2)(4)2y y a a a a a -=-+--+=>0,∴12y y >, 故选A . 【点睛】本题主要考查一次函数图像上点的坐标特征,掌握作差法比较大小,是解题的关键.6.D解析:D 【分析】分别求出04x ≤≤、47x <<时函数表达式,即可求解. 【详解】解:由题意当04x ≤≤时,如题图,1134622y AD AB =⨯⨯=⨯⨯=, 当47x <<时,如下图,11(7)414222y PD AD x x =⨯⨯=⨯-⨯=-.故选:D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.7.B解析:B【分析】根据一次函数y=kx+b的图象经过第一、二、四象限,可以得到k和b的正负,然后根据一次函数的性质,即可得到一次函数y=bx-k中b,-k的正负,从而得到图象经过哪几个象限,从而可以解答本题.【详解】解:∵一次函数y=kx+b的图象经过第一、二、四象限,∴k<0,b>0,∴b>0,-k>0,∴一次函数y=bx-k图象第一、二、三象限,故选:B.【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数解析式判断其经过的象限解答.8.B解析:B【分析】数轴上两点之间的距离等于靠近右边点对应的数值减去左边点对应的数值,这是计算的基础;其次,要学会分段分析,分0≤<x≤2和2<x≤4求解,用x表示点P表示的数为-2-x,点Q表示的数为4-2x或2x-4,具体计算画图即可.【详解】∵A表示-2,B表示4,∴BA=4-(-2)=6,∴当x=0时,PQ=AB=6;∵OB=4个单位,点Q的速度是2个单位/s,∴Q运动到原点的时间为4÷2=2(s),∴当0<x≤2时,点P表示的数为-2-x,点Q表示的数为4-2x,∴PQ=4-2x-(-2-x)=6-x,∴当x=2时,y=6-2=4,∴当2<x≤4时,点Q从返回运动,点P表示的数为-2-x,点Q表示的数为2x-4,∴PQ=2x-4-(-2-x)=3x-2,∴当x=4时,y=12-2=10,只有B图像与上面的分析一致,故选B.【点睛】本题考查了数轴上两点之间的距离,数轴上的点与表示的数的关系,路程,速度和时间的关系,根据时间的大小,正确分类表示动线段PQ的长度是解题的关键.9.D解析:D【分析】当BE平分∠ABC时,四边形DBFE是菱形,可知先证明四边形BDEF是平行四边形,再证明BD=DE即可解决问题.【详解】解:当BE平分∠ABC时,四边形DBFE是菱形,理由:∵DE∥BC,∴∠DEB=∠EBC,∵∠EBC=∠EBD,∴∠EBD=∠DEB,∴BD=DE,∵DE∥BC,EF∥AB,∴四边形DBFE是平行四边形,∵BD=DE,∴四边形DBFE是菱形.其余选项均无法判断四边形DBFE是菱形,故选:D.【点睛】本题考查菱形的判定、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.10.C解析:C【分析】直接利用二次根式有意义的条件分析得出答案.【详解】∵∴x−1≥0,解得:x≥1.故选:C.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.11.A解析:A【分析】由题意可得对角线EF⊥AD,且EF与平行四边形的高相等,进而利用面积与边的关系求出BC边的高即可.【详解】解:如图,连接AD、EF,则可得对角线EF⊥AD,且EF与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=20,∴BC=AD=20,12EF×AD=12×120,∴EF=6,又AD=20,∴则图形戊中的四边形两对角线之和为20+6=26,故选:A.【点睛】本题考查了平行四边形的性质以及图形的对称问题,熟练掌握平行四边形的性质是解题的关键.12.D解析:D【分析】根据非负数的性质分别求出m、n,分4是直角边、4是斜边两种情况,根据勾股定理、三角形的周长公式计算,得到答案.【详解】∵|m﹣4n-0,∴|m﹣3|=04n-0,∴m﹣3=0,n﹣4=0,解得,m=3,n=4,当42234+5,则△ABC的周长=3+4+5=12,当42243-7,则△ABC的周长=7=7,故选:D.【点睛】本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.二、填空题13.2【分析】根据方差是用来衡量一组数据波动大小的量每个数都加3所以波动不会变方差不变【详解】解:设abc 的平均数是d 所以方差不变故答案为:2【点睛】本题主要考查了方差的公式解题的关键是当数据都加上一个 解析:2【分析】根据方差是用来衡量一组数据波动大小的量,每个数都加3,所以波动不会变,方差不变.【详解】解:设a 、b 、c 的平均数是d,()222211S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦ , ()222221S =33(33)(33)23a d b d c d ⎡⎤+-+++-+++-+=⎢⎥⎣⎦ , ()222221S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦, 所以方差不变.故答案为:2.【点睛】本题主要考查了方差的公式,解题的关键是当数据都加上一个数时,方差不变. 14.2【分析】根据数据abc 的方差为2由方差为2可得出数据a+3b+3c+3的方差【详解】解:∵数据abc 的方差为2设平均数为m 则则数据a+3b+3c+3的平均数是m+3∴方差为:故答案为:2【点睛】本解析:2【分析】根据数据a ,b ,c 的方差为2,由方差为2可得出数据a+3,b+3,c+3的方差.【详解】解:∵数据a ,b ,c 的方差为2,设平均数为m , 则2222()()()23a mb mc m S -+-+-==, 则数据a +3,b +3,c +3的平均数是m+3, ∴方差为:2222(33)(33)(33)3a m b m c m S +--++--++--=222()()()23a mb mc m -+-+-==, 故答案为:2.【点睛】本题考查的是方差,熟记方差的定义是解答此题的关键.15.【分析】令y =1可得x =2即点A (21)根据正方形的性质可得点E 的横坐标待入解析式即可求得点E 的纵坐标继而根据正方形的性质可得点F 的坐标【详解】∵正方形边在轴的正半轴上∴AB =BC =CD =AD =1C 解析:93,22⎛⎫ ⎪⎝⎭【分析】令y =1可得x =2,即点A (2,1)根据正方形的性质可得点E 的横坐标,待入解析式即可求得点E 的纵坐标,继而根据正方形的性质可得点F 的坐标.【详解】∵正方形ABCD ,CEFG 边在x 轴的正半轴上,∴AB =BC =CD =AD =1,CE =CG =EF =GF ,AB 、CD 、CE 、FG ⊥x 轴,∵顶点A ,E 在直线12y x =令y =1,则x =2∴点A (2,1)∴点E 的横坐标为3将x =3代入直线12y x =,得32y = ∴点E 、F 的纵坐标是32 即32CE FG EF === ∴点F 的横坐标为39322+= 即点F (92,32) 故答案为:(92,32) 【点睛】本题考查一次函数的应用,涉及到正方形的性质、点的坐标,解题的关键是熟练掌握正方形的性质求得点A 、E 的坐标.16.【分析】先求出…的横坐标探究总结得到即可根据规律解决问题【详解】解:探究规律:令则令则∴∴…发现并总结规律:∴运用规律:当时故答案为【点睛】本题考查规律型:点的坐标等腰直角三角形的性质等知识解题的关 解析:202222-【分析】先求出123,,B B B …的横坐标,探究总结得到122,n n B x +=-,即可根据规律解决问题.【详解】解:探究规律: :2,l y x =+令0,x = 则2,y =()10,2,A ∴令0,y = 则2,x =-()2,0,A ∴-12,OA OA ∴==∴11121223232,4,8,OB OA B B B A B A B B ======∴12222,B x ==- 23622,B x ==-341422,B x ==-…,发现并总结规律:∴122,n n B x +=-运用规律:当2021n =时,202120222 2.B x ∴=-故答案为20222 2.-【点睛】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题.17.2【分析】延长BE 交CF 于G 再根据全等三角形的判定得出△BCG 与△ABE 全等得出AE=BG=4由BE=3得出EG=1同理得出GF=1再根据勾股定理得出EF 的平方【详解】解:延长BE 交CF 于G 如图:∵解析:2【分析】延长BE 交CF 于G ,再根据全等三角形的判定得出△BCG 与△ABE 全等,得出AE=BG=4,由BE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF 的平方.【详解】解:延长BE 交CF 于G ,如图:∵AB=5,AE=4,BE=3,222345+=,∴△ABE 是直角三角形,∴同理可得△DFC 是直角三角形,在Rt △ABE 和Rt △CDF 中,543AB CD AE CF BE DF ==⎧⎪==⎨⎪==⎩,∴Rt △ABE ≅Rt △CDF ,∴∠1=∠5,∵四边形ABCD 是正方形,∴∠ABC=∠BCD=90︒,∴∠4+∠5=90︒,∠4+∠3=90︒,∠1+∠2=90︒,∴∠3=∠5,∠4=∠2,在△CBG 和△BAE 中,3524AB BC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CBG ≌△BAE (ASA ),∴AE=BG=4,CG=BE=3,∴EG=4-3=1,同理可得:GF=1,∴EF 2=EG 2+GF 2=2,故答案为:2.【点睛】本题考查了正方形的性质及全等三角形的判定与性质,关键是根据全等三角形的判定和性质得出EG=FG=1,再利用勾股定理计算.18.【分析】连接FE 根据题意得CD=2AE=设BF=x 则FG=xCF=2-x 在Rt △GEF 中利用勾股定理可得EF2=(-2)2+x2在Rt △FCE 中利用勾股定理可得EF2=(2-x )2+12从而得到关于 51【分析】连接FE ,根据题意得CD=2,AE=5,设BF=x ,则FG=x ,CF=2-x ,在Rt △GEF 中,利用勾股定理可得EF 2=(5-2)2+x 2,在Rt △FCE 中,利用勾股定理可得EF 2=(2-x )2+12,从而得到关于x 方程,求解x 即可.【详解】解:连接EF ,如图,∵E 是CD 的中点,且CE=1∴CD=2,DE=1∵四边形ABCD 是正方形,∴AB=BC=CD=DA=2∴2222215AD DE +=+设BF=x ,由折叠得,AG=AB=2,FG=BF=x ,∴52,在Rt △GFE 中,2222252)EF FG GE x =+=+在Rt △CFE 中,CF=BC-BF=2-x ,CE=1∴22222(2)1EF FC CE x =+=-+∴222252)(2)1x x +=-+解得:=51x ,即51,51【点睛】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.19.748【分析】利用已知条件找出规律写出结果即可【详解】解:∵⋯⋯∴⋯⋯∴故答案为:748【点睛】本题考查归纳推理考查对于所给的式子的理解主要看清楚式子中的项与项的数目与式子的个数之间的关系本题是一个解析:7, 48【分析】利用已知条件,找出规律,写出结果即可.【详解】解:∵=== ⋯⋯,∴====== ⋯⋯,==∴7a =,27148b =-=,故答案为:7,48【点睛】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.20.45【分析】做线段BA 关于BC 的对称线段BE 连接DE 先证明再证明△BDE 为等腰直角三角形得到∠DBE=45°问题得证【详解】解:如图做线段BA 关于BC 的对称线段BE 连接DE 则∠ABC=∠EBC ∴根据解析:45【分析】做线段BA 关于BC 的对称线段BE ,连接DE ,先证明CBD ABC DBE ∠+∠=∠,再证明△BDE 为等腰直角三角形,得到∠DBE=45°,问题得证.【详解】解:如图,做线段BA 关于BC 的对称线段BE ,连接DE ,则∠ABC=∠EBC ,∴CBD ABC CBD EBC DBE ∠+∠=∠+∠=∠,根据勾股定理得BD ==BE ==,DE ,∴BE=DE ,222=26=BE DE BD +∴∠BED=90°,∴△BDE 为等腰直角三角形,∴∠DBE=45°,∴45CBD ABC ∠+∠=︒.故答案为:45【点睛】本题考查了勾股定理及其逆定理在网格中应用,根据题意作出线段BA 关于BC 的对称线段BE 是解题关键.三、解答题21.(1)40;(2)30元,50元;(3)50500元.【分析】(1)根据条形统计图的信息把计划购买课外书的不同费用的人数相加计算即可; (2)根据众数的定义,中位数的定义,逐一进行求解即可;(3)先根据条形统计图展现的数据,计算样本中每个学生平均花费,再用全校总人数×每个学生平均花费,即可估算全校购买课外书的总花费.【详解】解:(1)6121084=40++++(2)购买30元课外书的人数最多,所以这次抽样的众数是30元;购买课外书排第20,第21的费用均为50元,所以这次抽样的中位数是50元; (3)样本中平均每个学生的费用是620123010508804100=50.56121084⨯+⨯+⨯+⨯+⨯++++(元) 因此该校1000学生购买课外书的总花费约为100050.5=50500⨯(元)答:该校本学期计划购买课外书的总花费约为50500元.【点睛】本题主要考查抽样调查中样本容量,众数,中位数的定义及由样本数据估算总体数量的知识.22.(1)2,5,93,98;(2)初一;(3)225【分析】(1)根据给出的初一20名同学测试成绩,成绩在7080x ≤<范围内的共有2名,可知m 值,成绩在8090x ≤<范围内的有5名,可得n 值,再根据中位数、众数的定义即可得出x、y;(2)判断哪个年级得分情况较稳定,根据方差的意义即可得出答案;(3)先求出各年级满分的人数所占的百分比,用该校各年级的总人数分别乘以得满分的人数所占的百分比,即可得出答案.【详解】(1)根据给出的数据可得:∵成绩在7080x≤<范围内的共有2名,∴m=2∵成绩在8090x≤<范围内的有5名,∴n=5把初二成绩从小到大排列,则中位数x=92942+=93,∵初一成绩中出现次数最多的是98∴y=98;故答案为:2,5,93,98;(2)∵根据表二可得初一的方差是84.75,初二的方差是123.05∴初一的方差小于初二的方差∴得分情况较稳定的是初一故答案为:初一(3)根据20名初一同学测试成绩,取得100分的同学有3个,占3 20根据20名初二同学测试成绩,取得100分的同学有6个,占6 20则该校初一、初二年级学生本次测试成绩中可以得满分的人数共有:500×320+500×620=225(人)该校初一、初二年级学生本次测试成绩中可以得满分的人数共有225人.故答案为:225【点睛】本题考查了中位数、众数的定义,已知一组数求中位数和众数;考查了方差的意义,在考虑稳定性时,利用方差来判断;会用样本估算总体.23.(1)80m/min;(2)答案见解析;(3)6分钟或18分钟.【分析】()1根据速度=路程/时间的关系,列出等式96096080(m/min)612-=即可求解;()2根据题中已知,描点画出函数图象;()3根据图象可得小慧从家出发后6分钟或18分钟离家距离为480m.【详解】解:(1)由题意可得:96096080(m/min)612-= 答:小慧返回家中的速度比去文具店的速度快80m/min(2)如图所示:(3)根据图象可得:小慧从家出发后6分钟或18分钟分钟离家距离为480m .【点睛】本题考查一次函数的应用;能够理解题意,准确画出函数图象,并从图象中获取信息是解题的关键.24.(1)见解析;(2)24【分析】(1)依据平行四边形的性质,即可得到△AMB ≌△CND ;(2)依据全等三角形的性质,即可得出四边形DEMN 是平行四边形,再根据等腰三角形的性质,即可得到∠EMN 是直角,进而得到四边形DEMN 是矩形,即可得出四边形DEMN 的面积.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB CD =,//AB CD ,OA OC =,∴BAC DCA ∠=∠,又点M ,N 分别为OA 、OC 的中点, ∴1122===AM AO CO CN , 在AMB 和CND △中, AB CD BAC DCA AM CN =⎧⎪∠=∠⎨⎪=⎩,∴△AMB ≌△CND(SAS)(2)∵△AMB ≌△CND ,∴BM=DN ,∠ABM=∠CDN ,又∵BM=EM ,∴DN=EM ,∵AB ∥CD ,∴∠ABO=∠CDO ,∴∠MBO=∠NDO ,∴ME∥DN,∴四边形DEMN是平行四边形,∵BD=2AB,BD=2BO,∴AB=OB,又∵M是AO的中点,∴BM⊥AO,∴∠EMN=90°,∴四边形DEMN是矩形,∵AM=3,DN=4,∴AM=MO=3,DN=BM=4,∴MN=6,∴矩形DEMN的面积=6×4=24.【点睛】本题主要考查了平行四边形的性质,全等三角形的判定与性质以及矩形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.25.(1;(2;(3)41xy=⎧⎨=⎩;(4)31xy=-⎧⎨=⎩【分析】(1)先进行二次根式的乘法运算,然后化简后合并即可;(2)利用二次根式的乘除法则运算;(3)利用加减消元法解方程组;(4)先把原方程组整理后,然后利用加减消元法解方程组.【详解】(1++=;(2(÷=-16;(3)5 2311x yx y+=⎧⎨+=⎩①②,②﹣①×2得3y﹣2y=1,解得y=1,把y=1代入①得x +1=5,解得x=4,所以方程组的解为41x y =⎧⎨=⎩; (4)原方程组整理为457233x y x y +=-⎧⎨+=-⎩①②, ①﹣②×2得﹣y=﹣1,解得y=1,把y=1代入②得2x +3=﹣3,解得x=﹣3,所以原方程组的解为31x y =-⎧⎨=⎩. 【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解二元一次方程组. 26.(1)见解析;(2)①90°,②2AE BE CM =+;(3)见解析【分析】(1)利用AAS 证明△ABD ≌△CAE ,得到BD=AE ,AD=CE ,即可得到结论成立;(2)①由等腰直角三角形的性质,得∠CDE=∠CED=45°,则∠ADC=135°,由全等三角形的性质,∠BEC=135°,即可求出∠AEB 的度数;②由全等三角形的性质和等腰直角三角形的性质,得到AD=BE ,CM=DM=EM ,即可得到AE=BE+2CM ;(3)延长ED 到点G ,使DG=ED ,连结GF ,GC ,证明△DBE ≌△DCG ,得到BE=CG ,根据勾股定理解答.【详解】解:(1)如图1,∵∠BAC =90°,BD ⊥直线m ,CE ⊥直线m ,∴∠ADB=∠AEC=90°,∴∠BAD+∠ABD=∠BAD+∠CAE=90°,∴∠ABD=∠CAE ,∵AB =AC ,∴△ABD ≌△CAE ,∴BD=AE ,AD=CE ,∵DE DA AE CE BD =+=+;(2)如图2,①∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,∴∠CDE=∠CED=45°,∴∠ADC=180°-45°=135°,∵△ACD ≌△BCE ,∴AD=BE ,∠ADC=∠BEC=135°,∴∠AEB=∠BEC -∠CED=135°-45°=90°;②∵△DCE 均为等腰直角三角形,CM 为△DCE 中DE 边上的高,∴CM=DM=EM ,∵AD=BE ,∴AE=AD+DM+EM=BE+2CM ;故答案为:①90°;②2AE BE CM =+;(3)延长ED 到点G ,使DG=ED ,连结GF ,GC ,如图,∵ED ⊥DF ,DG=ED ,∴EF=GF ,∵D 是BC 的中点,∴BD=CD ,在△BDE 和△CDG 中,ED GD BDE GDC BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△DCG (SAS ),∴BE=CG ,∵∠A=90°,∴∠B+∠ACB=90°,∵△DBE≌△DCG,EF=GF,∴BE=CG,∠B=∠GCD,∴∠GCD+∠ACB=90°,即∠GCF=90°,∴Rt△CFG中,CF2+GC2=GF2,∴BE2+CF2=EF2.【点睛】本题考查的是全等三角形的判定和性质、等腰直角三角形的性质,以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.。
浙教版数学八年级下册期末考试试卷及答案

浙教版数学八年级下册期末考试试题一、单选题1.下列计算正确的是()A=B=C=D3=-2.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°3.下列方程中,没有实数根的是()A.x2﹣2x=0 B.x2﹣2x﹣1=0 C.x2﹣2x+1 =0 D.x2﹣2x+2=0 4.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.平行四边形C.正五边形D.矩形5.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁6.为把我市创建成全国文明城市,某社区积极响应市政府号召,准备在一块正方形的空地上划出部分区域栽种鲜花,如图中的阴影“”带,鲜花带一边宽1m,另一边宽2m,剩余空地的面积为18m2,求原正方形空地的边长xm,可列方程为()A.(x﹣1)(x﹣2)=18 B.x2﹣3x+16=0C.(x+1)(x+2)=18 D.x2+3x+16=07.如图,四边形ABCD是菱形,8AC=,DB=6,DH⊥AB于H,则DH等于( )A.245B.125C.5 D.48.如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=kx(k≠0)的图象过点C,则该反比例函数的表达式为()A.y=3xB.y=4xC.y=5xD.y=6x二、填空题9.方程230x x-=的根为.10.在二次根式√2x+1中,x的取值范围是_________.11.在实数0,−π,√2,−4中,最小的数是__________.12.如图,在▱ABCD 中,AB =3,BC =5,以点B 为圆心,以任意长为半径画弧,分别交BA 、 BC 于点P 、Q 再分别以P 、Q 为圆心,以大于12PQ 的长为半径作弧,两弧在∠ABC 内交于点M ,连接BM 并延长交AD 于点E ,则DE 的长为____________.13.在矩形ABCD 中,由9个边长均为1的正方形组成的“L 型”模板如图放置,此时量得CF=3,则BC 边的长度为_____________.14.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2…按如图所示放置,点A 1、A 2、A 3…在直线y=x+1上,点C 1、C 2、C 3…在x 轴上,则An 的坐标是________________.三、解答题 15.解方程:(1)()x 2x 2x 1-=- (2)2x 3x 20-+=16.计算:|−√3|+√2×√6+(12)−1−(√2019−√2017)017.已知关于x 的方程x 2+ax+a ﹣2=0.若该方程的一个根为1,求a 的值及该方程的另一根.18.阅读下面材料,解答问题:将4个数a 、b 、c 、d 排列成2行2列,记为:|acb d|,叫做二阶行列式.意义是|a c b d |=ad −bc .例如:|57 68|=5×8−6×7=−2. (1)请你计算|5√27 √6√8|的值; (2)若|x +13x 2x +1|=9,求x 的值.19.如图,网格每个小正方形的顶点叫格点,线段AB 的端点在格点上.按要求以线段AB 为边或对角线,分别在网格中作两个不全等四边形. 要求(1)四边形顶点在格点上;(2)四边形为轴对称图形20.在一次社会调查活动中,小华收集到某“健步走运动”团队中20名成员一天行走的步数,记录如下:5640 6430 6520 6798 7325 8430 8215 7453 7446 6754 7638 6834 7326 6830 86488753 9450 9865 7290 7850对这20个数据按组距1000进行分组,并统计整理,绘制了如下尚不完整的统计图表:步数分组统计表请根据以上信息解答下列问题:(1)填空:m= ______ ,n= ______ ;(2)补全频数发布直方图;(3)这20名“健步走运动”团队成员一天行走步数的中位数落在______ 组;(4)若该团队共有120人,请估计其中一天行走步数不少于7500步的人数.21.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.22.如图所示,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,已知AB=8,BC=10,(1)求BF的长;(2)求△ECF的面积.23.数学兴趣小组几名同学到商场调查发现,一种纯牛奶进价为每箱40元,厂家要求售价在40~70元之间,若以每箱70元销售平均每天销售30箱,价格每降低1元平均每天可多销售3箱.(1)现该商场要保证每天盈利900元,同时又要使顾客得到实惠,那么每箱售价为多少元?(2)若每天盈利为W元,请利用配方法直接写出每箱售价为多少元时,每天盈利最多.24.如图,矩形ABCD中,AB=5cm,BC=10cm,动点M从点D出发,按折线DCBAD方向以3cm/s的速度运动,动点N从点D出发,按折线DABCD方向以2cm/s的速度运动.点E在线段BC上,且BE=1cm,若M、N两点同时从点D 出发,到第一次相遇时停止运动.(1)求经过几秒钟M、N两点停止运动?(2)求点A、E、M、N构成平行四边形时,M、N两点运动的时间;(3)设运动时间为t(s),用含字母t的代数式表示△EMN的面积S(cm2).参考答案1.B【解析】【分析】根据二次根式的运算法则对各选项进行计算,然后判断即可.【详解】解:A. A选项错误;B. ==C. ==,所以C选项错误;=-=,所以D选项错误,33故选:B.【点睛】本题考查了二次根式的混合运算,熟练掌握运算法则是解题关键.2.C【解析】试题分析:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C.考点:1矩形;2平行线的性质.3.D【解析】【分析】分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.【详解】A、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A选项错误;B、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B选项错误;C、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C选项错误;D 、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D 选项正确. 故选D . 4.D 【解析】 【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解. 【详解】解:A 、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误; B 、平行四边形不是轴对称图形,是中心对称图形,故本选项错误; C 、正五边形是轴对称图形,不是中心对称图形,故本选项错误. D 、矩形既是轴对称图形,又是中心对称图形,故本选项正确; 故选:D . 【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 5.D 【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵==x x x x >乙丁甲丙,∴从乙和丁中选择一人参加比赛,∵22S S >乙丁,∴选择丁参赛, 故选D .【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键. 6.A 【解析】 【分析】可设原正方形的边长为xm ,则剩余的空地长为(x ﹣1)m ,宽为(x ﹣2)m .根据长方形的面积公式方程可列出. 【详解】设原正方形的边长为xm ,依题意有: (x ﹣1)(x ﹣2)=18. 故选A . 【点睛】本题考查了由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.另外求得剩余的空地的长和宽是解决本题的关键. 7.A 【解析】 【分析】根据菱形性质求出AO =4,OB =3,∠AOB =90°,根据勾股定理求出AB ,再根据菱形的面积公式求出即可. 【详解】解:∵四边形ABCD 是菱形,设AB,CD 交于O 点, ∴AO =OC ,BO =OD ,AC ⊥BD , ∵AC =8,DB =6,∴AO =4,OB =3,∠AOB =90°,由勾股定理得:AB 5,∵S 菱形ABCD =12×AC×BD =AB×DH ,∴12×8×6=5×DH , ∴DH =245, 故选:A .【点睛】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S 菱形ABCD =12×AC×BD =AB×DH 是解此题的关键.8.A【解析】解:如图,过点C 作CE ⊥y 轴于E .在正方形ABCD 中,∵AB =BC ,∠ABC =90°,∴∠ABO +∠CBE =90°.∵∠OAB +∠ABO =90°,∴∠OAB =∠CBE .∵点A 的坐标为(﹣4,0),∴OA =4.∵AB =5,∴OB =3.在△ABO 和△BCE 中,∵∠OAB =∠CBE ,∠AOB =∠BEC ,AB =BC ,∴△ABO ≌△BCE (AAS ),∴OA =BE =4,CE =OB =3,∴OE =BE ﹣OB =4﹣3=1,∴点C 的坐标为(3,1).∵反比例函数k y x =(k ≠0)的图象过点C ,∴k =xy =3×1=3,∴反比例函数的表达式为3y x=.故选A .点睛:本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点D 的坐标是解题的关键.9.120,?3x x ==.【解析】试题分析:x (x -3)=0 解得:1x =0,2x =3.考点:解一元二次方程.10.x ≥−12【解析】【分析】根据二次根式的性质:二次根式的被开方数是非负数,得2x+1≥0.解不等式可得答案.【详解】解:根据题意,得2x+1≥0,解得,x≥-12;故答案是:x≥-12.【点睛】本题考查了二次根式的意义和性质.概念:式子√a (a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.11.-4【解析】【分析】根据正数大于0,0大于一切负数,两个负数绝对值大的反而小判断即可.【详解】解:∵√2>0,-4<−π<0∴-4<−π<0<√2最小的数是-4.故答案为:-4.【点睛】考查实数的比较;用到的知识点为:正数大于0;0大于一切负数;两个负数绝对值大的反而小,注意应熟记常见无理数的约值.12.2【解析】根据作图过程可得得AE平分∠ABC;再根据角平分线的性质和平行四边形的性质可证明∠AEB=∠CBE,证出AE=AB=3,即可得出DE的长.,解:根据作图的方法得:AE平分∠ABC,∴∠ABE=∠CBE∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AE=AB=3,∴DE=AD﹣AE=5﹣3=2;故答案为2.“点睛”此题考查了平行四边形的性质、等腰三角形的判定.熟练掌握平行四边形的性质,证出AE=AB是解决问题的关键.13.7.【解析】试题分析:由图和已知,EF=5,CF=3,∴根据勾股定理可得EC=4.易证ΔABE≌ΔECF(AAS),∴BE="CF=3" .∴BC=7.考点:1.矩形的性质;2.勾股定理;3.全等三角形的判定和性质.14.(21n--1,21n-)【解析】【详解】解:∵直线y=x+1和y轴交于A1,∴A1的坐标(0,1),即OA1=1,∵四边形C1OA1B1是正方形,∴OC1=OA1=1,把x=1代入y=x+1得:y=2,∴A2的坐标为(1,2),同理A3的坐标为(3,4),…A n 的坐标为(121n --,12n -),故答案为(121n --,12n -).15.(1)12x =22x = (2)11x =,22x =【解析】【分析】(1)对方程去括号、移项合并同类项,化成一元二次方程的一般形式,把常数项移到等号的右边,再运用配方法求解;(2)先根据2x x +(p+q )x+pq=(x+p)(+q )对方程左边进行因式分解,化为两个一元一次方程求解.【详解】(1)去括号:2x -2x=2x-1,移项、合并同类项:2x -4x+1=0,配方得:2(2)3x -=解得12x =22x =(2)2320x x -+=(x-1)(x-2)=0x-1=0或x-2=0解得11x =,22x =.故答案为(1)12x =22x = (2)11x =,22x =.【点睛】本题考查了用配方法和因式分解法解一元二次方程,能根据方程的特点选择合适的方法并熟练掌握解方程的方法和步骤是关键.16.3√3+1【解析】【分析】根据负整数指数幂a n =1a n (a≠0,n 为正整数),零指数幂的意义a 0=1(a≠0),和实数的运算法则进行计算.【详解】解:|−√3|+√2×√6+(12)−1−(√2019−√2017)0=√3+2√3+2-1=3√3+1.故答案为:3√3+1.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式、绝对值、整数指数幂等考点的运算.17.a=21;另一根为-23. 【解析】试题分析:将x=1代入方程x 2+ax+a-2=0得到a 的值,再根据根与系数的关系求出另一根;试题解析:将x=1代入方程x 2+ax+a-2=0得,1+a+a-2=0,解得,a=21; 方程为x 2+21x-23=0,即2x 2+x-3=0,设另一根为x 1,则1•x 1=-23,x 1=-23. 考点:1、一元二次方程的解;2、根与系数的关系.18.(1)√2;(2)x 1=2,x 2=−2.【解析】【分析】(1)根据新定义得到|5√27 √6√8|=5×√8-√6×√27,然后进行二次根式的乘法运算; (2)根据新定义得到(x+1)(2x+1)-3x=9,然后整理后利用直接开平方法解方程.【详解】(1)原式=5×√8−√6×√27=5×2√2−√6×3√3=10√2−9√2=√2;(2)由题可得:(x+1)(2x+1)﹣3x=9,2x2+3x+1−3x=9,∴2x2=8解得:x1=2,x2=−2.故答案为:(1)√2;(2)x1=2,x2=−2.【点睛】本题通过新定义运算的形式考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了直接开平方法解一元二次方程.19.见解析,本题答案不唯一.【解析】【分析】利用轴对称图形性质,以及全等四边形的定义,如矩形、正方形都是轴对称图形,根据题意画出图形即可.【详解】解:如图所示,本题答案不唯一.【点睛】本题考查作图-轴对称变换,轴对称图形是按一条直线折叠后重合的图形.解题的关键是理解题意,掌握常见图形的性质,并按要求作图.20.(1)4;1;(2)见解析;(3)B;(4)48.【解析】【分析】(1)根据题目中的数据即可直接确定m和n的值;(2)根据(1)的结果即可直接补全直方图;(3)根据中位数的定义直接求解;(4)利用总人数乘以对应的比例即可求解.【详解】解:(1)由记录的数据可知,7500≤x<8500的有8430、8215、7638、7850这4个,即m=4;9500≤x<10500的有9865这1个,即n=1.故答案为4;1;(2)如图:(3)由于一共20个数据,其中位数是第10、11个数据的平均数,而第10、11个数据的平均数均落在B组,∴这20名“健步走运动”团队成员一天行走步数的中位数落在B组;故答案为B;(4)120×43120++=48(人),答:估计其中一天行走步数不少于7500步的有48人.故答案为48.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(1)见解析;(2)见解析.【解析】【分析】(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形即可;(2)由∠BAC=90°,AD是边BC上的中线,得AD=BD=CD,即可证明.【详解】(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AD是边BC上的中线,∴BD=DC,∴AE=DC,又∵AE∥BC,∴四边形ADCE是平行四边形.(2) 证明:∵∠BAC=90°,AD是边BC上的中线.∴AD=CD∵四边形ADCE是平行四边形,∴四边形ADCE是菱形.【点睛】本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.22.(1)BF=6;(2)6.【解析】【分析】(1)因为点F为点D的折后的落点,所以△AFE≌△ADE,由此可得AF=AD=10cm,在△ABF中利用勾股定理,可得BF的值,(2)先求出DE的长,进而求出CE的长,利用三角形的面积公式即可求出△ECF 的面积.【详解】(1)∵△ADE折叠后的图形是△AFE,∴△AFE≌△ADE∴AD=AF,∠D=∠AFE,DE=EF,∵AD=BC=10,∴AF=AD=10,又∵AB=8,在Rt△ABF中,根据勾股定理,得AB2+BF2=AF2,∴82+BF2=102,∴BF=6;故答案为:6.(2)则可得FC=BC-BF=10-6=4,设EC的长为x,∴DE=(8-x),∵FC=4,在Rt△EFC中,根据勾股定理,得:FC2+EC2=EF2,∴42+x2=(8-x)2,即16+x2=64-16x+x2,化简,得16x=48,∴x=3,故EC=3.∴S△ECF=12EC·FC=12×4×3=6.故答案为:6.【点睛】本题考查了图形对折的问题,在解题时一定要注意,折叠的图形与折叠后的图形全等,此题还考查了勾股定理以及三角形的面积公式的应用.23.(1)当每箱牛奶售价为50元时,平均每天的利润为900元.(2)60元. 【解析】【分析】(1)根据平均每天销售这种牛奶的利润=每箱的利润×销售量,设每箱售价为x 元,根据“每天盈利900元”列出方程(x-40)[30+3(70-x)]=900 求解即可;(2)根据平均每天销售这种牛奶的利润等于每箱的利润×销售量得到W=(x-40)[30+3(70-x)],整理后根据二次函数的性质求解.【详解】(1)解:设每箱售价为x元,根据题意得:(x-40)[30+3(70-x)]=900化简得:x2-120x+3500=0解得:x1=50或x2=70(不合题意,舍去)∴x=50答:当每箱牛奶售价为50元时,平均每天的利润为900元.(2)由题意得W=(x-40)[30+3(70-x)]=-3x2+360x-9600=−3(x−60)2+1200∴当售价为每箱牛奶60元时,每天盈利最多.【点睛】本题考查了二次函数的应用:先把二次函数关系式变形成顶点式:y=a(x-k)2+h,当a<0,x=k时,y有最大值h;当a>0,x=k时,y有最小值h.也考查了利润的含义.24.(1)经过6 s两点相遇.(2)当点A、E、M、N构成平行四边形时,M、N两点运动的时间为4或4.8s.(3)当0<t<53时,S =-3t2+372t;当53≤t<143时,S=S△EMN=12EM•CD=12×(3t-5-1)×5=35-152t;当143<t≤5时,S= t-35;当5<t<6时,S =15-52t.【解析】【分析】(1)由题意可得:M、N两点同时从点D出发,到第一次相遇时共运动了:2(5+10)=30(cm),则可得t=30÷(2+3)=6;(2)由题意知,当点N在AD边上运动,点M在BC边上运动时,点A、E、M、N才可能组成平行四边形,然后设经过t秒,四点可组成平行四边形,①当构成▱AEMN时,10-2t=14-3t,②当构成▱AMEN时,10-2t=3t-14,继而求得答案;(3)分别从当0<t<53时,当53t <143时,当143<t<5时,当5<t<6时,去分析求解即可求得答案.【详解】解:(1)∵矩形ABCD中,AB=5cm,BC=10cm,∴M、N两点同时从点D出发,到第一次相遇时共运动了:2(5+10)=30(cm),∴t=30÷(2+3)=6 (s)答:经过6 s两点相遇.故答案为6s.(2)由题意知,当点N在AD边上运动,点M在BC边上运动时,点A、E、M、N才可能组成平行四边形,设经过t秒,四点可组成平行四边形,①当构成▱AEMN时,10-2t=14-3t,解得t =4;②当构成▱AMEN时,10-2t=3t-14,解得t=4.8;答:当点A、E、M、N构成平行四边形时,M、N两点运动的时间为4s或4.8s.故答案为4s或4.8s.(3)如图(1),当0<t<53时,点M在线段CD上,S=S△EMN =S梯形CDNE-S△DMN-S△CEM=12×(2t+9)×5 -12×2t×3t -12×9×(5-3t)=-3t2+372t;如图(2),当53≤t<143时,点M在线段CE上,S=S△EMN=12EM•CD=12×(3t-5-1)×5=35-152t;如图(3),当143<t<5时,点M在线段BE上,S=S△EMN=12ME•CD =12×(3t-14)×5=152t-35;如图(4),当5<t<6时,点M、N都在线段AB上,S=S△EMN=12MN•BE=12×(30-2t-3t)×1=15-52t.故答案为当0<t<53时,S =-3t2+372t;当53≤t<143时,S= 35-152t;当143<t<5时,S= t-35;当5<t<6时,S =15-52t.【点睛】此题考查了矩形的性质.此题难度较大,属于动点题目,解题时注意分类讨论思想、方程思想与数形结合思想的应用.。
浙教版八年级下册数学期末测试卷(完整版)
浙教版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,在矩形ABCD中,对角线AC、BD交与点O,以下说法错误的是()A.∠ABC=90°B.AC=BDC.OA=OBD.OA=AD2、某班 6 个合作小组的人数分别是:4,6,4,5,7,8,现第 4 小组调出 1 人去第 2 小组,则调动后各组人数分别为:4,7,4,4,7,8,下列关于调配后的数据说法正确的是()A.平均数变小B.平均数变大C.方差不变D.方差变大3、下列说法中,正确是()A.一个游戏中奖的概率是,则做10次这样的游戏一定会中奖B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式 C.一组数据8,8,7,10,6,8,9的众数是8 D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小4、一个多边形的内角和是360°,则这个多边形的边数为()A.6B.5C.4D.35、正方形具有而菱形不一定具有的性质是()A.对角线相等B.对角线互相垂直平分C.四条边都相等D.对角线平分一组对角6、将三角尺按如图所示放置在一张矩形纸片上,∠EGF=90°,∠FEG=30°,∠1=125°,则∠BFG的大小为()A.125°B.115°C.110°D.120°7、下列说法不正确的是()A.条形统计图能清楚地反映出各项目的具体数量B.折线统计图能清楚地反映事物的变化情况C.扇形统计图能清楚地表示出各个部分在总体中所占的百分比D.统计图只有以上三种8、某次器乐比赛共有11名选手参加,且他们的得分都互不相同.现在知道这次比赛按选手得分由高到低的顺序设置了6个获奖名额.若已知某位选手参加这次比赛的得分,要判断他能否获奖,则在下列描述选手比赛成绩的统计量中,只需知道()A.方差B.平均数C.众数D.中位数9、下列式子中无意义的是()A. B. C. D.10、一元二次方程x2+x﹣2=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根11、A,B,C是平面内不在同一条直线上的三点,D是平面内任意一点,若A,B,C,D 四点恰能构成一个平行四边形,则在平面内符合这样条件的点D有( )A.1个B.2个C.3个D.4个12、能判定四边形ABCD是平行四边形的是()A.AB∥CD,AB=CDB.AB=BC,AD=CDC.AC=BD,AB=CD D.AB∥CD,AD=CB13、二次函数y=ax2+bx+c的图像如图所示,则反比例函数与一次函数y=bx+c在同一坐标系中的大致图像是()A. B. C. D.14、下列命题中,正确命题的序号是()①一组对边平行且相等的四边形是平行四边形②一组邻边相等的平行四边形是正方形③对角线相等的四边形是矩形④对角互补的四边形内接于圆A.①②B.②③C.③④D.①④15、若,0<x<1,则的值是()A. B.-2 C.±2 D.±二、填空题(共10题,共计30分)16、如图,直线x=t(t>0)与反比例函数的图象分别交于B,C 两点,A为y轴上的任意一点,则△ABC的面积为________.17、如图,菱形的周长是,,那么这个菱形的对角线的长是________.18、如图,在四边形ABCD中,对角线AC,BD交于点O,AD∥BC,请添加一个条件:________,使四边形ABCD为平行四边形.(不添加任何辅助线)19、如图,点A在反比例函数y=(x>0)的图象上,点B在x轴负半轴上,直线AB交y轴于点C,若=,△AOB的面积为6,则k的值为________.20、一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为________.21、关于x的方程ax2+bx﹣1=0的一个解是x=﹣1,则2015﹣a+b=________.22、如果x≥1,那么化简的结果是________.23、如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为10和6时,则阴影部分的面积为________.24、圆柱的体积为10cm3,则它的高ycm与底面积xcm2之间的函数关系式是________ .25、如图,△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣3,0),C (2,0),将△ABC绕点B顺时针旋转一定角度后使A落在y轴上,与此同时顶点C恰好落在y= 的图象上,则k的值为________.三、解答题(共5题,共计25分)26、解方程:3x(2x+1)=4x+2.27、甲、乙两名战士在相同条件下各射靶6次,每次命中的环数分别是:(单位:环)甲:4,9,10,7,8,10;乙:8,9,9,8,6,8.(1)分别计算甲、乙两名战士的平均数和方差;(2)哪名战士的成绩比较稳定.28、如图,在中,,正方形的三个顶点分别在边,,上。
浙教版八年级下册数学期末测试卷及含答案
浙教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、设三角形ABC 为一等腰直角三角形,角ABC 为直角,D 为AC 中点。
以B 为圆心,AB 为半径作一圆弧AFC ,以D 为中心,AD 为半径,作一半圆AGC ,作正方形BDCE 。
月牙形AGCFA 的面积与正方形BDCE 的面积大小关系( )A.S 月牙=S 正方形B.S 月牙= S 正方形C.S 月牙=S 正方形 D.S月牙=2S 正方形2、下列说法中正确的是( )A.有一组对边平行的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形 3、下列计算正确的是( )A.|﹣2|=﹣2B.a 2•a 3=a 6C.(﹣3) ﹣2=D.=4、如图,函数(k≠0,x<0)的图像L经过点A(-4,2),直线AB 与x轴交于点B(-5,0),经过点C(0,4)作y轴的垂线,分别交L和直线AB于点M,N,则MN=()A.1B.-5C.-1D.55、估算的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间6、已知:如图,在平面直角坐标系xOy中,等边△AOB的边长为6,点C在边OA上,点D在边AB上,且OC=3BD,反比例函数y=(k≠0)的图象恰好经过点C和点D,则k的值为()A. B. C. D.7、小勇投标训练4次的成绩分别是(单位:环)9,9,x,8.已知这组数据的众数和平均数相等,则这组数据中x是()A.8B.9C.10D.78、在式子:①;②;③﹣;④;⑤;⑥(x>1)中二次根式的个数有()A.1个B.2个C.3个D.4个9、方程的左边配成完全平方后所得方程为 ( )A. B. C. D.以上答案都不对10、已知双曲线,则下列各点中一定在该双曲线上的是()A.(3,2 )B.(-2,-3 )C.(2,3 )D.(3,-2)11、方程2x(x﹣3)=5(x﹣3)的根是()A.x=B.x=3C.x1= ,x2=3 D.x1=﹣,x2=312、在天气预报图上,有各种各样表示天气的符号,下列表示天气符号的图形中,既是中心对称图形又是轴对称图形的是A. 晴B. 冰雹C. 雷阵雨D.大雪13、如图,菱形ABCD的边长为6,∠ABC=120°,M是BC边的一个三等分点,P 是对角线AC上的动点,当PB+PM的值最小时,PM的长是()A. B. C. D.14、如图所示,正方形ABCD中,E,F是对角线AC上两点,连接BE,BF,DE,DF,则添加下列哪一个条件可以判定四边形BEDF是菱形()A.∠1=∠2B.BE=DFC.∠EDF=60°D.AB=AF15、如图,□ABCD的周长为16 cm,AC,BD相交于点O,EO⊥BD交AD于点E,则△ABE的周长为( )A.4 cmB.6 cmC.8 cmD.10 cm二、填空题(共10题,共计30分)16、方程x2-3x-10=0的根为x1=5,x2=-2.此结论是:________的.17、计算(+1)2014×(﹣1)2013的值是________.18、在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩________.19、若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为________20、请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的每个内角都等于150°,则这个多边形是________边形.B.用计算器计算:sin15°32'________(精确到0.01)21、如图,已知正方形ABCD的边长为4,以点A为圆心,2为半径作圆,E是⊙A上的任意一点,将点E绕点D按逆时针方向转转90°得到点F,则线段AF 的长的最小值________.22、方程有两个相等的实数根,且满足,则的值是________.23、如图,∠A=90°,点D、E分别在边AB、AC上,=m.若,则m=________.24、十边形有________ 个顶点,从一个顶点出发可画________ 条对角线,它共有________ 条对角线.25、菱形ABCD的边长为5,对角线交于O点,且AO、BO的长分别是关于x的方程的两个根,则m的值为________三、解答题(共5题,共计25分)26、解方程:2(x﹣3)=3x(3﹣x)27、如图所示,写出这些多边形的名称,并从多边形的一个顶点出发到其他顶点把多边形分割成若干个三角形.28、圆心O到直线L的距离为d,⊙O半径为r,若d、r是方程-6x+m=0的两个根,且直线L与⊙O相切,求m的值.29、如图,在▱ABCD中,∠BCD=120°,分别以BC和CD为边作等边△BCE和等边△CDF.求证:AE=AF.30、任意四边形ABCD中,点E、F、G、H分别是AD、BC、BD、AC的中点,当四边形ABCD满足什么条件时,四边形EGFH是菱形.(填一个使结论成立的条件)参考答案一、单选题(共15题,共计45分)1、A2、C3、C4、A5、D7、C8、C9、A10、D11、C12、A13、A14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
浙教版八年级数学下册期末复习试卷 (2027)
浙教版初中数学试卷八年级数学下册期末复习试卷学校:__________题号一 二 三 总分 得分评卷人得分 一、选择题1.(2分)用两个边长均为a 的等边三角形纸片一边互相重合,可以摆拼成的四边形是.( )A . 等腰梯形B . 菱形C . 矩形D . 正方形2.(2分)某厂计划用两年的时间把某种型号的电视机成本降低36%,若每年下降的百分比相同,则这个百分比为( )A .16%B .18%C .20%D .22% 3.(2分)用配方法解方程2420x x -+=,下列配方正确的是( )A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -= 4.(2分) 实数a ,b 在数轴上的位置如图所示,则下列代数式中,无意义的是( )A a b +B a b -C b a -D 2()b a - 5.(2分)在小数2.78654349353中,所出现的各个数字里,频数最大的数字是( )A .1B .3C .5D .96.(2分)下列方程中是一元二次方程的是( )A .325x y -=B .2231x x +=-C .3216x =D .132x += 7.(2分)已知一组数据:10,8,6,10,9,13,11,11,10,10,则下列各组中,频率为0.2的是( )A .5.5~7.5B .9.5~11.5C .7.5~9.5D .11.5~13.5 8.(2分)把方程0382=+-x x 化成n m x =+2)(的形式,则n m ,的值( )A .4、13B .-4、19C .-4、13D .4、199.(2分)如图1所示,将长为20cm,宽为2cm的长方形白纸条,折成图2所示的图形并在其一面着色,则着色部分的面积为()A.34 cm2B.36 cm2C.38 cm2D.40 cm210.(2分)某种服装原价为200元,连续两次涨价a%后,售价为242元,则a的值为()A.5 B.10 C.15 D.2111.(2分)下列命题中的假命题是()A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等且有一个角是直角的四边形是矩形评卷人得分二、填空题12.(3分)如图,点0是AC的中点,将周长为4cm的菱形ABCD沿对角线AC 方向平移''',则四边形OECF的周长是 cm.AO 长度得到菱形0B C D13.(3分)△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,则∠ABC= 度.14.(3分)如果x=4是一元二次方程x2-3x=a2的一个根,那么常数a的值是.15.(3分)方程3x2=x的解是 .16.(3分)选一个你喜欢的合理的实数x,求二次根式1-2x 的值,则1-2x =.17.(3分)关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是 .18.(3分)请给假命题“两个锐角的和是锐角”举出一个反例:.19.(3分)如图,菱形ABCD的对角线的长分别为3和8,P是对角线AC上的任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F.则阴影部分的面积是_______.20.(3分)将数据分成4组,画出频数分布直方图,各小长方形的高的比是1:3:4:2,若第2 组的频数是15,则此样本的样本容量是_______. 21.(3分)李明进行跳远练习,将跳远结果统计如下: 距离(m) 2 3 4 5 6 所跳次数(次) 34 5 2 O 则频率最大的跳远距离是 .22.(3分)若P(a b +,3)与P ′(-7,3a b -)关于原点对称,则关于x 的方程2202b x ax --=的解是 .23.(3分)如果菱形的边长是6的周长是 .评卷人得分 三、解答题24.(6分)(1)化简:216(3)8--(结果保留根号);(2)计算:26227⨯-25.(6分) 已知△ABC 中,AB=1,142BC =,11255CA =. (1)分别化简142,11255的值; (2)试在4×4的方格纸上画出△ABC ,使它的顶点都在方格的顶点上(每个小方格的边长为1).26.(6分)某校团委准备举办学生绘画展览,为美化画面,在长为30cm 、宽为20的矩形画面四周镶上宽度相等的彩纸,并使彩纸的面积恰好与原画面面积相等(如图),求彩纸的宽度.27.(6分)如图,在等腰梯形ABCD 中,AD ∥BC ,AB=DC ,点E 是BC 边的中点,EM ⊥AB ,EN ⊥CD ,垂足分别为M 、N .求证:EM=EN .28.(6分)如图,已知点E 为正方形ABCD 的边BC 上一点,连结AE ,过点D 作DG ⊥AE ,垂足为G ,延长DG 交AB 于点F . 求证:BF=CE .29.(6分)已知 625a =+,625b =-,求22a ab b ++的值.30.(6分)如图,在△ABC中,∠ACB=90°,BG的垂直平分线DE交BC于点D,交AB 于点E,点F在DE上,并且EF=AC.(1)求证:四边形ACEF是平行四边形;(2)当么8的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.(3)四边形ACEF有可能是正方形吗?为什么?【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.B2.C3.A4.C5.B6.B7.C8.C9.B10.B11.D二、填空题12.213.4514.±215.01=x ,312=x 16.0(答案不惟一)17.k>-1且k ≠018.如50α=,60β=,90αβ+>(答案不惟一)19.620.5021.4 m22.13x =,21x =-23.24°三、解答题24.(1)1-25.(1)==略 26.解:设彩纸的宽为x cm ,根据题意,得(302)(202)23020x x ++=⨯⨯, 整理,得2251500x x +-=,解之,得15x =,230x =-(不合题意,舍去), 答:彩纸的宽为5cm .27.∵AD ∥BC ,AB=DC ,∴B C ∠=∠,∵,,EM AB EN CD ⊥⊥∴90BME CNE ∠=∠=︒,在Rt △BME 和Rt △CNE 中,BME CNE B CBE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴Rt △BME ≌ Rt △CNE ,∴EM =EN .28.证明:在正方形ABCD中,∠DAF=∠ABE=90°, DA=AB=BC.∵DG⊥AE,∴∠FDA +∠DAG=90°.又∵∠EAB+∠DAG=90°,∴∠FDA =∠EAB,∴Rt△DAF≌Rt△ABE,∴AF=BE.又AB=BC,∴BF=CE. 29.128.30.(1)证 EF∥AC; (2)∠B=30°;(3)不可能 EC 不垂直AC。
浙教版八年级数学下册期末考试复习试卷及答案详细解析
浙教版八年级数学下册期末考试复习试卷一、单选题1、下列计算正确的是()A.B.C.D.2、在某次数学测验中,某小组8名同学的成绩如下:73,81,81,81,83,85,87,89,则这组数据的中位数、众数分别为()A.80,81 B.81,89 C.82,81 D.73,813、在式子,,,中,x可以取2和3的是()A.B.C.D.4、某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长()A.10% B.15% C.20% D.25%5、如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当时,它是菱形 B.当时,它是正方形C.当时,它是矩形 D.当时,它是菱形(第5题图)(第8题图)(第9题图)(第10题图)6、用配方法解一元二次方程时,此方程可变形为()A.B.C.D.7、已知反比例函数,在下列结论中,不正确的是().A.图象必经过点(1,2);B.图象在第一、三象限;C.随的增大而减少;D.若>1,则<28、如图所示,将一张矩形纸片对折两次后剪下一个角,然后打开.如果要剪出一个正方形,那么剪口线与折痕所成的锐角大小是()A.B.C.D.9、如图,点P是x轴正半轴上的一个动点,过点P作PQ⊥x轴交双曲线(x>0)于点Q,连结OQ. 当点P沿x轴的正方向运动时,Rt△QOP的面积().A.保持不变B.逐渐减小C.逐渐增大D.无法确定10、如图,已知在正方形中,点分别在上,△是等边三角形,连接交于,给出下列结论:①;②;③垂直平分;④。
其中结论正确的共有( ).A.1个B.2个C.3个D.4个二、填空题11、如图,已知:在▱ABCD中,AB=AD=2,∠DAB=60°,F为AC上一点,E为AB中点.(1)▱ABCD的周长是;(2)EF+BF的最小值为.(第11题图)12、已知沂水某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是℃.(第12题图)(第14题图)(第16题图)13、已知关于x的方程x2+kx+3=0的一个根为x=3,则方程的另一个根为.14、如图,已知AD∥BC,要使四边形ABCD为平行四边形,需要增加的一个条是:_____.(只填一个你认为正确的条件即可,不添加任何线段与字母)15、在△ABC中,已知两边a=3,b=4,第三边为c.若关于x的方程有两个相等的实数根,则该三角形的面积是__________16、如图,点A、B分别在双曲线和上,四边形ABCO为平行四边形,则□ABCO的面积为_________17、如图,在平行四边形ABCD中,∠A的平分线交BC于点E.若AB=10cm,AD=14cm,则BE=______,EC=______.18、菱形的两条对角线分别是6cm,8cm,则菱形的边长为_____,面积为______.19、= ____,=______,=_______.20、已知一个多边形的内角和为1080°,则这个多边形的边数为.三、计算与解方程21、计算:22、解方程:(1)x2-3x+1=0 (2)x(x+3)-(2x+6)=0四、解答题23、开太百货大楼服装柜在销售中发现:“COCOTREE”牌童装平均每天可售出20件,每件盈利40元.为了迎接“五·一”劳动节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1050元,那么每件童装应降价多少元?24、已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:四边形BFDE 是平行四边形.25、如图,直线与轴、轴分别相交于点A和B.(1)直接写出坐标:点A ,点B ;(2)以线段AB为一边在第一象限内作□ABCD,其顶点D(,)在双曲线(>)上.①求证:四边形ABCD是正方形;②试探索:将正方形ABCD沿轴向左平移多少个单位长度时,点C恰好落在双曲线(>)上.26、如图,正方形的边、在坐标轴上,点坐标为,将正方形绕点逆时针旋转角度,得到正方形,交线段于点,的延长线交线段于点,连结、.(1)求证:平分;(2)在正方形绕点逆时针旋转的过程中,求线段、、之间的数量关系;(3)连结、、、,在旋转的过程中,四边形是否能在点G满足一定的条件下成为矩形?若能,试求出直线的解析式;若不能,请说明理由.参考答案1、C2、C3、C.4、C5、B6、D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版初中数学试卷
八年级数学下册期末复习试卷
学校:__________ 姓名:__________ 班级:__________ 考号:__________
一、选择题
1.(2分)下列命题中,是真命题的为( )
A .对角线相等的四边形是矩形
B .对角线互相垂直的四边形是菱形
C .对角线互相平分的四边形是平行四边形
D .对角线互相垂直平分的四边形是正方形
2.(2分)下列各数中,可以用来证明“奇数是素数”是假命题的反例是( )
A . 9
B . 7
C . 5
D . 3
3.(2分)已知一组数据:10,8,6,10,9,13,11,11,10,10,则下列各组中,频率为0.2的是( )
A .5.5~7.5
B .9.5~11.5
C .7.5~9.5
D .11.5~13.5
4.(2分)已知:m n ,是两个连续自然数()m n <,且q mn =.设p =则p ( ) A .总是奇数 B .总是偶数
C .有时是奇数,有时是偶数
D .有时是有理数,有时是无理数 5.(2分)下列命题中,真命题是( )
A .两条对角线相等的四边形是矩形
B .两条对角线互相垂直的四边形是菱形
C .两条对角线互相垂直且相等的四边形是正方形
D .两条对角线互相平分的四边形是平行四边形
6.(2分)已知:m n ,是两个连续自然数()m n <,且q mn =.设p =则p ( )
A .总是奇数
B .总是偶数
C .有时是奇数,有时是偶数
D .有时是有理数,有时是无理数
7.(2分)下列命题中,是真命题的为( )
A .两条对角线相等的四边形是矩形
B .两条对角线垂直的四边形是菱形
C .两条对角线垂直且相等的四边形是正方形
D .两条对角线相等的平行四边形是矩形
8.(2分)的结果的是( )
A .-2
B .2
C .2±
D .16
二、填空题
9.(3分)平行四边形ABCD 两条对角线交于点0. 若△BOC 的面积为 6,AB=3,则AB ,CD 间的距离为 .
10.(3分)的积为有理数: .
11.(3分)已知代数式(5)10x x ++与代数式925x -的值互为相反数,则x = .
12.(3分)已知2(1)|515|0a c -+-=,则一元二次方程20ax bx c ++=的根的
情况是 .
13.(3分) 如图,△ABC 中,∠C=90°,∠ABC=60°,BD 平分∠ABC ,若AD=6,则CD= .
14.(3分)已知直角梯形的一腰长为cm 10,这条腰与底所成的角为30°,那么另一腰的长是_________cm . 15.(3分)若x=0是一元二次方程0823)2(2
2=-+++-m m x x m 的解,则m= .
16.(3分)把“等腰三角形的两腰相等”改写成“如果……那么……”的形式: .
17.(3分)已知a ,b 是方程2(2)10x m x +++=的两根,且a b =,则m = .
18.(3分)如图,在直角三角形中,AB=8,BC=6,M 是斜边AC 上的中点,则BM 的长是 .
19.(3分)“两直线平行,同位角相等”的逆命题是 .
三、解答题
20.(6分)已知:如图,在Rt△ABC中,AB=AC,∠A= 90°, 点D为 BC上的一点,M为BC的中点, 作DF⊥AB于点F,DE⊥AC于点E. 连结 MF,ME,EF.
(1)求证:DF=AE;
(2)判断△MEF是何种特殊三角形,并给出证明;
(3)若BC=6,BD=2,求△MEF的面积.
21.(6分)如图,已知点D,E分别是AB,AC上的点. 若AB=AC,∠B=∠C.
求证:(1)AD=AE;(2)OB=OC.
22.(6分)某超市销售一种商品,每件商品的成本是20元.经统计销售情况发现,当这种商品的单价定为40元时,每天售出200件.在此基础上,假设这种商品的单价每降低1元,每天就会多售出20件.
(1)用代数式表示,这种商品的单价为x元(x<40)时,销售1件该商品的利润和每天销
售该商品的数量;
(2)当商品单价定为多少时,该超市每天销售这种商品获得的利润为4500元.
23.(6分)求代数式(a+1)2-(2a- 3 )(1-a)的值,其中a= 3
24.(6分)某中学八年级共有400名学生,学校为了增强学生的国防意识,在本年级进行了一次国防知识测验.为了了解这次测验的成绩状况,从中抽取了50名学生的成绩,将所得数据整理后,画出频数分布直方图如图所示.
(1)第五个小组的频数是多少? 图中第四个小组和第五个小组的频率各是多少?
(2) 50名学生的成绩的中位数在哪一组?
(3)这次测验中,八年级全体学生成绩在59.5~69.5中的人数约是多少?
(4)试估计这次测验中,八年级全体学生的平均成绩?
25.(6分)如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E是BC边的中点,EM⊥AB,EN⊥CD,垂足分别为M、N.求证:EM=EN.
26.(6分)求证(填空):两条直线被第三条直线所截.如果同旁内角不互补,那么这两条直线不平行.
已知:如图,直线12,l l 被3l 所截,∠1+∠2 180°.
求证:12l l 与 .
证明:假设12____l l ,
则∠1+∠2 180°( )
这与 矛盾,故 不成立.
所以 .
27.(6分)已知 6a =+6b =-22
a a
b b ++的值.
28.(6分)如图,在△ABC 中,∠ACB=90°,BG 的垂直平分线DE 交BC 于点D ,交AB 于点E ,点F 在DE 上,并且EF=AC .
(1)求证:四边形ACEF 是平行四边形;
(2)当么8的大小满足什么条件时,四边形ACEF 是菱形?请回答并证明你的结论.
(3)四边形ACEF 有可能是正方形吗?为什么?
29.(6分)某校为了了解本校八年级学生一天中在家里做作业所用的时间,随机抽查了本校
八年级的40名学生,并把调查所得的所有数据(时间)进行整理,分成五组,绘制成频数分布直方图(如图). 请结合图中所提供的信息,回答下列问题:
(1)被抽查的学生中做作业所用的时间在150.5~l8O.5min范围的人数有多少人?
(2)补全频数分布直方图,并请指出这组数据(时间)的中位数在哪一个时间段内?
(3)估计被抽查的学生做作业的平均时间(精确到个位).
30.(6分)如图,由 5个大小完全相同的小正方形摆成如图①③的形状,现移动其中的一个小正方形,请在图②,图③,图④中分别画出满足以下各要求的图形(用阴影表示).
(1)使得图形成为轴对称图形,而不是中心对称图形;
(2)使得图形成为中心对称图形,而不是轴对称图形;
(3)使得图形既是轴对称图形,又是中心对称图形.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
2.A
3.C
4.A
5.D
6.A
7.D
8.B
二、填空题
9.8
10.如
11.1 或-15
12.没有实数根
13.3
14.5
15.4
16.如果一个三角形是等腰三角形,那么它的两腰相等
17.0或-4
18.5
19.同位角相等,两直线平行
三、解答题
20.(1)略 (2)等腰直角三角形,提示:证△AFM≌△CEM (3)2.5
21.略
22.(1)x-20;200+(40-x)×20;(2)(x-20)(1000-20x)=4500,x=35.23.原式=3a2- 3 a+ 3 +1 =7+ 3 .
24.(1)10;0.26;0.2.
(2)中位数在69.5~79.5这一组中
(3)400×9
50=72人(4)77.3
25.∵AD ∥BC ,AB=DC ,∴B C ∠=∠,
∵,,EM AB EN CD ⊥⊥∴90BME CNE ∠=∠=︒,
在Rt △BME 和Rt △CNE 中,
BME CNE B C
BE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩
,∴Rt △BME ≌ Rt △CNE ,∴EM =EN . 26.≠;不平行;∥;=;两条直线平行,同旁内角互补;∠1+∠2≠180°;假设;12l l 与不平行.
27.128.
28.(1)证 EF ∥AC ; (2)∠B=30°;(3)不可能 EC 不垂直AC
29.(1)8人 (2)补图略,中位数在120.5~15O.5 min (3)131min
30.略。